C_{60} Molecular Chains on α -sexithiophene Nanostripes

H. L. Zhang, W. Chen^{*}, L. Chen¹, H. Huang, X. S. Wang, Andrew T. S. Wee^{*}

Department of Physics, National University of Singapore, Singapore

J. Yuhara

Department of Physical Science and Engineering, Nagoya University, Japan

Email: <u>phycw@nus.edu.sg</u> (Dr. W.Chen); <u>phyweets@nus.edu.sg</u> (Prof. Andrew T.S. Wee)

Abstract

We demonstrate the formation of highly ordered C₆₀ molecular wire arrays with 2.31 nm interwire spacing by manipulating the intermixed phase of C_{60} and α -sexithiophene on Ag(111) surface. Our in-situ LT-STM results show that the delicate balance between molecule-molecule and molecule-substrate interactions facilitates the assembly of C₆₀ into well-ordered molecular wire arrays. Due to the large inter-wire spacing and unique molecular structure, the C₆₀ wire arrays could have useful electron transport properties or be used for 2D or 1D quantum

confinement of surface electronic states.

Objective

Well-ordered two-dimensional molecular nanostructure arrays have potential uses in molecular electronics, solid-state quantum computation and biosensors. One of the challenging tasks is to effectively engineer the functional molecules into well-ordered nanostructure arrays. Surface nanotemplate-assisted molecular assembly represents a versatile approach towards the design of molecular architectures with high periodicity.

Nature

PTCDI-melamine honeycomb network

SrTiO₂(001)-(6x8) "waffle" surface

Fullerene molecules fit in the "waffle" sites

JACS 128. 13976

✓ Well-ordered 2D template Dominant molecule-substrate interaction

Fullerene fit in the honeycomb network

Experiment

Experiments were carried out in a home-built multichamber ultra-high vacuum system housed an Omicron lowtemperature scanning tunneling microscope (LT-STM) with a pressure better than 6×10^{-11} mbar. The STM was imaged with a chemically etched tungsten tip at 77 K. Ag(111) was cleaned by repeated Ar⁺ sputtering and annealing cycles. The 6T and C₆₀ were thermally evaporated from Knudsen cells in the growth chamber with a deposition rate of 0.1 ML/min and 0.05 ML/min respectively.

Low-temperature STM system

Results and Discussion

Formation of monolayer 6T nanostripe superstructure on Ag(111)

Rod-like 6T molecule

Height (nm) 0.02 0.00 4 8 12 16 20 24 Length (nm)

Figure 1. α -sexithiophene (6T) nanostripes on Ag (111): a, STM image of the long-range ordered 6T nanostripes formed by annealing the Ag(111) covered with 1 ML RT deposited 6T at 400 K. Inset: a high resolution view of molecular structure on 6T nanostripes(I_t =150 pA, V_{tip} =-1.70 V); b, Cross-sectional profile along the diagonal white line in panel a; and c, Proposed model for 6T nanostripes on Ag(111).

• A side-by-side packing structure with a periodicity of 0.63 nm (van der Waals distance)

• 6T lies flat on Ag(111): π electrons in 6T and metal d-bands interaction

• Warm-like C60 on 6T nanostripes at room temperature

Figure 2 RT deposition of C_{60} on 6T nanostripes: a, Largescale image of 0.5ML C_{60} deposited on 6T nanostripes at RT. C_{60} molecules aggregate to form irregular shaped singlelayer islands on 6T nanostripes. b, A detailed image indicates C_{60} molecules form disordered worm-like structures.

No template effect at room temperature

Self-assembly of C_{60} molecular chain array

Figure 3. Ordered C_{60} **molecular wire arrays.** *a, Large-scale STM image of* C_{60} *molecular chain arrays produced by annealing 6T nanostripes covered with 0.5 ML* C_{60} *at 380K; Three domains are highlighted as I, II and III; b, Corresponding detailed image of C60 molecular chain arrays; Inset: cross-sectional profile along the diagonal white line. The inter-chain distance is 2.31 nm; c, A high resolution image of* C_{60} *molecular chain arrays. The* C_{60} *-C* $_{60}$ *periodicity along the chain is 1.00 nm; d, A higher resolution image showing a* C_{60} *molecular chain vacancy in the middle; and e, Proposed molecular packing model for* C_{60} *molecular chain arrays on 6T nanostripes. (Imaging parameters:* I_t *=85 pA,* V_{tip} *=-1.90 V)*

Driving forcing:

Delicate balance between molecule-molecule and molecule-substrate interactions

Molecule-Molecule interactions

- **C**₆₀-6T heteromolecular interaction
 - Charge transfer (C_{60} acceptor and 6T donor)
- C₆₀-C₆₀, 6T-6T intermolecular interaction
 Van der Waals interaction

Ag(111)-Molecule interactions

- C₆₀-Ag interaction Charge transfer
 - (T. A. a. in targe ati
 - 6T-Ag interaction
 - π electrons and metal d-interaction

Conclusion

In conclusion, we demonstrate the formation of highly ordered C_{60} molecular chain arrays by using α -sexithiophene monolayer nanostripes on Ag(111) as a molecular surface nanotemplate. The formation of ordered C_{60} molecular chain arrays is ascribed to the subtle balance between the molecule-molecule and molecule-substrate interactions. By carefully tuning the molecular ratio of C_{60} :6T as well as the annealing temperature, the inter-chain distance of the C_{60} molecular chain arrays can be adjusted. Controlling the intermixed phase of this binary molecular system can lead to the assembly of ordered functional nanostructure arrays, and offer a versatile route towards the fabrication of novel molecular interconnects and devices. In particular, it could be a possible route towards fullerene based quantum computer.

Reference

- [1] C. Joachim, J. K. Gimzewski, A. Aviram, Nature 2000, 408, 541
- [2] A. Nitzan, M. A.Ratner, Science 2003, 300, 1384.
- [3] Y. Pennec, W. Auwärter, A. Schiffrin, A. W. Bargioni, A. Riemann, J. V. Barth, Nature Nanotechnology 2007, 2, 99.
- [4] J. A.Theobald, N. S. Oxtoby, M. A. Phillips, N. R. Champness, P. H. Beton, Nature 2003, 424, 1029.
- [5] D. S. Deak, F. Silly, K. Porfyrakis, M. R. Castell, J. Am. Chem. Soc. 2006, 128, 13976.

Jointly Organized by

