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1. Consider the TPN (isothermal-isobaric) ensemble, where the temperature 𝑇, pressure 𝑝, and 

number of particles 𝑁 are fixed fundamental thermodynamic variables.   We define the 

partition function in the TPN ensemble as 𝑍𝐺(𝑇, 𝑝, 𝑁) = ∫ 𝛽𝑝𝑑𝑉 ∫
𝑑Γ

𝑁! ℎ3𝑁 𝑒−𝛽(𝐻+𝑝𝑉)∞

0
, here 

the volume 𝑉 is an integration variable,  𝛽 = 1/(𝑘𝐵𝑇), 𝑑Γ = 𝑑𝑞1𝑑𝑞2 ⋯ 𝑑𝑞3𝑁𝑑𝑝1 ⋯ 𝑑𝑝3𝑁, 𝐻 

is the Hamiltonian, and ℎ is the Planck constant.  

a. Show that the Gibbs free energy is given by 𝐺 = −
1

𝛽
ln 𝑍𝐺 . 

b. Considering the ideal gas with = ∑
𝑝𝑗

2

2𝑚
3𝑁
𝑗=1  , compute 𝑍𝐺 .    You may need the 

definition of the Gamma function Γ(𝑥 + 1) ≡ 𝑥! = ∫ 𝑡𝑥𝑒−𝑡𝑑𝑡
∞

0
. 

c. Using the thermodynamic relation, determine the chemical potential 𝜇; and show 

that the ideal gas law, 𝑝𝑉 = 𝑁𝑘𝐵𝑇, is valid. 

d. Show that the entropy 𝑆 obtained from 𝐺 agrees with the usual Sackur-Tetrode 

formula. 

 

a) The integration over the phase space Γ can be changed as integration over energy with 

the density of states N(E) of the energy.  By Boltzmann principle, we can write exp(S(E)/k) 

= N(E). Then the values of two dimensional integrals over the volume V and E is 

dominated by the maxima (multiplied by a gaussian), so −
1

𝛽
ln 𝑍𝐺 ≈

−
1

𝛽
ln 𝑒

𝑆

𝑘
−−𝛽(𝐸+𝑝𝑉) = −𝑇𝑆 + 𝐸 + 𝑝𝑉 = 𝐺. 

b) The dΓ integral gives ∫ 𝑑Γ𝑒−𝛽𝐻 = 𝑉𝑁 (
2𝜋𝑚

𝛽
)

3𝑁/2
.  Using the given formula for x! we 

cancel the N! in the denominator.  Find 𝑍𝐺 = (
2𝜋𝑚

𝛽ℎ2 )
3𝑁/2

(
1

𝛽𝑃
)

𝑁
. 

c) Since 𝐺(𝑇, 𝑝, 𝑁) = −𝑘𝑇 ln 𝑍𝐺 , and take derivative with respect to N we get 𝜇 =
𝜕𝐺

𝜕𝑁
=

−
1

𝛽
ln [(

2𝜋𝑚

𝛽ℎ2 )

3

2 1

𝛽𝑃
].    Take derivative with respect to p, we get V = 

𝜕𝐺

𝜕𝑝
= 𝑁/(𝛽𝑝).  Or the 

ideal gas law 𝑝𝑉 = 𝑁𝑘𝑇.  

d) Entropy is obtained by taking partial derivative with respect to temperature T.  We got 

two terms which can be simplified to the standard Sackur-Tetrode form:  𝑆 =

𝑁𝑘 ln
𝑉

𝑁𝜆3 +
5

2
𝑁𝑘 , where 𝜆 =

ℎ

√2𝜋𝑚 𝑘𝑇
  is the thermal wavelength. 

 

 

 

2. We consider the application of the mean-field theory in the framework of the Feynman-

Jensen-Bogoliubov (FJB) formulation to the spin 𝑆 Heisenberg model.  The Heisenberg model 

on a cubic lattice is  𝐻̂ = −𝐽 ∑ (𝑆𝑖
𝑥𝑆𝑗

𝑥 + 𝑆𝑖
𝑦

𝑆𝑗
𝑦

+ 𝑆𝑖
𝑧𝑆𝑗

𝑧)<𝑖𝑗> − 𝑔𝜇𝐵𝐵 ∑ 𝑆𝑖
𝑧

𝑖 .   Here the first 

term sums over the nearest neighbor pairs only, 𝑔 is the Landé factor, 𝜇𝐵 is the Bohr 

magneton, 𝐵 is applied external magnetic field in 𝑧 direction, and the spin operators satisfy 

the usual commutation relations, with the eigenvalues of 𝑆𝑧 taking −𝑆, −𝑆 + 1, ⋯ , 𝑆 − 1, 𝑆.  

Let’s choose the non-interacting Hamiltonian to be   𝐻̂0 = −ℎ ∑ 𝑆𝑖
𝑧

𝑖 .  Here ℎ is the mean 

field to be determined. 
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a. Write down the quantum version of the FJB inequality for the Helmholtz free energy 

𝐹, no need to give a proof. 

b. Show that in the canonical ensemble defined by  𝐻̂0, the average values of 𝑥 and 𝑦 

components of the spins are 0, i.e., 〈𝑆𝑖
𝑥〉0 = 〈𝑆𝑖

𝑦〉0 = 0. 

c. Prove that 〈𝑆𝑖
𝑧〉0 = 𝑆𝐵𝑆(𝜂), here 𝜂 = 𝑆𝛽𝑔𝜇𝐵𝐵, and the Brillouin function is 𝐵𝑆(𝜂) =

2𝑆+1

2𝑆
coth (

2𝑆+1

2𝑆
𝜂) −

1

2𝑆
coth (

1

2𝑆
𝜂).  

d. Compute the right-hand side of the Feynman-Jensen-Bogoliubov inequality, i.e., the 

estimate of the free energy of the original interacting system. 

 

a) The Feynman-Jensen-Bogoliubov inequality is  𝐹 ≤ 𝐹0 + 〈𝐻 − 𝐻0〉0.  Here subscript 0 for 

the brackets means we average over the ensemble governed by 𝐻0. 

b) Using 𝑆+ and 𝑆−, 𝑆± = 𝑆𝑥 ± 𝑖𝑆𝑦, and 〈𝑚|𝑆±|𝑚〉 = 0, we get, 〈𝑆𝑖
𝑥〉0 = 〈𝑆𝑖

𝑦〉0 = 0, this is 

purely due to quantum mechanics. 

c) Define the partition function as 𝑍 = ∑ 𝑒𝛽ℎ𝑆𝑗
𝑗 , sum over the all possible values of S from 

–S, -S+1, …, S-1, S, we get, 𝑍 =
𝑒−𝛽ℎ𝑆−𝑒𝛽ℎ(𝑆+1)

1−𝑒𝛽ℎ =  
sinh(𝑆+

1

2
)𝑥

sinh
𝑥

2

 , here 𝑥 = 𝛽ℎ.  Then if we 

take log derivative of Z with respect to x, we get the average value of z component of the 

spin, which in turn derive the Brillouin function. 

d) Since x and y average is 0, and spins are uncorrelated in the mean field approximation, 

we find, 𝐹0 = −𝑁𝑘𝑇 ln 𝑍, and 〈𝐻 − 𝐻0〉0 = −𝐽𝑀2𝑁𝑑 − 𝑔 𝜇𝐵𝐵𝑁𝑀 + ℎ𝑁𝑀.  Here we 

define 𝑀 = 〈𝑆𝑖
𝑧〉0. 

 

 

 

3. Consider the standard Langevin equation for the velocity, 
𝑑𝑣

𝑑𝑡
= −𝛾𝑣 +

𝑅(𝑡)

𝑚
, with 〈𝑅(𝑡)〉 = 0, 

and 〈𝑅(𝑡)𝑅(𝑡′)〉 = 2𝛾𝑚𝑘𝐵𝑇𝛿(𝑡 − 𝑡′).  Here 𝑚 is particle mass, 𝛾 is the damping parameter. 

a. Solve the equation formally, assuming steady state is reached, and thus ignoring the 

transient term to obtain an expression of the velocity 𝑣(𝑡) as an integral involving 

the random noise 𝑅.  Obtain the position 𝑥(𝑡) formally, by integrating the velocity. 

b. Determine the correlation function between the noise and the position, i.e., 

compute 〈𝑅(𝑡)𝑥(𝑡′)〉, assuming steady state so the result should  be a function of 

the time difference, 𝑡 − 𝑡′, only.  From this result, show explicitly that equal-time 

correlation 〈𝑅(𝑡)𝑥(𝑡)〉 = 0, justifying Langevin’s assumption. 

c. Define a new variable 𝑧 =
𝑑〈𝑥2〉

𝑑𝑡
, here the average is over the random noise 𝑅.  Show 

that 𝑧 satisfies the equation 
𝑑𝑧

𝑑𝑡
+ 𝛾𝑧 =

2𝑘𝐵𝑇

𝑚
.  Here equipartition theorem is 

assumed, 𝑚〈𝑥̇2〉 = 𝑘𝐵𝑇, for all time 𝑡, as well as the conclusion obtained in (b). 

 

a) Ignore the transient term, the noise part of the solution is 𝑣(𝑡) = ∫
𝑒−𝛾(𝑡−𝑡′)𝑅(𝑡′)

𝑚

𝑡

−∞
𝑑𝑡′.  

We can verify this is indeed the solution by substituting back to the equation.  Position 

x(t) is obtained by double integral over time. 

b) Using the property of R correlation, we can do the integral with delta function, the result 

is  〈𝑅(𝑡)𝑥(𝑡′)〉 = 2𝑘𝑇(1 − 𝑒−𝛾(𝑡′−𝑡))𝜃(𝑡′ − 𝑡).   When 𝑡′ ≤ 𝑡, we get 0. 
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c) Take the derivative of z, we get 
𝑑𝑧

𝑑𝑡
=

𝑑

𝑑𝑡
〈2𝑥𝑥̇〉 = 2〈𝑥̇2〉 + 2〈𝑥𝑥̈〉.  Using equipartition 

theorem for the first term since it is velocity square average and replace the second 

derivative by the equation of motion, and using the result in b) we get the required 

equation for z.  Clearly, 
𝑑𝑥2

𝑑𝑡
= 2𝑥

𝑑𝑥

𝑑𝑡
.   And taking average and take time derivative 

commute. 

 

 

 

 

 

4. Linear response theory is a very general theory to describe transport or changes of a system 

under small perturbation.   Let’s consider an unperturbed, time-independent Hamiltonian to 

be   𝐻̂0  and the small perturbation is 𝐻̂′ = −𝑎(𝑡) 𝐴̂, here 𝑎(𝑡) is a time-dependent c-

number and 𝐴̂ is a time-independent operator. 

a. Starting at thermal equilibrium at 𝑡 = −∞ with canonical distribution proportional 

to exp(−𝛽𝐻̂0), show that an observable 𝐵̂ at time 𝑡 is given by 〈𝐵̂(𝑡)〉 =

− ∫ 𝐺(𝑡 − 𝑡′)𝑎(𝑡′)𝑑𝑡′
𝑡

−∞
.  Give the precise definition of the Green’s function 𝐺. 

b. Work out an explicit linear response formula for a simple quantum harmonic 

oscillator with 𝐻̂0 =
𝑝2

2𝑚
+

1

2
𝑚Ω2𝑥̂2 under the drive of an external force, such that 

𝐻̂′ = −𝑓(𝑡)𝑥, and the observable 𝐵̂ = 𝑥, i.e., the position of the harmonic oscillator 

responding to the external force 𝑓(𝑡). 

 

a) We solve the equation for the density matrix 𝜌 in interaction picture and compute the 

average.  Detail, see Pottier’s textbook.   

b) For the harmonic oscillator, the required Green’s function is 𝐺(𝑡, 𝑡′) = −
𝑖

ℏ
𝜃(𝑡 −

𝑡′)〈[𝑥(𝑡), 𝑥(𝑡′)]〉.  The position is related to the ladder operator by 𝑥 = √
ℏ

2𝑚Ω
(𝑎 + 𝑎+).  

The time variation for a is, 𝑎(𝑡) = 𝑎𝑒−𝑖Ω𝑡.   Putting this result in, we obtain, 𝐺(𝑡, 𝑡′) =

−
𝜃(𝑡−𝑡′) sin Ω(𝑡−𝑡′)

𝑚Ω
. 

 

 

---- the end of paper ---                                                                   [WJS] 


