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1. For each of the following multiple choice questions, indicate one only from among A to 

E as the best answer. 

i. In a classical micro-canonical ensemble the phase space distribution function  

A. 𝜌 is a constant on a hypersurface 𝐻(𝑝, 𝑞) = 𝐸. 

B. 𝜌 is a constant in the region 𝐻(𝑝, 𝑞) < 𝐸. 

C. 𝜌 is proportional to energy 𝐸. 

D. 𝜌 is proportional to exp(−𝛽𝐻). 

E. 𝜌 is proportional to 𝛿(𝐻(𝑝, 𝑞) − 𝐸). 
 

ii. The Jarzynski relation connecting work 𝑊 with Helmholtz free energy 𝐹 is 

A. 〈𝑒−𝛽𝑊〉 > 𝑒−𝛽Δ𝐹. 

B. 〈𝑒−𝛽𝑊〉 < 𝑒−𝛽Δ𝐹. 

C. 〈𝑒−𝛽𝑊〉 = 𝑒−𝛽Δ𝐹. 

D. 〈𝑒−𝛽𝑊〉 = 𝑒−𝛽𝐹. 

E. 〈𝑒𝛽𝑊〉 = 𝑒𝛽Δ𝐹. 

 

iii. With the scaling hypothesis, 𝑓(𝑏𝑌𝑡, 𝑏𝑋ℎ) = 𝑏𝐷𝑓(𝑡, ℎ), for the singular part of the 

free energy per degree of freedom near critical point, which one of the following 

statements is not true or not implied? 

A. 𝐷 is the dimension of the system. 

B. 𝑡 is 𝑇 − 𝑇𝐶 . 

C. Widom’s scaling law, 𝛽(𝛿 − 1) = 𝛾. 

D. Fisher’s scaling law, 𝛾 = (2 − 𝜂)𝜈. 

E. Rushbrooke’s scaling law, 𝛼 + 2𝛽 + 𝛾 = 2. 
 

iv. In a quantum ideal Bose gas, the critical Bose-Einstein condensation temperature 

𝑇0 at which the occupation number of the ground state acquired an average value 

〈𝑛0〉 of order 𝑁 (the number of particles of the system) can be estimated 

approximately by 

A. 𝑘𝐵𝑇0 ≈ ℏ𝜔. 

B. 𝑘𝐵𝑇0 ≈ ℏ2/ (2𝑚(
𝑉

𝑁
)

2

3). 

C. 𝑘𝐵𝑇0 ≈ ℏ2/(2𝑚𝑉
2

3). 

D. 𝑘𝐵𝑇0 ≈ 〈𝑚𝑣2〉. 

E. 𝑘𝐵𝑇0 ≈ 8𝑎/(27𝑏). 

 

v. Einstein equation is 

A. 𝐸 = 𝑚𝑐2. 

B. 〈𝑥2〉 = 2𝐷𝑡. 

C. 𝐷 = 𝑘𝐵𝑇/(6𝜋𝜂𝑎). 

D. 𝐷 = 𝜇𝑘𝐵𝑇. 

E. All of the above. 
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i)E,  ii) C,  iii) D,  iv) B,  v) E. 

 

 

2. The eigen-energies of a single quantum particle in a one-dimensional box is 𝐸𝑛 =
𝜋2ℏ2𝑛2

2𝑚𝐿2 , 

where 𝑛 = 1, 2, 3, …, and 𝑚 is mass, 𝐿 is the length of the interval where the particle is 

confined.  Working in canonical ensemble: 

i. Determine the force that the particle exerts to the wall of the box, in the high-

temperature limit, i.e., 𝛽 = 1/(𝑘𝐵𝑇) is small. 

ii. Determine the same force, but in the opposite limit, i.e., temperature 𝑇 is small.  

The answer should be accurate to the first order of a suitable small low-

temperature expansion parameter. 

Define 𝛼 =
𝜋2ℏ2

2𝑚
, then 𝐸𝑛 = 𝛼𝑛2/𝐿2, the partition function is 𝑍 = ∑ 𝑒−𝛽𝛼𝑛2/𝐿2

= 𝑥 +∞
𝑛=1

𝑥4 + 𝑥9 + ⋯, where 𝑥 = 𝑒−𝛼𝛽/𝐿2
.  For low temperatures, 𝛽 = 1/(𝑘𝐵𝑇) is large, and 𝑥  

is small, we just keep the first two terms in the Taylor expansion of 𝑥 as a good 

approximation.  For higher temperature, the summand varies slowly with 𝑛 we 

approximate the sum by integral, 𝑍 ≈ ∫ 𝑒
−

𝛼𝛽𝑛2

𝐿2
∞

0
𝑑𝑛 = 𝐿√2𝜋𝑚 𝑘𝐵𝑇 /ℎ, (exactly the 

same result as for in classical particle, i.e., ∬
𝑑𝑥𝑑𝑝

ℎ
𝑒−

𝛽𝑝2

2𝑚 ) and the free energy is 𝐹 =

−𝑘𝐵𝑇 ln 𝑍. Using force 𝑓 = −
𝜕𝐹

𝜕𝐿
, we obtain, for i)  high temperature 𝑓 = 𝑘𝐵𝑇/𝐿 (ideal 

gas law),  ii) for low temperature  𝑓 =
2𝛼

𝐿3
(1 + 3𝑥3 + ⋯ ).  

 

 

3. For exact results in two-dimensional Ising models, duality plays an important role.  

i. Explain the meaning of duality in a topological sense and demonstrate that square 

lattice is self-dual. 

ii. State the duality relation, which relates high-temperature expansion with low-

temperature expansion. 

iii. Give the duality argument that the critical temperature of the two-dimensional 

Ising model on a square lattice with nearest neighbor interaction is determined by 

tanh 𝐾𝑐 = exp(−2𝐾𝑐), where 𝐾𝑐 = 𝐽/(𝑘𝐵𝑇𝑐). 

 

Exactly the same as in my notes, or at the elearning-week recordings. 

 

 

4. Consider the Langevin equation in the case where the acceleration term 𝑚𝑑𝑣/𝑑𝑡 is 

negligible, −𝑘
𝑑𝑥

𝑑𝑡
+ 𝑅(𝑡) = 0, with a standard white noise for the random force, i.e., 

〈𝑅(𝑡)〉 = 0, 〈𝑅(𝑡)𝑅(𝑡′)〉 = 𝐶𝛿(𝑡 − 𝑡′). 



4 
 

i. Solve the stochastic differential equation assuming the initial condition 𝑥(0) = 0; 

determine the mean-square displacement 〈𝑥(𝑡)2〉 as a function of time 𝑡. 

ii. Derive the Fokker-Planck equation for the probability density 〈𝑃(𝑥, 𝑡)〉 for the 

random variable 𝑥. 
 

i)  Integrate, we get 𝑥(𝑡) =
1

𝑘
 ∫ 𝑅(𝑡′)𝑑𝑡′

𝑡

0
.  Perform a two-dimensional integral 

over a square of [0, 𝑡]2 and the use the delta function correlation, we obtain, 

〈𝑥(𝑡)2〉 = 1/𝑘2 ∫ 𝑑𝑡1 ∫ 𝑑𝑡2〈𝑅(𝑡1)𝑅(𝑡2)〉
𝑡

0
= 𝐶𝑡/𝑘2𝑡

0
. 

ii) Probability conservation means  
𝜕𝑃

𝜕𝑡
+

𝜕

𝜕𝑥
(�̇�𝑃) = 0.  Using the expression for 

the rate of 𝑥, and moving the second term to the right and solving the 

equation formally, then taken average over noise, or alternatively, using 

analogy to the standard Fokker-Planck equation, we obtain (skipping steps), 
𝜕〈𝑃(𝑥,𝑡)〉

𝜕𝑡
=

𝐶

2𝑘2

𝜕2

𝜕𝑥2
〈𝑃(𝑥, 𝑡)〉 , which is a diffusion equation. 

 

5. Consider a simplified Boltzmann equation of the form  
𝜕𝑓

𝜕𝑡
+

𝐩

𝑚
∙ ∇𝒓𝑓 = −

𝑓−𝑓eq

𝜏
, where 𝑓eq 

is local equilibrium distribution having the property 〈ln 𝑓eq〉𝑓 = 〈ln 𝑓eq〉𝑓eq
. 𝑚 is mass of 

the particle, 𝜏 > 0 is relaxation time constant, and the distribution function 𝑓 = 𝑓(𝒓, 𝒑, 𝑡) 

is a function of (three-dimensional) position 𝒓, momentum 𝒑, and time 𝑡.   The 

Boltzmann 𝐻-function is defined as 𝐻 = ∬ 𝑑𝒓𝑑𝒑 𝑓 ln 𝑓.  Prove the 𝐻-theorem: 
𝑑𝐻

𝑑𝑡
≤ 0. 

 

The key steps are: 
𝑑𝐻

𝑑𝑡
= ∫ 𝑑𝒓 ∫ 𝑑𝒑

𝜕𝑓

𝜕𝑡
(1 + ln 𝑓).  This is because, 𝑡, 𝒓, 𝒑 are independent 

variables.  Use Boltzmann equation  
𝜕𝑓

𝜕𝑡
= −

𝐩

𝑚
∙ ∇𝒓𝑓 −

𝑓−𝑓eq

𝜏
, the first momentum term 

can be dropped, because, it can be written as ∫ 𝑑𝒓 ∇𝒓(𝑓 ln 𝑓) and can be changed to a 

surface integral using Gauss theorem. The 1 can also be dropped because particle 

number conservation, ∫ 𝑑𝒓 ∫ 𝑑𝒑 𝑓 = 𝑁.  We are left with 
𝑑𝐻

𝑑𝑡
= −

1

𝜏
∫ 𝑑𝒓 ∫ 𝑑𝒑 (𝑓 −

𝑓eq) ln 𝑓.  To proceed further, we use the given local equilibrium condition, which means 

∫ 𝑑𝒓 ∫ 𝑑𝒑 (𝑓 − 𝑓eq) ln 𝑓𝒆𝒒 = 0.  Dividing by 𝜏 , adding into 𝑑𝐻/𝑑𝑡, we get 
𝑑𝐻

𝑑𝑡
=

−
1

𝜏
 ∫ 𝑑𝒓 ∫ 𝑑𝒑 (𝑓 − 𝑓eq) ln

𝑓

𝑓eq
≤ 0.   This problem is an example in the book of R. 

Zwanzig, page 93-96. 

 

- The end   -                                                       [JSW] 


