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2. Students are required to answer ALL questions. 
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1. Consider a quasi-one-dimensional lattice consisting of connected squares of side length 
𝑎𝑎 as shown below.  Each vertex of the square denotes a site that (at most one) electron 
can hop to.    

a. Based on the geometry given, define the unit cell.  Give the real space lattice 
vectors 𝑹𝑹𝑙𝑙 and specify the Brillouin zone in reciprocal 𝐤𝐤 space. 

b. Consider 𝑁𝑁 repeating unit cells with periodic boundary condition defined in part 
a, specify the group elements 𝐴𝐴𝑗𝑗 that characterize the symmetry of the system.   
For each group element, also write down the character 𝜒𝜒(𝐴𝐴𝑗𝑗) of all the 
irreducible representations. 

c. Consider the tight-binding model defined on the 1D lattice, with hopping 
parameter 𝑡𝑡 between nearest neighbor sites of distance 𝑎𝑎 and zero otherwise.  
Write down the many-body Hamiltonian 𝐻𝐻� = 𝑐𝑐†𝐻𝐻𝑐𝑐 with (spinless) creation and 
annihilation fermionic operators defined on each site.    Specify your naming 
convention clearly.  

d. The single particle wave function is determined by the Schrödinger equation 
𝐻𝐻𝐻𝐻 = 𝜖𝜖𝐻𝐻.  Without actually solving it, based on the Bloch theorem, what is the 
form of the wave function, specifically for the quasi-1D square model? 

e. Determine the Hamiltonian 𝐻𝐻(𝑘𝑘) in wave-vector 𝑘𝑘 space.  What is the matrix 
dimension of the Hamiltonian 𝐻𝐻(𝑘𝑘)? 

f. Determine the dispersion relation of the system, 𝜖𝜖𝑛𝑛(𝑘𝑘).   How many bands do 
we have?  From the dispersion relation, determine the transmission function, 
𝑇𝑇(𝐸𝐸), in a ballistic electron transport in a Landauer formula.   Draw a qualitative 
plot of 𝑇𝑇(𝐸𝐸) vs energy 𝐸𝐸. 
 

          

 
 
 
   

2. The Dyson equation 𝐺𝐺 = 𝑔𝑔 + 𝑔𝑔Σ𝐺𝐺 defined on the Keldysh contour is, more explicitly,  

𝐺𝐺𝑗𝑗𝑗𝑗(𝜏𝜏, 𝜏𝜏′) = 𝑔𝑔𝑗𝑗𝑗𝑗(𝜏𝜏, 𝜏𝜏′) + ��𝑑𝑑𝜏𝜏1𝑑𝑑𝜏𝜏2 𝑔𝑔𝑗𝑗𝑙𝑙(𝜏𝜏, 𝜏𝜏1)Σ𝑙𝑙𝑙𝑙(𝜏𝜏1, 𝜏𝜏2)𝐺𝐺𝑙𝑙𝑗𝑗(𝜏𝜏2, 𝜏𝜏′)
𝑙𝑙,𝑙𝑙

. 

Here the contour time integrals are convolutions, and matrices are multiplied.    
a. What is the equivalent form of the Dyson equation in real time 𝑡𝑡 and branch 

indices 𝜎𝜎 = ±? 
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b. Given that we have 𝐺𝐺𝑟𝑟 = 𝐺𝐺𝑡𝑡 − 𝐺𝐺<, assumed to be true also for 𝑔𝑔 and Σ, as well 
as other relations valid for the Green’s functions, show that the retarded Green’s 
function satisfies 𝐺𝐺𝑟𝑟 = 𝑔𝑔𝑟𝑟 + 𝑔𝑔𝑟𝑟Σ𝑟𝑟𝐺𝐺𝑟𝑟. 

c. Is it also true that 𝐺𝐺𝑡𝑡 = 𝑔𝑔𝑡𝑡 + 𝑔𝑔𝑡𝑡Σ𝑡𝑡𝐺𝐺𝑡𝑡 for the time-ordered Green’s function? 
d. Derive an equation that 𝐺𝐺< must satisfy.   Solve it and show it is the Keldysh 

equation 𝐺𝐺< = 𝐺𝐺𝑟𝑟Σ<𝐺𝐺𝑎𝑎, under certain assumption about small 𝑔𝑔.  Specify this 
assumption explicitly.  
 
 
 

 
3. Consider the single mode constant relaxation-time approximation for the Boltzmann 

equation for electrons.  
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

+ 𝐯𝐯(𝐤𝐤) ⋅
𝜕𝜕𝜕𝜕
𝜕𝜕𝐫𝐫

+ 𝐅𝐅 ⋅
𝜕𝜕𝜕𝜕

𝜕𝜕(ℏ𝐤𝐤) = −
𝜕𝜕 − 𝜕𝜕0

𝜏𝜏
 

where 𝐯𝐯(𝐤𝐤) is electron group velocity, 𝐅𝐅 = −𝑒𝑒𝐄𝐄 is external applied force, 𝐤𝐤 is electron 
wave vector, and 𝜏𝜏 is electron relaxation time, 𝜕𝜕0 is the equilibrium Fermi distribution at 
energy 𝜖𝜖𝐤𝐤 and chemical potential 𝜇𝜇.   We consider the case that the system is 
homogenous in space so that the distribution 𝜕𝜕 will be independent of the position 𝐫𝐫.   
Consider the electrons in a metal driven under a high frequency electric field in x 
direction,  𝐄𝐄 = 𝒙𝒙�𝐸𝐸𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡. Due to this sinusoidal external drive, the time-dependent 
solution of the Boltzmann equation in steady state also has the same frequency, i.e.,   
𝜕𝜕 → 𝜕𝜕𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡. We assume the field amplitude 𝐸𝐸 is small so that the first order 
perturbation in 𝐸𝐸 is valid.   

a. Show that the AC conductivity is given by the Drude model 𝜎𝜎(𝜔𝜔) = 𝑒𝑒2𝐶𝐶 1
1
𝜏𝜏−𝑖𝑖𝑖𝑖

 , 

where 

𝐶𝐶 = �
𝑑𝑑3𝐤𝐤

(2𝜋𝜋)3  𝑣𝑣𝑥𝑥(𝒌𝒌)2 �−
𝜕𝜕𝜕𝜕0

𝜕𝜕𝜖𝜖𝒌𝒌
� . 

Here the integration is within the first Brillouin zone.  
b. The above integral for 𝐶𝐶 can be performed if we take the low-temperature limit 

so that the Fermi function becomes a step function.  For a free particle with the 

dispersion  𝜖𝜖𝐤𝐤 = ℏ2𝑗𝑗2

2𝑙𝑙
, assuming the Fermi sphere fits inside the first Brillouin 

zone, show that the constant  𝐶𝐶 = 𝑛𝑛
𝑙𝑙

 , where 𝑛𝑛 is electron density and 𝑚𝑚 is 
electron mass.  
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4. Let 𝐻𝐻(𝐤𝐤) be a 𝐤𝐤-space Hamiltonian of an N by N Hermitian matrix, N > 1.  Here the 
vector 𝐤𝐤 = (𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦) is assumed two dimensional.  Let the set of orthonormal 
eigenvectors be Ψ𝑛𝑛(𝐤𝐤) with eigenvalues 𝐸𝐸𝑛𝑛(𝐤𝐤) such that 𝐻𝐻(𝐤𝐤)Ψ𝑛𝑛(𝐤𝐤) = 𝐸𝐸𝑛𝑛(𝐤𝐤)Ψ𝑛𝑛(𝐤𝐤).  

a. Define the Berry phase 𝑑𝑑𝛾𝛾𝑛𝑛 of band 𝑛𝑛 between two nearby points, 𝐤𝐤 and 𝐤𝐤 + 𝑑𝑑𝐤𝐤, 
using eigenstates Ψ𝑛𝑛(𝐤𝐤) of the Hamiltonian, remembering that 𝐤𝐤 is two-
dimensional.   This defines the Berry connection.  

b. From the expression in part a, using the Stokes theorem, define the Berry 
curvature Ω𝑛𝑛(𝐤𝐤) (in z direction only). 

c. The expression in part b uses the partial derivatives of the wave functions.  Using 
the fact that the normalized wave function also satisfies the time-independent 
Schrödinger equation, show that we can express the Berry curvature, 
alternatively, as 

Ω𝑛𝑛(𝐤𝐤) = −Im �
Ψ𝑛𝑛
†(𝐤𝐤)𝜕𝜕𝐻𝐻(𝐤𝐤)

𝜕𝜕𝑘𝑘𝑥𝑥
Ψ𝑙𝑙(𝐤𝐤) Ψ𝑙𝑙

† (𝐤𝐤)𝜕𝜕𝐻𝐻(𝐤𝐤)
𝜕𝜕𝑘𝑘𝑦𝑦

Ψ𝑛𝑛(𝐤𝐤)

�𝐸𝐸𝑙𝑙(𝐤𝐤) − 𝐸𝐸𝑛𝑛(𝐤𝐤)�
2

𝑙𝑙≠𝑛𝑛

− (𝑥𝑥 ↔ 𝑦𝑦). 

Here the second term is the same as the first except the role of 𝑘𝑘𝑥𝑥 and 𝑘𝑘𝑦𝑦 are 
swapped.  
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