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1. Consider a classical particle of mass 𝑚 trapped in a parabolic potential in three dimensions, 

𝑉(𝒓) =
1

2
𝑎𝑟2 , here 𝑎 is some control constant, and 𝒓 = (𝑥, 𝑦, 𝑧) is a three-dimensional 

position vector.  The Hamiltonian of the particle is 𝐻 =
𝒑2

2𝑚
+ 𝑉(𝒓), where 𝒑 is the momentum 

vector. 

a. Compute the partition function 𝑍 of the single particle system in the canonical ensemble.   

From it, determine the Helmholtz free energy 𝐹.  

b. The particle is assumed initially in thermal equilibrium at temperature 𝑇 = 1/(𝑘𝐵𝛽).  If 

we drive the system by changing the shape 𝑎 of the confining potential, from 𝑎𝑖  to the 

final 𝑎𝑓, in some way 𝑎(𝑡), what is the expectation value of  𝑒−𝛽𝑤 according to the 

Jarzynski equality for the nonequilibrium process?   Give the definition of the work 𝑤. 

 

a. The partition function 𝑍 =
1

ℎ3 ∫ 𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧𝑒−𝛽[
(𝑃𝑥

2+𝑝𝑦
2 +𝑝𝑧

2)

2𝑚
+

1

2
𝑎(𝑥2+𝑦2+𝑧2)]+∞

−∞
.  

Here we note 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2, and similarly 𝑝2 = 𝑝𝑥
2 + 𝑝𝑦

2 + 𝑝𝑧
2. The calculation 

involves a 6-dimensional integral which can be done for each of the dimensions 

separately.  We need to use the formula for Gaussian integration, which is 

∫ 𝑒−
𝑥2

2 𝑑𝑥 = √2𝜋
+∞

−∞
.     Using this result, we find 𝑍 = [

1

ℏ𝛽
√

𝑚

𝑎
]

3

.   The free energy is 

𝐹 = −
1

𝛽
ln 𝑍.   The free energy difference is Δ𝐹 = 𝐹𝑓 − 𝐹𝑖 =

3

2𝛽
ln 

𝑎𝑓

𝑎𝑖
, which is 

needed for part b. 

b. The Jarzynski equality is  〈𝑒−𝛽𝑤〉 = 𝑒−𝛽(𝐹𝑓−𝐹𝑖) = (
𝑎𝑖

𝑎𝑓
)

3/2

.   The work done w is the 

difference of the Hamiltonians at the beginning and end of the process, 𝑤 =

𝐻(𝑎𝑓 , 𝒑𝑓 , 𝒓𝑓) − 𝐻(𝑎𝑖, 𝒑𝑖, 𝑟𝑖). With index i it is the starting phase space 

point/parameter and index f the final ones. (w can also be expressed as an integral 

over the path of the differential of the Hamiltonian).  [See lecture notes page 124-

125]. 

 

 

2. Consider a 1D ice model illustrated below.  The Ising-like discrete degrees of freedom are 

indicated by the arrows for the orientation of electric dipole moments on the links.  Four 

arrows merge at a vertex.  At each vertex, if the number of incoming arrows equals outgoing 

arrows, the energy is 0;  if four of the arrows are all pointing inwards, or all pointing outwards, 

the energy is +∞; for the rest of cases, the energy is 𝜖.    

a. Give the transfer matrix 𝑃 such that the partition function is 𝑍 = Tr(𝑃𝑁). 

b. Derive the polynomial equation that the eigenvalues of 𝑃 must satisfy. 

c. Give the expression for the free energy in the thermodynamic limit, 𝑁 → ∞. 
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(a)  If we focus on a pair of arrows above and below the circle, we can uniquely specify 

the states of the system on each circle as four possibilities: RR, RL, LR, LL  (right-right, 

right-left, etc.).   Based on the rule of the energy given, if we have RR & RR, we have two 

in arrows and two out arrows, the energy is 0.  If we have RR & LL, the energy is infinite, 

and so on.  Based on this energytic consideration, we have the transfer matrix P as 4x4 

matrix:  𝑃 = (

1 𝑥 𝑥 0
𝑥 1 1 𝑥
𝑥 1 1 𝑥
0 𝑥 𝑥 1

).  Here we define 𝑥 = 𝑒−𝛽𝜖.  Then the partition function is 

given as 𝑍 = Tr(𝑃𝑁).   (b) The eigenvalues of P is given by the equation det(𝑃 − 𝜆𝐼) = 0, 

where I is the identity matrix.   The determinant equation can be expanded using Laplace 

expansion, we find  𝜆(𝜆 − 1)(2 − 4𝑥2 − 3𝜆 + 𝜆2) = 0.  (c) The free energy in the 

thermodynamic limit is given by the largest eigenvalue.   It is 𝐹 = −
1

𝛽
ln 𝜆𝑚𝑎𝑥, here the 

largest eigenvalue is the solution of the quadratic equation, given 𝜆𝑚𝑎𝑥 =
1

2
(3 +

√1 + 16𝑥2). 

 

3. For a magnetic system, the Widom scaling hypothesis states a certain scaling behavior for the 

free energy per degree of freedom, 𝑓, when the two parameters of the problem, the reduced 

temperature 𝑡 = (𝑇 − 𝑇𝑐)/𝑇𝑐 and the magnetic field ℎ, are changed by some power of factor 𝑏.   

The free energy per spin of the original one and the scaled one are related by a factor of 𝑏−𝑑, 

where 𝑑 is the dimension. 

a. State the Widom scaling hypothesis for free energy involving the critical exponents 𝑋 and 

𝑌. 

b. Use the Widom scaling hypothesis to derive relations between 𝛼, 𝛽, 𝛾 and exponents 𝑋 

and 𝑌. Here 𝛼 is the critical exponent for heat capacity, 𝛽 is for the magnetization, and 𝛾 

for the magnetic susceptibility.   State clearly the assumptions used in your derivation.  

c. Use the results in b to prove the Rushbrooke relation, 𝛼 + 2𝛽 + 𝛾 = 2. 

The Widom scaling is 𝑓(𝑡, ℎ) = 𝑏−𝑑𝑓(𝑡𝑏𝑌, ℎ𝑏𝑋).  To obtain the order parameter exponent 𝛽, 

one set 𝑡𝑏𝑌 = 1, and then take the first derivative of the free energy with respect to the field 

h, given 𝛽 =
𝑑−𝑋

𝑌
.  The susceptibility exponent is obtained by continuing to second derivative, 

given 𝛾 =
2𝑋−𝑑

𝑌
.   Lastly, for heat capacity, one need to take the second derivative with 

respect to t, given 𝛼 = 2 − 𝑑/𝑌.  Adding up, we find the Rushbrooke value of 2. This question 

is discussed in class, and the answer can be found in my notes: section 7.2, page 81-83. 

 

4. An optical mirror suspended in some gas media can be described by the Langevin equation of 

the overdamped form,  0 = −𝐼𝛾�̇� + 𝑅(𝑡).  Here 𝐼 is the moment of inertia of the mirror 

system, 𝜃 is the angle of the mirror, assuming centered around 0, 𝛾 is a damping parameter and 

has the units of inverse time.  𝑅 is random torque (force times distance) applied to the mirror, 

with the statistical property that 〈𝑅(𝑡)〉 = 0, 〈𝑅(𝑡)𝑅(𝑡′)〉 = 𝐶𝛿(𝑡 − 𝑡′). 
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a. Derive the Fokker-Planck equation associated with the Langevin equation. 

b. We assume the mirror is a square of area 𝐴, suspended at midpoint, immersed in an 

ideal gas of particle density 𝑛 = 𝑁/𝑉 at temperature 𝑇.   Give an estimate of the 

constant 𝐶 for the random torque correlation, in terms of the ideal gas parameters and 

geometry of the mirror.  [Hint.  If there are 𝑁 molecules hitting the mirror, the 

fluctuation will be proportional to √𝑁 ]. 

One can obtain the Fokker-Planck equation in two ways, compare with the standard form, or 

derive directly from first principles.   I will use the comparison method.  We can write the 

stochastic Langevin equation as 𝐼𝛾
𝑑𝜃

𝑑𝑡
= 𝑅(𝑡).  Compare with standard form of 𝑚

𝑑𝑣

𝑑𝑡
=  −𝑚𝛾𝑣 +

𝑅(𝑡), we have m is 𝐼𝛾, damping term – 𝑚𝛾𝑣 is 0, R is R, and v is 𝜃.   From the standard Fokker-

Planck equation, 
𝜕𝑃

𝜕𝑡
=

𝜕(𝛾𝑣𝑃)

𝜕𝑣
+

𝐶

2𝑚2

𝜕2𝑃

𝜕𝑣2, we find for the angle problem, 
𝜕𝑃

𝜕𝑡
=

𝐶

2𝐼2𝛾2

𝜕2𝑃

𝜕𝜃2.   This is 

just a pure diffusion equation for the angle.  

The second part we first note we should work with a finite time internal t, and define 𝐵 =

∫ 𝑅(𝑡′)𝑑𝑡′
𝑡

0
.  B is the angular moment transferred during time t from the environment (ideal gas) 

to the mirror.   Then we have 〈𝐵2〉 = 𝐶𝑡, which is the variance of the angular momentum 

transfer.  Clearly, when a single molecule impacts the mirror, it contributes to the mirror a 

random torque with random sign (plus or minus).  Each impact causes momentum transfer of 

2𝑚𝑣, and angular momentum transfer of 2𝑚𝑣𝑥, here x is the distance from the center.  We give 

just an order of magnitude estimates so we take 𝑥 ≈ √𝐴.   We estimate now many molecules 

hint the mirror in time t, this is given by 𝑁 = 𝑛𝐴𝑣𝑡, n = P/(kBT)  is the particle density and v is the 

average velocity of the molecule.  Apply the law of law numbers, the fluctuation of B is then, 

√〈𝐵2〉 = √𝐶𝑡 = 2𝑚𝑣√𝐴√𝑁, we find 𝐶~𝑚2𝑣3𝐴2𝑛.  We can replace the velocity by temperature 

using the equal-partition theorem, 𝑚𝑣2 = 𝑘𝐵𝑇. 

 

A 

𝜃 

                                                                  --   End of Paper ---                                                                                [WJS] 


