

A graphene-carbon nanotube hybrid for high performance proton exchange membrane fuel cells (PEMFC)

Kien-Cuong Pham^{a,b,*}, Daniel H.C. Chua^c, David S. McPhail^b, Cecilia Mattevi^b and Andrew T.S. Wee^{a,d}

^a NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore ^b Department of Materials, Imperial College London, London, UK

- ^c Department of Materials Science and Engineering, National University of Singapore, Singapore
- ^d Department of Physics, National University of Singapore, Singapore
- * Email address: phamkiencuong@nus.edu.sg or k.pham11@imperial.ac.uk

1. Introduction and objective

(PEMFC) is a suitable renewable energy technology for transportation ^{1,2} ♦ Combustion engine: $C_xH_v + O_2 \rightarrow CO_2 + H_2O + heat$ ♦ PEMFC: $H_2 + O_2 \rightarrow H_2O + heat + electricity$

catalyst

support³

3. Results and Discussions ⁴

•

hybrid

lower

Morphological characterisation of the **G-CNT hybrid with SEM**

- Unique nanostructure with the graphene * grown densely along the CNT scaffold
- Overall diameter of approximately 100 nm *
- Expose a high density of active graphene * edges while retaining the porous structure of CNT
- When used as the Pt catalyst support in * PEMFC, a high density of anchor points for

Direct electrical conducting pathways

Pt nano-particles attachment is provided

from the Pt catalyst nanoparticles to the

- Challenges • Low Pt utilisation due to the too small pore size of the carbon black ofthe support
- Carbon corrosion in the carbon black due to the low crystalinity catalyst layer
 - Desirable • Highly graphitic, high electrical conductivity
 - High surface area and porous, preferably 20–40 nm pore sizes
 - Exposure of graphitic edges

2. Method

Microstructural characterisation of the G–CNT hybrid with TEM

- Semi-transparent appearance suggests ٠. an ultra-thin morphology of the graphene sheets
- HRTEM image confirms the layered structure of the graphene sheets, comprising of a few graphitic layers **Raman spectroscopy** confirms the graphitic nature of the G-CNT hybrid with strong graphitic signature peaks D, G, 2D, etc

X-ray Photoelectron Spectroscopy

(XPS) confirms the high purity of the G-CNT hybrid. The G-CNT hybrid is confirmed as a carbon-based material.

- Direct growth of carbon nanotubes (CNT) on Toray carbon paper using the thermal chemical vapour deposition (CVD) method
- 2. Direct growth of graphene onto the CNT scaffold, forming the
 - graphene-carbon nanotube hybrid (G-CNT), using the radio frequency plasma enhanced chemical vapour deposition (PECVD) method
- Deposition of platinum on the G-CNT hybrid at an ultra-low loading of 0.04 mgPt/cm², using the magnetron sputtering method 4.
 - Assembling into the membrane electrode assembly (MEA) of the PEMFC

Scheme 1. Schematic illustration of the Pt/G-CNT cathode fabrication process and (inset) the structural comparison of the Pt/G-CNT cathode (left) and the conventional carbon black-based cathode (right).

3. Results and Discussions

4. Conclusions and future work

Figure 2. (a) Bright field TEM micrograph of the hybrid; (b) HR-TEM micrograph of the G-CNT in the region outlined by the blackcoloured square in figure (a); (c) Raman 🕨 spectrum (red curve) with peak fittings (blue curves) of the hybrid; (d) Survey scan XPS spectrum and (inset) high resolution scan of C 1s peaks of the hybrid.

Microstructural characterisation of the Pt/G-CNT hybrid with SEM and TEM

- The resulting material retains the overall structure of the G-CNT hybrid, with the thickening of the leaf-like features due to the deposition of Pt
- Crystalline Pt nanoparticles attach densely on the surface of the G–CNT hybrid, especially along the graphene edges
- *Figure 3.* (a) SEM and (b) TEM micrograph of the Pt/G-CNT hybrid, and (c) HR-TEM micrograph of the hybrid in the region outlined by the black square in figure (b).

Polarisation performance of the Pt/G-CNT-based cathode

 Remarkable improvement over carbon black and CNT supported Pt catalysts throughout the current density range ~20% higher power density than the carbon black supported Pt, and a great improvement over the CNT supported Pt Reduce the required Pt loading

- The direct growth of the G-CNT hybrid on carbon paper is reported
- The hybrid combines the advantages of an ultra-high density of active graphene edge planes with the porous structure of CNT scaffolds in a single material
- The G-CNT hybrid suggests an effective structure to better utilise the Pt catalyst material and to reduced the required Pt loading in PEMFC Future work:
- Characterisation of the G-CNT hybrid's 3D structure •
- Study the effect of the G-CNT hybrid on the durability of PEMFC

Acknowledgements

K.C.P., D.H.C.C. and A.T.S.W. acknowledge the support from National University of Singapore (NUS) (Grants number: R284-000-087-112 and R144-000-321-112).

K.C.P. acknowledges NUS Graduate School for Integrative Sciences & Engineering (National University of Singapore) for the NGS Scholarship.

4. Polarisation measurements of Figure MEAs with Pt/G-CNT, Pt/VXC72 and Pt/CNT cathodes.

References

1. Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, *Applied Energy*, 88 (4), 981–1007 (2011). 2. V. Mehta and J. S. Cooper, *Journal of Power Sources*, **114**(1), 32-53 (2003). 3. E. Antolini, *Applied Catalysis B: Environmental*, **88** (1–2), 1–24 (2009). 4. K. C. Pham, D. H. C. Chua, D. S. McPhail, and A. T. S. Wee, ECS Electrochemistry Letters 3, F37-F40 (2014).

Graphic sources:

G1. Retrieved on 27/02/2014 from http://www.bloggang.com (centre); http://www.pfrang.de (right).