Singapore-MIT Alliance, CME5233 – Particle Methods and Molecular Dynamics

Tutorial 4, Monday 2:30 - 4:00, 27 Nov 2006

(a) Let assume that the transition matrix W_i has invariant distribution P for all i, i.e., P = P W_i, i=1,2,..,N. show that both the weighted sum W_s = Σ_iλ_iW_i and product W_p=Π_iW_i have invariant distribution P, where Σ_iλ_i=1, λ_i > 0. How to implement W_s and W_p on computer?
(b) If W_i satisfies detailed balance with respect to P is W_i and/or W_p satisfy

(b) If W_i satisfies detailed balance with respect to P, is W_s and/or W_p satisfy detailed balance?

2. Show that the Metropolis transition probability

 $W(X \to X') = T(X \to X') \min(1, P(X') / P(X))$

satisfies detailed balance as long as matrix T(...) is symmetric.

- 3. The Metropolis algorithm is a general method to produce arbitrary distribution in any dimensions. In this exercise, we consider applying the Metropolis method to a simple 1D distribution of the form $p(x) = e^{-x}$ for $x \ge 0$ and p(x) = 0 of x < 0.
 - a. If the current value of the random variable is x, and new one y is obtained by moving x slightly centered round x, and picked at randomly in a box of [x - 0.1, x + 0.1] with uniform distribution, give a formula that generate y using the known value x and a uniformly distributed random number ξ between 0 and 1.
 - b. For the above operation (given x, choose a y), write the conditional probability $T[x \rightarrow y]$ that appears in Metropolis algorithm.
 - c. Give the formula for the transition matrix $W(x \rightarrow y)$ in Metropolis algorithm, applied to the present situation.
 - d. Specify a set of pseudo-code that gives the precise steps of the Metropolis algorithm that generate required distribution, P(x), for the random variable x. Pay particular attend to the situation when the new variable y becomes negative.