Chemical Reactions of Amides and Hydrides-A Methodology for Synthesis of Hydrogen Storage Materials

<u>XIONG Zhitao,</u> WU Guotao<u>,</u> HU Jianjiang, LIU Yongfeng, CHEN Ping*

Physics Department, National University of Singapore 2 Science Drive 3, Singapore 117542 email: physzt@nus.edu.sg

Introduction

There are strong pushes towards hydrogen economy worldwide. To overcome one of the technical barriers - onboard hydrogen storage, great efforts have been devoted to the development of solid-state materials. NITRIDE and IMIDE possess strong affinity towards hydrogen, which enables them as potential storage medias. Our discovery on amide-hydride system designed for reversible hydrogen storage was regarded as a big step forward over the promise of clean hydrogen energy.

6.89wt%

First amide-hydride system, Li-N-H system, was proposed for hydrogen storage based on the discovery of hydrogenation of ${\rm Li}_3 {\rm N}$

 $Hydrogenation Li_3N + 2H_2 → LiNH_2 + 2LiH$ 11.4wt% Dehydrogenation LiNH_2 + 2LiH ↔ Li_2NH + LiH + H_2 5.41wt%

thus, starting from hydrogenation of Li₂NH

 $Li_2NH + H_2 \leftrightarrow LiNH_{2 \text{ (amide)}} + LiH_{(hvdride)}$

Drawback: to reach the plateau pressure for hydrogen desorption

of 1bar, temperature of 285°C is applied.

P. Chen, Z. Xiong, et.al., Nature 420 (2002) 302-304

Other successful amide-hydride system including:

Amide	Hydride	H ₂ amount for cycle
LiNH ₂	CaH ₂	2.71wt%
Mg(NH ₂) ₂	NaH	2.17wt%
LiNH ₂	LiAlH ₄	2.3wt%
Mg(NH ₂) ₂	MgH ₂	H ₂ can only be released
Mg(NH ₂) ₂	CaH ₂	\mathbf{H}_{2} can only be released
Z. T. Xiong, G. T. Wu, J. J. Hu and P. Chen, Adv. Mater. 2004, 16, 1522		

Z. Xiong, J. Hu, G. Wu and P. Chen, J. Alloy. Compd, 2005, 395, 209-212

Second amide-hydride system, Li-Mg-N-H system, was found by substituting lithium hydride with magnesium hydride and so far it's the most promising system for hydrogen storage

Dehydrogenation $2\text{LiNH}_2 + \text{MgH}_2 \rightarrow \text{Li}_2\text{Mg(NH)}_2 + 2\text{H}_2$ 5.56wt%

Hydrogenation & dehydrogenation cycle

 $Li_{2}Mg(NH)_{2} + 2H_{2} \leftrightarrow Mg(NH_{2})_{2 \text{ (amide)}} + 2LiH_{(hydride)} 5.88wt\%$

Advantage: Temperature for hydrogen desorption decreased to 180°C with plateau pressure enhanced to above 20bar. Fast kinetics, 80% of H_2 can be hydrogenated & dehydrogenated in 1 hour.

Z. T. Xiong, G. T. Wu, J. J. Hu and P. Chen, Adv. Mater. 2004, 16, 1522

Simple mechanism proposed to explain interactions between Amides and Hydrides

H atoms attached to N normally possess positive charges, however, H in ionic hydrides have negative one. The strong chemical potential for the combination of H and H is one of the important driving forces!

By changing amide or hydride, new reactions and new materials may be discovered.

Ca(NH₂)₂-NaH system was investigated recently for reversible hydrogen storage

Acknowledgement

This work is financially supported by Agency for Science, Technology and Research (A*STAR), Singapore.