

Enhanced Photoluminescence of MoS₂ by Gold Plasmon

Zhuo Wang^{1,2,†}, Zhaogang Dong^{3,†}, Huiying Yang⁴, Stefan A. Maier², Joel K. W. Yangi^{3,4*}, Chengwei Qiu^{1*}, Andrew T. S. Wee^{1*}

¹National University of Singapore, Singapore 117456; ²Imperial College London, London, SW7 2AZ; ³ IMRE, A*STAR, Singapore 117602; ⁴ Singapore University of Technology and Design, Singapore 487372

Introduction

Research on plasmonics in hybrid structures of graphene and metal nanostructures has led to a surge of interest in other atomically thin two dimensional (2D) materials, especially MoS_2 . It has been reported that with the decoration of gold nanoparticles, 2D MoS_2 field effect transistor displays an enhanced photocurrent. However, there have been no in-depth reports yet on the plasmonic interaction mechanism between metallic nanostructures (MN) and 2D MoS_2 . Moreover, current published work addresses only devices with gold nanoparticles randomly distributed on MoS_2 . In our work, we demonstrate the precise patterning of MN on 2D MoS_2 and investigate the effect of metal patterns on the optical response of MoS_2 .

Figure 1. Schematic of (a) gold single antenna and (b) gold dimer antenna on MoS₂ grown by chemical vapor deposition. Gold rod has length 60 nm, width 40 nm, height 30 nm, and pitch size 500 nm; the gap between dimer rods is 20 nm.

Results and Discussion A: -

Photoluminescence (PL) of MoS₂ with and without antenna

Results and Discussion B

(c) PL mapping and (d) PL intensity of MoS₂ with and without gold dimer antenna.

Conclusion

Gold single antenna and dimer antenna were fabricated by electron beam lithography on monolayer MoS_2 which was grown by chemical vapor deposition. The SEM image shows the controllable distribution of gold antenna on MoS_2 . The relative reflectance confirms that the well designed gold antenna has strong resonance at 660 nm which increased the scattering of light emitted by MoS_2 , as a result, enhancing the photoluminescence of MoS_2 as shown in PL mapping and single spectrum.

References

- 1. Y Yao, F Capasso and et al. Nano Lett. 13, 1257-1264 (2013);
- 2. J D Lin, W Chen and et al. APL. 102, 203109 (2013);
- 3. A Sobhani, A Lauchner and et al. APL . 104, 031112 (2014);

4. A Splendiani, Liang Sun and et al. Nano Lett. 10, 1271–1275 (2010)

Corresponding authors:

Andrew T. S. Wee (email: phyweets@nus.edu.sg), Chengwei Qiu (email: chengwei.qiu@nus.edu.sg) and Joel K. W. Yang (email: joel_yang@sutd.edu.sg).