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1. Classically, we can think of a magnet as a point particle moving on a surface of a sphere of some 
radius with a moment of inertia 𝐼𝐼.   The particle position is specified by the polar angle 𝜃𝜃 and 
azimuthal angle 𝜙𝜙, here 0 ≤ 𝜃𝜃 < 𝜋𝜋 and 0 ≤ 𝜙𝜙 < 2𝜋𝜋.   The Lagrangian of the system is given by 
              𝐿𝐿 = 1

2
 𝐼𝐼�𝜃𝜃2̇ + 𝜙̇𝜙2 sin2 𝜃𝜃� + 𝐵𝐵𝐵𝐵 cos𝜃𝜃.   

Here 𝐵𝐵 is the magnetic field and 𝜇𝜇 is the magnetic moment. 
a. Determine the Hamiltonian 𝐻𝐻. 
b. Give the expression of the single particle partition function 𝑍𝑍 and evaluate the multi-

dimensional integral.  You may need the Gaussian integral which is 
∫ 𝑒𝑒−𝑥𝑥2/2𝑑𝑑𝑑𝑑 = √2𝜋𝜋+∞
−∞ . 

c. Determine the magnetization 𝑚𝑚 (conjugate to the magnetic field 𝐵𝐵). 
d. Determine the magnetic susceptibility 𝜒𝜒 at the 𝐵𝐵 → 0 limit. 
e. Determine the heat capacity 𝐶𝐶 at constant 𝐵𝐵. 

 
(a) The general formula for going from Lagrangian to Hamiltonian is 𝐻𝐻 = ∑𝑝𝑝𝑞̇𝑞 −

𝐿𝐿. Here we choose 𝜃𝜃 and 𝜙𝜙 as coordinates; it is a two degrees of freedom 
system and no radial r.  And the associated conjugate momenta are 𝑝𝑝𝜃𝜃 =
𝜕𝜕𝜕𝜕
𝜕𝜕 𝜃̇𝜃

= 𝐼𝐼 𝜃̇𝜃, and 𝑝𝑝𝜙𝜙 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜙̇𝜙

= 𝐼𝐼𝜙̇𝜙 sin2 𝜃𝜃.  To be called a Hamiltonian, we must 

eliminate the velocities and express the Hamiltonian in terms of the conjugate 

pairs, so 𝐻𝐻 = 𝑝𝑝𝜃𝜃𝜃̇𝜃 + 𝑝𝑝𝜙𝜙𝜙̇𝜙 − 𝐿𝐿 = 𝑝𝑝𝜃𝜃
2

2𝐼𝐼
+

𝑝𝑝𝜙𝜙
2

2𝐼𝐼 sin2 𝜃𝜃
−  𝐵𝐵 𝜇𝜇 cos𝜃𝜃.  

(b) The classical statistical mechanics is formulated in generalized coordinates and 
their conjugate momenta we called q and p.   We need to know what are these 
conjugate momenta for this specific problem.   The answer is given in part (a). 
The usual classical integration measure 𝑑𝑑Γ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is  𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝜙𝜙 in 
calculating the partition function 𝑍𝑍 for integration over the phase space.  Note 
that there is no extra sin  factor, since it is not the surface area of the sphere 
that play a role but the phase space volume, which is a canonical invariant.   
Performing the elementary integration we find 𝑍𝑍 = 8𝜋𝜋2𝐼𝐼 sinh(𝛽𝛽𝛽𝛽𝛽𝛽)/
[(ℎ𝛽𝛽)2𝐵𝐵𝐵𝐵].  And the Helmholtz free energy 𝐹𝐹 = −�1

β
� ln𝑍𝑍.    If you get the 

partition function wrong, the rest of (c) to (e) cannot be calculated correctly.  
(c) The magnetization is calculated by taking derivative with respect to B, obtain  

𝑚𝑚 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜇𝜇/ tanh(𝛽𝛽𝛽𝛽𝛽𝛽) − 1
𝛽𝛽𝛽𝛽

.   This is due to 𝑑𝑑𝑑𝑑 = −𝑆𝑆𝑆𝑆𝑆𝑆 −𝑚𝑚𝑚𝑚𝑚𝑚, notice 

the minus sign there. 
(d) The susceptibility is 𝜒𝜒 = 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕, and then take the 𝐵𝐵 → 0, we get 𝜒𝜒 = 𝛽𝛽𝜇𝜇2/3.  

Notice the extra 1/3 factor.  We can get this result by Taylor expanding the m 
result and take the linear coefficient in B.  You have to make the Taylor 
expansion with enough accuracy to get the correct factor.  

(e) Finally, the heat capacity can be computed by take the derivative of the 
internal energy respect to temperature T.  The internal energy is 𝑈𝑈 = 〈𝐻𝐻〉 =
−𝜕𝜕 ln𝑍𝑍

𝜕𝜕𝜕𝜕
= 2𝑘𝑘𝐵𝐵𝑇𝑇 − 𝐵𝐵𝐵𝐵/ tanh(𝛽𝛽𝛽𝛽𝛽𝛽).   This gives the heat capacity at constant 𝐵𝐵 

as 𝐶𝐶 = 2𝑘𝑘𝐵𝐵 − 𝑘𝑘𝐵𝐵(𝛽𝛽𝛽𝛽𝛽𝛽)2/ sinh2(𝛽𝛽𝛽𝛽𝛽𝛽).  Alternatively, you can also start with 
entropy 𝑆𝑆. 
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2. This question concerns the duality relation for the two-dimensional Potts model. 
a. Given a lattice, define the dual lattice.  When this concept of dual lattice is meaningful 

and when it cannot be defined? Given the honeycomb lattice consisting of hexagons 
filling the plane, determine its dual lattice. 

b. The 𝑞𝑞-state Potts model is similar to the Ising model except that the values of the spins 
𝜎𝜎𝑖𝑖 take integers 1, 2, …, 𝑞𝑞.  When 𝑞𝑞 = 2 it is equivalent to the Ising model. The 
Hamiltonian is given by 
𝐻𝐻 = −𝐽𝐽∑ 𝛿𝛿𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗<𝑖𝑖𝑖𝑖> .    
The energy of the nearest neighbor interaction is – 𝐽𝐽 if the values of spins at site 𝑖𝑖 and 𝑗𝑗 
are the same, and 0 otherwise.  Consider a high temperature expansion of the partition 
function 𝑍𝑍 on a square lattice with appropriate expansion variable 𝑥𝑥, give the first three 
nonzero terms of the result. 

c. Develop a low temperature expansion of 𝑍𝑍 for the same square lattice, starting from the 
ground state (which is 𝑞𝑞-fold degenerate), also obtain the first three nontrivial terms. 

d. Use the duality argument to determine the transition temperature 𝑇𝑇𝑐𝑐. 
 

(a) To get a dual lattice from the original lattice, we put a dual site on each face of 
the original lattice, and connect the dual sites by dual links.  The dual link 
always crosses the original link.   This can be done only for planar graphs; not 
possible for 3D lattices.  The hexagonal lattice has a dual lattice which is the 
triangular lattice. 

(b) This is trickier than one thinks.  The most obvious expansion variable is to use 
𝑒𝑒𝐾𝐾𝛿𝛿𝜎𝜎𝜎𝜎′ = 1 + 𝑥𝑥𝛿𝛿𝜎𝜎𝜎𝜎′ , 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑥𝑥 = 𝑒𝑒𝐾𝐾 − 1.  But this expansion doesn’t have the 
Ising-like property in the sense averaging over spins produce 0, and the duality 
relation between high and low temperature expansion of the partition 
function cannot be established.  But most students did it this way.   Then when 
we expand, we get no delta factor (no bonds), one delta factor (one bond), and 
two delta factors (two bonds).   Not that for the two delta factor case, the 
bond can be disconnected or connected, this gives two possible terms, thus the 
partition function is 𝑍𝑍 = 𝑞𝑞𝑁𝑁 + 2𝑁𝑁𝑁𝑁𝑞𝑞𝑁𝑁−1 + 𝑁𝑁(2𝑁𝑁 − 1)𝑥𝑥2𝑞𝑞𝑁𝑁−2 + 𝑂𝑂(𝑥𝑥3).   
Alternative to the delta expansion above is to use 𝑞𝑞𝛿𝛿𝜎𝜎𝜎𝜎′ − 1.  This has the 
property that a single term average to zero, so to get a nonzero value we must 

form a loop (as in the Ising case).  We can write 𝑒𝑒𝐾𝐾𝛿𝛿𝜎𝜎𝜎𝜎′ = 𝑒𝑒𝐾𝐾+𝑞𝑞−1
𝑞𝑞

[1 +

𝑦𝑦(𝑞𝑞𝛿𝛿𝜎𝜎𝜎𝜎′ − 1)], here 𝑦𝑦 = 𝑒𝑒𝐾𝐾−1
𝑒𝑒𝐾𝐾+𝑞𝑞−1

= 𝑥𝑥
𝑥𝑥+𝑞𝑞

 replacing 𝑥𝑥.   With variable 𝑦𝑦 we can 

form loops of 4 sided and 6 sides, the first three terms are 𝑍𝑍 =

𝑞𝑞𝑁𝑁 �𝑒𝑒
𝐾𝐾+𝑞𝑞−1
𝑞𝑞

�
2𝑁𝑁

(1 + 𝑁𝑁(𝑞𝑞 − 1)𝑦𝑦4 + 2𝑁𝑁(𝑞𝑞 − 1)𝑦𝑦6 + 𝑂𝑂(𝑦𝑦8)).  [But the trouble 

seems to be why the coefficient has the 𝑞𝑞 − 1 factor and not other 
expressions?  Note the curious mathematical fact: if we define a 𝑞𝑞 × 𝑞𝑞 matrix 
𝑃𝑃 with elements 𝑞𝑞𝛿𝛿𝜎𝜎𝜎𝜎′ − 1, we have 𝑇𝑇𝑇𝑇�𝑃𝑃𝑘𝑘� = 𝑞𝑞𝑘𝑘(𝑞𝑞 − 1).  ] 
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(c) The low temperature expansion is straightforward, the ground state is q-fold 
degenerate with energy -J2N, and first excited states change one site, with 
energy higher by 4J and it is Nq(q-1) fold degenerate, and next higher states 
flip two spin side-by-side, having energy higher than ground state by 6J.  So 
partition function is 𝑍𝑍 = 𝑞𝑞𝑒𝑒2𝑁𝑁𝑁𝑁 + 𝑞𝑞(𝑞𝑞 − 1)𝑁𝑁𝑒𝑒(2𝑁𝑁−4)𝐾𝐾 + 2𝑁𝑁𝑁𝑁(𝑞𝑞 −
1)𝑒𝑒(2𝑁𝑁−6)𝐾𝐾 + ⋯. 

(d) We see the coefficients in part (b) and (c) are the same.  This means duality is 

also true for Potts model and we can identify Tc by the equation 𝑦𝑦 = 𝑒𝑒𝐾𝐾−1
𝑒𝑒𝐾𝐾+𝑞𝑞−1

=

𝑒𝑒−𝐾𝐾.   Solving the equation for 𝐾𝐾, we find 𝐾𝐾𝑐𝑐 = 𝐽𝐽
𝑘𝑘𝐵𝐵𝑇𝑇𝑐𝑐

= ln(1 + √𝑞𝑞). 

 
3. The Jarzynski equality relates the equilibrium free energy to a nonequilibrium process.  

a. State the Jarzynski equality, explain your symbols used. 
b. Consider a classical Hamiltonian of the form 

𝐻𝐻(𝑡𝑡) = 𝑝𝑝2

2𝑚𝑚
 + 1

2
𝑘𝑘(𝑥𝑥 − 𝑣𝑣𝑣𝑣 𝜃𝜃(𝑡𝑡))2  

which represents a harmonic oscillator with the center of the force moving with velocity 
𝑣𝑣 when 𝑡𝑡 > 0.   Here the step function 𝜃𝜃(𝑡𝑡) = 0 if 𝑡𝑡 < 0 and 1 when 𝑡𝑡 ≥ 0.    Determine 
the free energy difference 𝐹𝐹(𝑡𝑡) − 𝐹𝐹(0) associated with the Hamiltonian 𝐻𝐻(𝑡𝑡) and 𝐻𝐻(0).   
Here 𝑡𝑡 is a fixed time. 

c. Solve the equation of motion of the oscillator to determine 𝑥𝑥(𝑡𝑡) and 𝑝𝑝(𝑡𝑡) in terms of 
the initial values of position 𝑥𝑥0 and momentum 𝑝𝑝0, as well as time 𝑡𝑡. 

d. Give the expression for the work 𝑊𝑊 done going from microscopic state (𝑥𝑥0,𝑝𝑝0) to the 
state (𝑥𝑥(𝑡𝑡),𝑝𝑝(𝑡𝑡)), according to Jarzynski.  Express the work 𝑊𝑊as a function of the initial 
state only. 

e. Assuming that the initial distribution of (𝑥𝑥0,𝑝𝑝0) follows the canonical distribution 
determined by the initial Hamiltonian 𝐻𝐻(0), show that the exponential average of the 
work, 〈𝑒𝑒−𝛽𝛽𝛽𝛽〉0, by explicit calculation of the average, is given by the Jarzynski equality.  
Here 𝛽𝛽 = 1/(𝑘𝑘𝐵𝐵𝑇𝑇),  𝑘𝑘𝐵𝐵 is the Boltzmann constant and 𝑇𝑇 is temperature. 
 

(a) The Jarzynski equality takes the form 〈𝑒𝑒−𝛽𝛽𝛽𝛽〉 = 𝑒𝑒−𝛽𝛽(𝐹𝐹𝐵𝐵−𝐹𝐹𝐴𝐴), here 𝛽𝛽 = 1
𝑘𝑘𝐵𝐵𝑇𝑇

 , 

and 𝐹𝐹𝐴𝐴 is the free energy of the initial state and 𝐹𝐹𝐵𝐵 is the free energy of the 
final state, 𝑤𝑤 = 𝐻𝐻𝐵𝐵 − 𝐻𝐻𝐴𝐴 is the microscopic work, and the average is over the 
initial canonical distribution 𝜌𝜌𝐴𝐴 = 𝑒𝑒−𝛽𝛽𝐻𝐻𝐴𝐴/𝑍𝑍𝐴𝐴.  Although the expression for 𝑤𝑤 
looks simple, we must note that 𝐻𝐻𝐴𝐴 is evaluated at the initial state (𝑥𝑥0,𝑝𝑝0) 
while 𝐻𝐻𝐵𝐵 is evaluated at the final state �𝑥𝑥(𝑡𝑡),𝑝𝑝(𝑡𝑡)� which depends on the 
initial state and time 𝑡𝑡. 

(b) The partition function at a fixed time 𝑡𝑡 is 𝑍𝑍(𝑡𝑡) = 1
ℎ

 ∬𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒−𝛽𝛽(𝑝𝑝
2

2𝑚𝑚+
1
2𝑘𝑘(𝑥𝑥−𝑣𝑣𝑣𝑣)2.  

This is just a product of two gaussians one for p centered around 0 and 
another x centered around 𝑣𝑣𝑣𝑣.   The integral has the similar form, thus we 
obtain 𝑍𝑍(𝑡𝑡) = 1/(𝛽𝛽ℏ𝜔𝜔), here we have defined the angular frequency as 𝜔𝜔 =



5 
 

�𝑘𝑘
𝑚𝑚

.   Since the result is independent of time 𝑡𝑡 , this means the free energy 

difference 𝐹𝐹(𝑡𝑡) − 𝐹𝐹(0) = 0. 
(c) Applying the Hamilton equations of motion, we can eliminate the momentum, 

then the coordinate satisfies the equation 𝑚𝑚𝑥̈𝑥 = −𝑚𝑚𝜔𝜔2𝑥𝑥 + 𝑣𝑣𝑣𝑣𝑣𝑣.   We can take 
care of the extra time dependent term if we use 𝑥𝑥(𝑡𝑡) = 𝑣𝑣𝑣𝑣.  The full solution is 
a sum of sin and cos function together with the 𝑣𝑣𝑣𝑣 term.   We can fix the initial 
condition by 𝑥𝑥0 and 𝑝𝑝0 of initial position and momentum.  We find 𝑥𝑥(𝑡𝑡) =
𝑥𝑥0 cos𝜔𝜔𝜔𝜔 + 𝑝𝑝0−𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚
sin𝜔𝜔𝜔𝜔 + 𝑣𝑣𝑣𝑣.   The momentum is obtained by 

differentiation, 𝑝𝑝(𝑡𝑡) = 𝑚𝑚𝑥̇𝑥(𝑡𝑡).  
(d) The microscopic work 𝑤𝑤 is completely determined by the initial position 𝑥𝑥0, 

initial momentum 𝑝𝑝0, and the time 𝑡𝑡, that is 𝑤𝑤(𝑥𝑥0,𝑝𝑝0, 𝑡𝑡) = 𝐻𝐻(𝑥𝑥(𝑡𝑡),𝑝𝑝(𝑡𝑡), 𝑡𝑡) −
𝐻𝐻(𝑥𝑥0,𝑝𝑝0, 0).   This expression can be simplified to find 𝑤𝑤 =
−2𝑣𝑣 sin(𝜔𝜔𝜔𝜔

2
) �𝑚𝑚𝑚𝑚𝑥𝑥0 cos �𝜔𝜔𝜔𝜔

2
�+ (𝑝𝑝0 − 𝑚𝑚𝑚𝑚) sin(𝜔𝜔𝜔𝜔

2
)�.   As far and the  initial 

position and momentum is concerned, it is a linear function in them and 𝑡𝑡 is 
just a fixed parameter.  This expression is put into the Jarzynski exponential 
average of the work.  

(e) To evaluate the exponential work explicitly (not evoking the Jarnzynski 
theorem), we note the canonical distribution for the harmonic oscillator is just 
gaussian, and adding the extra −𝛽𝛽𝛽𝛽 term only shifts the center of the 
gaussian, after completing the squares we find it is just one, 〈𝑒𝑒−𝛽𝛽𝛽𝛽〉 =

∫𝑑𝑑𝑥𝑥0𝑑𝑑𝑝𝑝0
1

ℎ 𝑍𝑍(0)
 𝑒𝑒
−𝛽𝛽�𝑝𝑝0

2

2𝑚𝑚+
1
2𝑘𝑘𝑥𝑥0

2�−𝛽𝛽𝛽𝛽
=  1. (Steps omitted here). 𝑍𝑍(0) = 1

𝛽𝛽ℏ𝜔𝜔
 is 

the partition function.  
 

4. Consider a harmonic oscillator simultaneously experiencing two thermal baths of temperature 
𝑇𝑇𝐿𝐿 and 𝑇𝑇𝑅𝑅 modelled by a Langevin equation: 

              𝑚𝑚𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑘𝑘 −𝑚𝑚𝛾𝛾𝐿𝐿𝑣𝑣 + 𝜉𝜉𝐿𝐿 − 𝑚𝑚𝛾𝛾𝑅𝑅𝑣𝑣 + 𝜉𝜉𝑅𝑅.   

The position and velocity are related by  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣.  Here 𝑚𝑚 is the mass, 𝑘𝑘 is the force constant, 𝜉𝜉𝐿𝐿 
and 𝜉𝜉𝑅𝑅 are the noises of the left and right bath, which follow the fluctuation-dissipation 
theorem, relating to the damping coefficients 𝛾𝛾𝐿𝐿 ,𝛾𝛾𝑅𝑅 by, 
               〈𝜉𝜉𝛼𝛼(𝑡𝑡)𝜉𝜉𝛽𝛽(𝑡𝑡′)〉 = 2𝑚𝑚𝛾𝛾𝛼𝛼𝑘𝑘𝐵𝐵𝑇𝑇𝛼𝛼𝛿𝛿(𝑡𝑡 − 𝑡𝑡′)𝛿𝛿𝛼𝛼𝛼𝛼,      𝛼𝛼,𝛽𝛽 = 𝐿𝐿 or 𝑅𝑅.   
𝑘𝑘𝐵𝐵 is the Boltzmann constant. The first 𝛿𝛿 is the Dirac delta function and the second is the 
discrete Kronecker delta.  

a. Derive the associated Fokker-Planck equation for the joint probability of velocity 𝑣𝑣 and 
position, 𝑃𝑃(𝑥𝑥, 𝑣𝑣, 𝑡𝑡). 

b. Show that the steady state solution, when the probability distribution becomes 
independent of the time 𝑡𝑡 at long time, can be written in the Gibbsian form, 
𝑃𝑃(𝑥𝑥, 𝑣𝑣) = exp(−𝛽𝛽𝛽𝛽)/𝑍𝑍,  
here 𝐻𝐻 = 1

2
𝑚𝑚𝑣𝑣2 + 1

2
𝑘𝑘𝑥𝑥2 is the total energy of the oscillator.  The choice of 𝑍𝑍 normalizes 

the total probability to 1.  Determine 𝛽𝛽 in terms of the model parameters given.   
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c. The average work done by the left bath to the oscillator per unit time is 𝐽𝐽 =
〈𝑣𝑣(−𝑚𝑚𝛾𝛾𝐿𝐿𝑣𝑣 + 𝜉𝜉𝐿𝐿)〉.  Show that it is given by 𝐽𝐽 = 𝛾𝛾𝐿𝐿𝛾𝛾𝑅𝑅

𝛾𝛾𝐿𝐿+𝛾𝛾𝑅𝑅
𝑘𝑘𝐵𝐵(𝑇𝑇𝐿𝐿 − 𝑇𝑇𝑅𝑅). 

 
(a) We can derive the Fokker-Planck equation following the Zwanzig method, or 

we can just use the formal result in the textbook.  The key point to note is that 
we have two independent variables 𝑥𝑥, and v, in addition to time t, since we are 
asking to find the joint probability of 𝑣𝑣 and 𝑥𝑥.   So, the equation of motion 
must be viewed as two-coupled equation for x and v.  Skip the math detail, the 

final Fokker-Planck equation is 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕(𝑣𝑣𝑣𝑣)
𝜕𝜕𝜕𝜕

+ 𝜕𝜕� �−𝜔𝜔2𝑥𝑥−𝛾𝛾𝛾𝛾�𝑃𝑃�
𝜕𝜕𝜕𝜕

= 𝐷𝐷 𝜕𝜕2𝑃𝑃
𝜕𝜕𝑣𝑣2

.  Here I 

have defined 𝜔𝜔2 = 𝑘𝑘
𝑚𝑚

,  𝛾𝛾 = 𝛾𝛾𝐿𝐿 + 𝛾𝛾𝑅𝑅, and 𝐷𝐷 = 𝑘𝑘𝐵𝐵
𝑚𝑚

(𝛾𝛾𝐿𝐿𝑇𝑇𝐿𝐿 + 𝛾𝛾𝑅𝑅𝑇𝑇𝑅𝑅).   
(b) We assume that the Gibbs form is the solution, we are asked to determine the 

single parameter 𝛽𝛽.   Setting the time derivative 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, and plugging in the 
trial form into the Fokker-Planck equation, we find the equation is satisfied 
provided that 𝛽𝛽 = 𝛾𝛾

𝑚𝑚𝑚𝑚
, or stated differently, the effective temperature of the 

system to be a weighted average 𝑇𝑇 = 𝛾𝛾𝐿𝐿𝑇𝑇𝐿𝐿+𝛾𝛾𝑅𝑅𝑇𝑇𝑅𝑅
𝛾𝛾𝐿𝐿+𝛾𝛾𝑅𝑅

 by the bath couplings. 

(c) To find the energy current, since we know in the steady state the probability 
distribution is Gibbsian with an effective temperature 𝑇𝑇, we can easily 
compute the velocity squared by applying equipartition theorem, but the 
velocity-noise correlation need some thinking.  So we can get quickly 𝐽𝐽 =
〈𝑣𝑣(−𝑚𝑚𝛾𝛾𝐿𝐿𝑣𝑣 + 𝜉𝜉𝐿𝐿〉 = −𝛾𝛾𝐿𝐿𝑘𝑘𝐵𝐵𝑇𝑇 +  〈𝑣𝑣 𝜉𝜉𝐿𝐿〉.   To find the later term, we need to go 
back to the Langevin equation to solve position or velocity (since v =dx/dt), we 
can focus on the position x.  It is given by the Green’s function of the system.  

The velocity at time t can be expressed as 𝑣𝑣(𝑡𝑡) = − 1
𝑚𝑚∫

𝜕𝜕
𝜕𝜕𝜕𝜕
𝐺𝐺(𝑡𝑡 −𝑡𝑡

−∞
𝑡𝑡′)𝜉𝜉(𝑡𝑡′)𝑑𝑑𝑡𝑡′, where the Green’s function in frequency domain is given by 

𝐺𝐺�(𝜔𝜔) = �(𝜔𝜔 + 𝑖𝑖𝑖𝑖)2 − 𝑘𝑘
𝑚𝑚

+ 𝑖𝑖𝑖𝑖𝑖𝑖�
−1

.   Using this result, the velocity and noise 
correlation can be computed, applying the noise correlation as delta function, 
we get 〈𝑣𝑣(0)𝜉𝜉𝐿𝐿(0)〉 = −2𝛾𝛾𝐿𝐿𝑘𝑘𝐵𝐵𝑇𝑇𝐿𝐿𝐺𝐺′(0).  Here the last term is the derivative of 
the Green’s function at time 𝑡𝑡 → 0+, which can be calculated using inverse 
Fourier transform and residue theorem, given −1

2
.   Thus, we have 〈𝑣𝑣𝜉𝜉𝐿𝐿〉 =

𝛾𝛾𝐿𝐿𝑘𝑘𝐵𝐵𝑇𝑇𝐿𝐿.  Putting the two terms together, after some simplification, one 
obtains the desired result.  It is possible to obtain the same result based solely 
on Fokker-Planck equation, see textbook in the supplementary reading.  

 
 
 
 
 
 

- - end of paper - -                                                                            [JSW] 


