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Fourier’'s law for heat conduction

f[w] = f f(t)e"dt
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Diffusive transport vs ballistic transport
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Thermal conductance
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Experimental report of Z Wang et al
(2007)
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“Universal” thermal conductance in the low
temperature limit
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Schwab et al experiments
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Classical molecular dynamics

 Molecular dynamics (MD) for thermal transport
— Equilibrium ensemble, using Green-Kubo formula
— Non-equilibrium simulation
 Nosé-Hoover heat-bath
 Langevin heat-bath
* Velocity scaling heat source/sink
 Disadvantage of classical MD

— Purely classical statistics
 Heat capacity is quantum below Debye temperature
e Ballistic transport for small systems is quantum



Quantum corrections

Methods due to Wang, Chan, & Ho, PRB 42, 11276 (1990); Lee,
Biswas, Soukoulis, et al, PRB 43, 6573 (1991).

Compute an equivalent “quantum” temperature by

NkoT =) 7o . 41
> eXp(ha)/kBTQ)+l 2 (1)

Scale the thermal conductivity by
" dT, 2)

But we have a criticism to this method
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Thermal conduction at a junction
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Quantum heat-bath & MD

« Consider ajunction system with left and right harmonic leads at
equilibrium temperatures T, & Tg, the Heisenberg equations of
motion are

U-L _ —KLUL —VLCUC, /ul\
li. =F° -V°u, -V«®u,, 42 3)
U, = —K"u, —V~*u, i
U,
« The equations for leads can be solved, given L)
u, (t) = u’(t) + j g, (t—t"W"u. (t")dt", (4)

where

d2 L 0 _ d_2 L — _
(F”( juL(t)_O, (dtz +K ]gL(t)— S(t)
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Quantum Langevin equation for center

Eliminating the lead variables, we get

t
e = F° — [ St -t)us(t)dt'+ & + & )

where retarded self-energy and “random noise” terms are given
as

=3 +Z,, X =V-igV«,

6
E = —VC“ug, o = L,R ©)

(such idea for classical ensemble
appears as early as in 1976,

Adelman & Doll, JCP.)
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Properties of the quantum noise
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(£.M&)) LV (u Ou, )V

=V ing (t -t WS =inZ; (t-t),
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T(gj (t ')§L(t)>Tei“’tdt = inz [w] = —2nf (@)IME, [@]

For nonequilibrium Green’s function (NEGF) notations, see
JSW, Wang, & Lu, Eur. Phys. J. B, 62, 381 (2008).
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Quasi-classical approximation, schmid (1982)

 Replace operators u- & £by ordinary numbers

e Using the symmetrized quantum correlation,
lh(D>~> +><)/2 for the correlation matrix of &

 For linear systems, quasi-classical approximation

turns out exact! See, e.g., Dhar & Roy, J. Stat. Phys.

125, 805 (2006).
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Delta singularities in self-energy
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The surface density of states vs frequency for a 2 unit cell (8 atoms)
wide zigzag graphene strip. The delta peaks are consistent with the
localized edge modes shown on the left. JSW, Ni, Jiang, Phys. Rev. B
80, 224302 (2009).
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Implementation

 Generate noise using fast Fourier transform
1 .
t _ Ih _ e—|27r|k/M (10)
(=1 =2 3%

« Solve the differential equation using velocity Verlet

 Perform the kernel integration using a simple
rectangular rule

« Compute energy current by

| = —<d:tL> = <UZ [—iZL(t —t)u (t)dt" + le> (11)
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Comparison of QMD with NEGF
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Equilibrium simulation
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From ballistic to diffusive transport
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FPU-B model
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Conductance of graphene strips
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Zigzag (5,0) carbon nanotubes
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Electron transport & phonons

 For electrons in the tight-binding form interacting with phonons,

the quantum Langevin equations are (set h=1)

t

ic = Hc + j S(t—t)c(t)dt'+ &+ M u,c,
‘“1

li = —Ku — j TI(t —t)u(t)dt' + 7 — c"Mc

(cme) =iz -t), (& )W) = -z t-t)
(nOnE) ) =it -t), (nE)" ©) =imE-t)

(12)

(13)

(14)

(15)
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Quasi-classical approximation & NEGF

I O s W sk W GO

r >
G G X
G< To lowest order in
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e, = Qm classical
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r replace all G by
G G? ~G<.
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Ballistic electron transport, NEGF vs
QMD
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Strong electron-phonon interactions

Two-center-atom
model with Su,
Schrieffer & Heeger
electron-phonon
Interaction. Lines
are NEGF, dots are
QMD. From LU &
JSW, J. Phys.:
Condens. Matter, 21,
025503 (2009).
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QMD is exact in low electron density limit
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Electrons as a heat bath (LU, Brandbyge, et al,
based on path-integral formulism)

i=F"“+F - j [1(t—t")u(t"dt’

—jze(t—t')u(t')dt'+n+§e
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A simplified QMD?

 Consider the following Langevin equation for lattice vibration
[Keblinski & JSW, unpublished; see also Buyukdagli, et al, PRE
78, 066702 (2008); Ceriotti, et al, JCTC (2010) ]:

u=—-Ku-—yu+ &(t), (16)
(M) =0, (&) )=c®)], a7)
Clw] = Tc(t)e‘“"dt = tha)[f (w) + %} (18)

e then in the limit of small damping (y— 0), the energy of the
vibrational modes is given exactly as that of the corresponding
guantum system.
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Conclusion & outlook

QMD for phonon is correct in the ballistic limit and
high-temperature classical limit

Much large systems can be simulated (comparing to
NEGF)

Quantum corrections in dynamics?

— Solve a hierarchical set of Heisenberg equations (Prezhdo
et al, JCP)

— Two-time dynamics (e.g., Koch et al, PRL 2008)?

— Can we treat the noises ¢ & n as operators (i.e. matrices)
thus restore >~ #> <?
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Definitions of Phonon Green’s functions

Dj, (t,t") = =i(t —t){[u; (t),u, ()]),

D5 (t,t") = 10"~ 1) ([u; (1),u, (t)]),

D, (6, = =i (U, ()u, (),

D;, (t.t") = =i (U, (t")u; (1)),

D'(t,t")=6(t —t")D”(t,t") + O(t'-t)D(t,t")
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Relation among Green’s functions

D' —D®=D>-D~, D' =(D?)

D' +D' =D>+D", D' =D!' - D"

D'-D' =D"+D?, D* =f(w)| D' —D* |
1

f(w) = o"@lkeT) _q
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Self-energy Feynman diagrams
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From self-energy to Green’s functions, to heat
current

1
(0+in) K& -z -3
=G '(Z°+2))G",

G =

— —j —a)ReTr(G 3 +G2)
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