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1. Consider a classical particle of mass m trapped in a parabolic potential in three dimensions,

1 . . . .
V(r) = Earz , here a is some control constant, and r = (x, y, z) is a three-dimensional

2
position vector. The Hamiltonian of the particleis H = zp_m + V(r), where p is the momentum

vector.

a. Compute the partition function Z of the single particle system in the canonical ensemble.
From it, determine the Helmholtz free energy F.

b. The particle is assumed initially in thermal equilibrium at temperature T = 1/(kgf). If
we drive the system by changing the shape a of the confining potential, from a; to the

final as, in some way a(t), what is the expectation value of e Bw according to the

Jarzynski equality for the nonequilibrium process? Give the definition of the work w.

a. The partition function Z = % fj; dxdydzdp,dpydp,e”

P+p3+p3)
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Here we note r? = x? + y* + z%, and similarly p* = p; + p3 + pZ. The calculation

involves a 6-dimensional integral which can be done for each of the dimensions
separately. We need to use the formula for Gaussian integration, which is

o)

x2 3
f_+oo e zdx =+2m. Using this result, we find Z = [% \/%] . The free energy is
F=-— %ln Z. The free energy difference is AF = Fy — F; = %ln %, which is
needed for part b.
a\3/2
The Jarzynski equality is (e=PW) = e~ B(Fr=Fi) = (a—l) . The work done w is the
f
difference of the Hamiltonians at the beginning and end of the process, w =
H(as,ps,17) — H(a;, p;, 17). With index i it is the starting phase space
point/parameter and index f the final ones. (w can also be expressed as an integral
over the path of the differential of the Hamiltonian). [See lecture notes page 124-

125].

2. Consider a 1D ice model illustrated below. The Ising-like discrete degrees of freedom are
indicated by the arrows for the orientation of electric dipole moments on the links. Four
arrows merge at a vertex. At each vertex, if the number of incoming arrows equals outgoing

arrows, the energy is 0; if four of the arrows are all pointing inwards, or all pointing outwards,
the energy is +o; for the rest of cases, the energy is €.

a. Give the transfer matrix P such that the partition function is Z = Tr(P").

b. Derive the polynomial equation that the eigenvalues of P must satisfy.

c. Give the expression for the free energy in the thermodynamic limit, N — co.




3.

(a) If we focus on a pair of arrows above and below the circle, we can uniquely specify
the states of the system on each circle as four possibilities: RR, RL, LR, LL (right-right,
right-left, etc.). Based on the rule of the energy given, if we have RR & RR, we have two
in arrows and two out arrows, the energy is 0. If we have RR & LL, the energy is infinite,
and so on. Based on this energytic consideration, we have the transfer matrix P as 4x4
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matrix: P = 1 1 [ Here we define x = e™P€. Then the partition function is
0 x x 1

given as Z = Tr(PN). (b) The eigenvalues of P is given by the equation det(P — AI) = 0,
where | is the identity matrix. The determinant equation can be expanded using Laplace
expansion, we find A(A — 1)(2 — 4x% — 31+ A%) = 0. (c) The free energy in the

thermodynamic limit is given by the largest eigenvalue. Itis F = — %ln Amaxs here the

. . . . . . 1
largest eigenvalue is the solution of the quadratic equation, given Ay, 4, = 3 B+

VI +16x2).

For a magnetic system, the Widom scaling hypothesis states a certain scaling behavior for the
free energy per degree of freedom, f, when the two parameters of the problem, the reduced
temperature t = (T — T,) /T, and the magnetic field h, are changed by some power of factor b.
The free energy per spin of the original one and the scaled one are related by a factor of b~¢,
where d is the dimension.

a.

C.

State the Widom scaling hypothesis for free energy involving the critical exponents X and
Y.

Use the Widom scaling hypothesis to derive relations between «, 5, y and exponents X
and Y. Here a is the critical exponent for heat capacity, 8 is for the magnetization, and y
for the magnetic susceptibility. State clearly the assumptions used in your derivation.
Use the results in b to prove the Rushbrooke relation, a + 28 +y = 2.

The Widom scaling is f(t, h) = b=¢f(tbY, hbX). To obtain the order parameter exponent 3,
one set thY = 1, and then take the first derivative of the free energy with respect to the field

. d— o . . . .
h, given B = TX The susceptibility exponent is obtained by continuing to second derivative,

. 2x-d . L .
giveny = ——. Lastly, for heat capacity, one need to take the second derivative with

respecttot, givena = 2 — d /Y. Adding up, we find the Rushbrooke value of 2. This question
is discussed in class, and the answer can be found in my notes: section 7.2, page 81-83.

An optical mirror suspended in some gas media can be described by the Langevin equation of
the overdamped form, 0 = —Iy# + R(t). Here I is the moment of inertia of the mirror
system, 0 is the angle of the mirror, assuming centered around 0, y is a damping parameter and
has the units of inverse time. R is random torque (force times distance) applied to the mirror,
with the statistical property that (R(t)) = 0, (R(t)R(t")) = C6(t — t").



a. Derive the Fokker-Planck equation associated with the Langevin equation.

b. We assume the mirror is a square of area 4, suspended at midpoint, immersed in an
ideal gas of particle densityn = N/1”  temperature T. Give an estimate of the
constant C for the random torque cc.. lation, in terms of the ideal gas parameters and
geometry of the mirror. [Hint. If there are N molecules hitting the mirror, the

fluctuation will be proportional to VN ].

One can obtain the Fokker-Planck equation in two ways, compare with the standard form, or
derive directly from first principles. | will use the comparison method. We can write the

. . . ae . d
stochastic Langevin equation as IVE = R(t). Compare with standard form of md—: = —myv +

R(t), we have mis Iy, damping term -myv is 0, Ris R, and v is 8. From the standard Fokker-
. 0P _0(yvP) , C 9°P , P _ C 3*p .
Planck equation, —- = ==+ — ——, we find for the angle problem, — = 2277 967 This is

just a pure diffusion equation for the angle.

The second part we first note we should work with a finite time internal t, and define B =

fot R(t")dt'. Bisthe angular moment transferred during time t from the environment (ideal gas)
to the mirror. Then we have (B?) = Ct, which is the variance of the angular momentum
transfer. Clearly, when a single molecule impacts the mirror, it contributes to the mirror a
random torque with random sign (plus or minus). Each impact causes momentum transfer of
2muv, and angular momentum transfer of 2muvx, here x is the distance from the center. We give
just an order of magnitude estimates so we take x ~ \JA. We estimate now many molecules
hint the mirror in time t, this is given by N = nAvt, n = P/(ksT) is the particle density and v is the
average velocity of the molecule. Apply the law of law numbers, the fluctuation of B is then,
J(B2) = Ct = 2mvVAVN, we find C~m>v3A%*n. We can replace the velocity by temperature
using the equal-partition theorem, mv? = kgT.

-- End of Paper --- [WIS]



