
Chapter Two 

THOMAS - FERMI MOD£L 

The crude models of the preceding Chapter taught us that it 

may be useful to treat the electrons in an atom (or ion) as if they 

were moving independently in an effective potential. We shall now take 

this idea very seriously, without, however, making explicit assumptions 

about the effective potential, V. It is clear that V possesses the ge- 

neral structure 1,2 

Z 
V = - -- + [electron-electron part] , (2-I) 

r 

and the challenge consists in finding the electron-electron part in a 

consistent way. The fundamental tool for achieving this aim is the elec- 

trostatic Poisson equation 

_ I V2 V = n , (2-2) 
4~ es 

which relates the electron density, n, to the electrostatic potential, 

Ves, due to the electrons. As soon as we shall have managed to express 

both Ves and n in terms of V, Eq. (2) will determine the effective poten- 

tial. 

General formalism. The dynamics of the electrons is controlled by the 

independent-particle Hamilton operator 

H = lp2 + V(~) (2-3) 

The electrons fill the eigenstates of H successively in such a way that 

all states with binding energy larger than a certain value, {, are occu- 

pied, whereas those with less binding energy are not. The parameter ~ is 

thus determined by the requirement that the count of occupied states 

equals the number of electrons N. Just as in Eq. (I-27) this is expressed 

as 

N = tr ~ (-H-{) , (2-4) 

where we remember that the spin mulitplicity of two is included in the 

trace. 



28 

The sum of independent-particle energies is, analogously, 

Eip = tr H~(-H-~) (2-5) 

The combination H+~, that appears in the argument of Heaviside's step 

function ~, invites rewriting Eip as 

Eip = tr(H+~)u(-H-~) - ~tr ~ (-H-~) , (2-6) 

which, with the aid of (4) and the definition 

reads 

E I { tr(H+~)~(-H-~) , (2-7) 

In this equation, N is the given number of electrons, and both Eip and 

E I are function(al)s of the effective potential V and the minimum bin- 

ding energy ~. 

Let us make contact with Eqs. (I-27) and (I-32), in that we 

write 

where 

co 

E I (~) = - Sd~ ' N(~') , (2-9) 

N(~') = tr ~(-H-~') (2-10) 

is the count of states with binding energy exceeding ~'. Equation (4) 

appears now as 

N = N(~) (2-11) 

Equation (9) can be equivalently presented as a differential statement. 

If ~ deviates from its correct value [which is determined by Eq. (11)] 

by the amount 8~, then E I is off by 

~E I 
&~E I = ~--~ 8~ = N(~)~ = N&~ (2-12) 

This has the important implication that Eip of Eq. (8) is stationary un- 

Eip = E I - ~N (2-8) 
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der variations of ~ (around its correct value, of course): 

8( Eip = 8 E I - N6( = o (2-13) 

In addition to (, E I and Eip also depend on V. The local response 

of both energies to variations of the potential exhibits the electron 

density n: 

6 V Eip = 8 V E I = f(d~')SV(~') n(~') (2-14) 

Although this is intuitively obvious, let us supply a formal proof. The 

first equality follows immediately from (8), because N is the given num- 

ber of electrons and ( is a parameter that we regard as independent of 

V. For the second equality, we need the following identity: 

8 H tr f(E) = tr 6H f' (H) , (2-15) 

which expresses the change in the trace of a function of an operator H 

as the trace of the product of the change in the operator, 8H, and the 

derivative of that function. [Note that (15) is not true without the 

trace operation, unless 8H commutes with ~: 

8 H f(H) = 6H f' (H) only if [6H,H] = o. (2-16) 

Under the trace the possible noncommutativity does not matter.] In our 

application, 

f(H) = (H+()D(-H-() 

f' (H) = q(-H-() 

(2-17) 

[compare with Eq. (I-29)], and 8H = 6V. Accordingly, 

8 v E 1 = tr 8V q(-H-~) 

= 2 f(d~') <r'lSV(~)q(-H(p,r ) - ~)I~'> 
(2-18) 

We use, again, primes to distinguish numbers from operators; the factor 

of two is, once more, the spin multiplicity. Now, since 

<r' 18V(~) = 8V(~') <r' I , (2-19) 
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and, anticipating that 

2<~' I~(-H-~)]~'> = n(~') , (2-20) 

Eq. (18) implies Eq.(14). Indeed, equation (20) is nothing but the 

representation of the density as the sum of squared wavefunctions over 

all occupied states. Upon labelling these wavefunctions by their ener- 

gies E' and additional quantum numbers, ~, the left-hand side of (20) 

is 

w 

2 ~, ~E,,a(~') ~(-E'-~)~E,,~(~') 

(2-21) 

: 2~ I~E,,~(~') 12~(-E'-~I , 
E',~ 

which is recognized as the usual definition of the density. 

For consistency, the integrated density must equal the number 

of electrons, 

N = I(d~')n(~') 

This follows immediately from Eq. (20): 

(2-22) 

f(d~')n(~') = 2 f(d~')<~' I~(-H-~)I~'> 

= tr n(-H-~) = N(~) = N 

(2-23) 

Another, and more instructive, proof makes use of (i) the definition of 

n in Eq. (14); (ii) the circumstance that E I does not depend on V and 

individually, but only on the sum V+~; (iii) Equation (12). Consider 

infinitesimal changes in ~ and V such that 6V(~) = -5~. 3 Then 5(V+~)=o, 

implying 6Ei=o. In view of Eqs. (12) and (14) this means 

o = 5~ E I + 5 V E I = NS~ + ;(d~')(-5~)n(~') 

= 5~ (N- f (d~)n(5)) , 
(2-24) 

which is equivalent to (22). This second proof has the advantage of re- 

maining valid when the trace in E 1 is evaluated approximately. There is 

no assurance that the densities derived from (14) and (20) are identical 

in a certain approximation. If they are not, Eq. (14) is the preferable 

definition. (We shall, indeed, be confronted with this possibility la- 

ter, in Chapter Four.) 
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Equation (14) relates the density to the effective potential, 

so that we have taken care of the right-hand side of Eq. (2). We are left 

with the problem of expressing the electrostatic potential of the ele- 

trons, V , in terms of V. 
es 

We proceed from noting that Eip is not the energy of the sy- 

stem. Just as in the preceding Chapter [recall the remark after Eq.(I- 

65)], the use of the effective potential causes a double counting of 

the electron-electron interaction energy, Eee. The interaction potential 

Vee which is the electron-electron part of V in Eq. (I), is naturally 

given as the response of Eee to variations of the density, 

8Eee = f(d~') &n(~') Vee(~') (2-25) 

[Please do not miss the analogy to Eq. (14).] Since V and ~ are the fun- 

damental quantities in our "potential-functional formalism," &n(r) must 

be regarded as the change in the density induced by variations of V and 

Some evidence in favor of (25) is supplied by considering the 

electrostatic interaction energy 

= I 
Ees ~ ;(d~') (d~") n(~')n(~") (2-26) 

I~'-~" I ' 

for which 

8E = / ( d ~ ' ) & n ( ~ ' )  S(d~") n(~")  
e s  1~'-~"1 (2-27) 

Thus, Eq. (25) implies the familiar expression 

V (~')  = ; (d~" )  n(~'") 
es i÷1 ÷,, r -r I 

, (2-28) 

which is equivalent to the Poisson equation (2). 

The electron-electron interaction energy, as it is incorrect- 

ly contained in Eip("double counting of pairs"), is 

tr V ~ (-H-~) 
ee 

= 2 f(d~') Vee(~')<~' I~(-H-~)IF,> (2-29) 

= ; (d~')Vee (~')n (~') ; 
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the last step uses Eq. (20). Consequently, the correct energy expression 

is 

E = Eip - /(d~)Veen + Eee (2-30) 

The second term removes the incorrect account for the electron-electron 

interaction contained in Eip, and the last term adds the correct amount. 

The energy of Eq. (30) is endowed with the important property 

of being stationary under variations of both V and ~, 

6 E = 8 v E = o. (2-31) 

In order to see this, first appreciate 

6( - /(d~)Veen . Eee ) 

= - ;(d~)(6Veen + VeeSn) + f(d~)Sn Vee 
(2-32) 

= - f(d~)nSV 
ee 

which is an implication of Eq. (25). Further, a consequence of Eqs. (13) 

and (14) is 

8Eip = 8~Eip + 8 V Eip 

= f (d~)nSV (2-33) 

Then, the change in E is 

5E -- S(d~)n(~V-SVee ) = f(d~)nS(V-Vee) (2-34) 

In view of [Eq. (I)] 

V = " Z + V , (2-35) 
r ee 

the variation 6(V-Vee) vanishes, and Eq. (34) implies Eq. (31), indeed. 

It is useful to separate E into the classical electrostatic 
ee 

part, Ees' of Eq. (26), and the remainder E' which consists of the ex- 
ee' 

change interaction and possibly other effects. Accordingly, we write 

+ E' (2-36) Eee = Ees ee ' 
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and likewise 

V = V + V' (2-37) 
ee es ee 

The electrostatic contribution to the energy (30) can be rewritten, 

with the aid of the Poisson equation (2), in terms of the electrostatic 

field -~V : 
es 

+ E = I 
f(d~)n Ves as - ~ f(d~)n Ves 

I I ÷ (~Ves) = 8--~ f(d~) (V2Ves)Ves = - 8-~ f(dr) 2 

(2-38) 

[The surface term of the partial integration is zero, because V 
es 

for large r. ] Further, we combine Eqs. (35) and (37) into 

N/r 

V = V + _Z _ V '  , ( 2 - 3 9 )  
es r ee 

thereby expressing V 
es 

reads 

in terms of V, as needed in (2). The energy now 

E = Eip 
I Z 

-~ f (d~) [~(V+ ~ -Vee)]2 

- f (d~)n V' + E' ee ee 

(2-40) 

This expression for the energy is our basis for approximations. Various 

models emerge depending upon the accuracy to which the trace in Eip 

[Eqs. (7) and (8)] is evaluated, and upon the extent to which E' is 
ee 

taken into account. Of course, a consistent description requires a ba- 

lanced treatment of both. 

The TF model. The simplest model based upon Eq. (40) is the TF model. It 

neglects E' entirely [then V' also disappears from (40)] and evalu- 
ee ee ' 

ates the trace of Eq. (7) in the highly semiclassical approximation of 

Eq. (I-43). The TF energy expression is therefore 

I 2 ETF = 2 f ( d ~ )  (d~) i~_p2+V÷~)~l_ yp - v - e )  - ~N 
(2~) 3 

I Z ]2 
- 8-~ f (d~)[~(V+ ~) 

(2-41) 

We recognize the last term as the quantity E 2 of Eq.(I-67), which was 
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there introduced to remove the doubly counted (electrostatic) inter- 

action energy; the term plays the same role here. The phase-space inte- 

is the TF version of El, properly denoted by (EI)TF. We shall, gral 

however, suppress the subscript TF until it will become a necessary 

distinction from other models. 

The step function cuts off the momentum integral at the (r- 

dependent) maximal momentum (the so-called "Fermi momentum") 

P = -/~ (V+ ~ ) , (2-42) 

so that 

P 

(2~) 3 0 

rg 2 

(2-43) 

or, square roots of negative arguments being zero, 

E I = f(d~) (- I ) [-2(V+~)] 5/2 (2-44) 
15~ 2 

This is the Thomas-Fermi result for ~I" The entire energy functional in 

the TF model is then 

ETF = E I + E 2 - ~N 

(2-45) 
Z = f(d~)(- I )[_2(v+~)15/2 a~f(d~)[~(V+ ~)12_~ . 

15~ 2 

Is there any reality to it? Yes. Look back to Chapter One, where (45) 

has been used unconsciously for the Coulomb potential V=-Z/r. In this 

situation, E 2 equals zero, and ETF gives the leading term of Eq.(I-22) 

[see Eqs.(1-26) through (I-37)]. Since V is essentially equal to the 

Coulomb potential in a'highly ionized atom, we conclude 

ET F m - ZZ(~N) I/3 for N << Z (2-46) 

We shall return to highly ionized systems in a while and find the modi- 

fication of (46) when accounting for the electron-electron repulsion. 

Before doing so, we have to study some implications of Eq. (45). 

The stationary property of ETF with respect to variations of 

V and ~ reads 
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= I 2 (V+ z o = 6ETF f(d~)6V{ I [_2 (V+~)13/2 + ~-~V r) } 
3rL 2 

+ 6~{ ](d~) I [_2(V+~)]3/2 _ N} 

3~2 (2-47) 

Z - --I f(d~)~. (~v ~(v+ ~)) 
4~ 

The value of the last integral is zero, because the equivalent integra- 

tion over a remote surface vanishes in view of 6V=o for r+~. The varia- 

tions of V and ~ are independent, so that the two curly brackets equal 

zero individually. Accordingly, 

I V~(V+ z = I [_2(V+~)]3/2 (2-48) 
4K ~) 3~2 

and 

f(d~) I [-2 (v+~)]3/2 = N , (2-49) 
3~ 2 

of which the first is the Poisson equation, and the second the normali- 

zation of the density to N. Obviously, Eq. (49) is the TF version of (11), 

as we notice that Eq. (I0) is realized as 

, :(d~) (d~) 1 2_V - , N(~ ) = 2 2 N(- ~p ~') = ;(d~) I [-2(V+~ )]3/2 (2-50) 
(2~) 3 3~2 

This, inserted into Eq. (9), reproduces (44), as it should. 

On the right-hand side of (48) as well as under the integral 

of (49) we have the TF density 

I 3/2 
n = --~'--[-2 (V+~) ] (2-51) 

3K 2 

In the classically forbidden domain, characterized by V>-~, this density 

vanishes. There is a sharp boundary assigned to atoms in the TF model. 

In contrast, in an exact quantum mechanical description the transition 

from the classically allowed to the classically forbidden region is 

smooth. We have just learned about one of the deficiencies of the TF 

model. It is going to be removed later when we shall incorporate quantum 

corrections of the sort discussed briefly after Eq. (I-43). 

The differential equation (48) for V, known as the TF equation 

for V, is supplemented by the constraint (49) and the short distance be- 
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havior of V, 

r V ÷ - Z for r + o (2-52) 

It signifies the physical requirement that for r÷o, the effective poten- 

tial is mainly given by the electrostatic potential energy of an elec- 

tron with the nucleus; formally, (52) is necessary to ensure the finite- 

ness of E 2. Consequently, we have the following situation: for small r, 

the potential is large negative, and the density is large; as r increa- 

ses the potential becomes less and less negative; finally, at the edge 

of the classically allowed region, it equals -~, and the argument of the 

square root in (51) turns negative; beyond this distance, ro, the densi- 

ty is zero, so that (48) is the homogeneous Poisson equation. Gauss's 

law, combined with Eqs. (49) and (52), then implies 

Z-N 
-- ~ = V = r for r > r O , (2-53) 

and the radius r o of the atom is determined by 

V(r=r o) = - ~ , (2-54) 

or, 
Z-N 

- (2-55) 
r 

o 

T h e  e l e c t r i c  f i e l d  - ~ V  i s  c o n t i n u o u s  ( t h e r e  a r e  n o  c h a r g e d  s u r f a c e s  i n  

an atom); in particular, at the edge we have 

d Z-N v (r) I 
r 2 r r o 

o o 

(2-56) 

Neutral systems, N=Z, have ~=o, so that both V and dV/dr vanish 

at r=r o. Consequently, the TF equation for V, Eq.(48), requires ro=~, 

since for a finite r e it cannot have a solution satisfying these bounda- 

ry conditions. We have just learned that neutral TF atoms are infinite- 

ly large, they do not have an "outside!,, only an "inside". 

It is useful to measure V+~ as as multiple of the potential 

of the nucleus by introducing a function f(x), 

V + ~ = - Z f(x) , (2-57) 
r 

the argument of which is related to the physical distance r by 

= I~3~%2/3 x = Z1/3r/a , a ~,-~, = 0.8853... (2-58) 



37 

The constant a is chosen such that the differential equation for f(x), 

d 2 [f (x) ] 3/2 
- f (x) = I/2 
dx 2 x 

, (2-59) 

called the TF equation for f(x), is free of numerical factors. The boun- 

dary conditions (52),(54), and (56) translate into 

d N 
f(o) = I , f(x o) = o , -Xo d--~ f(xo) = I - ~ - q , (2-60) 

o 

which introduces q, the degree of ionization. Of course, x ° is related 

to r ° through (58). Equation (53) now appears as 

f(x) = q(1-x/x o) for x > x ° (2-61) 

Please notice that Z and N do not appear individually in Eqs. (59) and 

(60). Consequently, f(x) is solely determined by the degree of ioniza- 

tion, q, so that all ions with the same q possess a common shape of the 

potential and of the density. The potential V itself does, of course, 

depend on Z; first through the factor Z/r, but then also because of the 

Z dependence of the TF variable x of Eq. (58). The factor Z I/3 there 

implies the same shrinking of heavier atoms that we have already ob- 

served in Chapter One, when considering Bohr atoms with shielding, see 

Eq. (I-93). 

For illustration, Fig.1 shows a sketch of f(x) for q = I/2, 

for which x ° ~ 3. The geometrical significance of the third equation in 

(60) is indicated. 

1 

Z .... 

± 
0 1 2 
I, Xo 4 

)X 

Fig. 2-I. Sketch of f (x )  for q =  1/2 .  

Neutral TF atoms. For the solution of Eqs. (59) and (60) that belongs to 
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q=o, we write F(x) and call it the TF function. It obeys 

d 2 [F (x) ] 3/2 
F(x) = 

dx 2 x ~/2 
, (2-62) 

and is subject to 

F(o) = I , F(~) = o (2-63) 

Its initial slope B, 

F(x) = I - Bx + ... for x << I , (2-64) 

has an important physical significance. We insert (64) into (57), use 

(58), and arrive at 

V(r) _- _ Z + B Z4/3 for r ÷ o (2-65) 
r a 

The additive constant is the interaction energy of an electron, near 

the nucleus, with the main body of electrons. We can use it to immedia- 

tely write down the change in energy caused by an infinitesimal change 

of the nuclear charge Z to Z + 6Z. It is the analogous electrostatic 

energy of that additional charge, where a minus sign is needed to con- 

nect with the known energy, which is that of an electron: 

= - ~ Z 4/3 6Z (2-66) 6ETF a 

The simultaneous increase of the number of electrons from N=Z to N=Z+6Z 

has no effect on the energy since ~E/~N = - ~ = o for N=Z, see Eq.(55). 

Consequently, 

= 3 B Z7/3 for N = Z (2-67) 
-ETF 7 a 

This is the TF formula for the total binding energy of neutral atoms. 

The constant B is well known numerically. But before quoting 

the results of a numerical integration of Eqs. (62) and (63), let us use 

our insight to find an estimate for B. Indeed, in view of the physical 

approximations that led to the TF model, there is no need, at this stage 

of the development, of knowing B better than within a few percent. A 

first crude estimate is given by the comparison of (67) with (I-51), 

the result obtained in the model of Bohr atoms with shielding: 
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B ~ 7a 9 3 I/3 = 9 ~ = 1.52 (2-68) 
3 14(2 ) 8 (-)2/3 

We have no way of judging, how accurate this number may be, but shall 

see later that it deviates by less than 5% from the correct value. 

The stationary property of the energy functional (45) provi- 

des a tool for obtaining good estimates for B. If we evaluate ETF(V,~) 

for a trial potential V and ~ = o (this much we know for sure when N=Z), 
3 B Z7/3 the deviation of ETF(V,~=o) from -7 a will be of second order in 

the error of V. As we shall see in the followina section, the energy 

functional has a maximum for the correct potential. Consequently, any 

trial V gives an upper bound for the constant B: 

B < -7a Z -7/3 ETF(V, ~) , (for N = Z) , (2-69) 

where the equal sign holds only for ~=o and V = -(Z/r)F(x). 

Maximum property of the TF potential functional. Let us consider finite 

deviations from the correct potential V and the correct value for ~, 

denoted by AV and A~, respectively, as distinguished from the infinite- 

simal variations 6V and 6~. Whereas A~ is quite arbitrary, AV is subject 

to 

r AV ÷ o for r ÷ o , 

AV + o for r + ~ , 

(2-70) 

which are consequences of (52) and the normalization V(r ÷~)=o. The de- 

viations of the three terms of ETF in (45) are then 

AE I = S(d~ ) (_ I ) ([-2(V+AV+ ~+A~)] 5/2 -[-2(V+~)] 5/2) , (2-71) 
15~ 2 

1 ÷ Z 2 Z 2 
AE2 = - 8--~ f(d~) ([V(V+AV+ ~) ] -[7(V+ ~)] ) 

and 

1 1 z 8~ S(d~)[~(Av)] 2- /(d~)~IAV)-~iv+ ~) -~ 

which after a partial integration and the use of Eq. (48) reads 

(2-72) 
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AE2 = 8~ ;(d~) [~(AV)] 2_ S(d~)A V I 
3rL 2 

[-2(V+~)]3/2 

as well as 

A (- ~N) (A~)N S ÷ A~ [-2 (V+~) ] . . . .  (dr) I 3/2 

3~ 2 

where Eq. (49) has been employed. Accordingly, 

(2-73) 

(2-74) 

AETF = AE I + AE 2 + A(-~N) 

= S(d~ ) (_ 3 ){[_2(V+~)_2(AV+A~)]5/2_[_2(V+~)]5/2 
15~ 2 

+ 5(AVeA~) [-2(V+~)]3/2} 

I 
- 8--~ S (d~) [~(AV)]2 

(2-75) 

The contents of the curly brackets is of the structure 

[U+V]5/2 u5/2 5 u3/2 - - ~ v  

4 dv' (v-v') [u+v' ] I/2 
O 

> 0 , 

(2-76) 

where u = -2(V+~) and v = -2(AV+A~). The equal sign in (76) holds only 

if v = o, or, if u+v' ~ o over the whole range of integration (under 

which circumstance the square root vanishes). This implies 

AETF S o ; = o only for AV = o and A~ = o (2-77) 

In words: the TF potential functional of Eq.(45) has an absolute maximum 

at the correct V and ~. 

This maximum property might come as a surprise, as one naive- 

ly expects the electrons to arrange themselves such that the energy 

achieves a minimum. True, but it is not different electron distributions 

that we compare; the competition is among different potentials. In the 

same sense, in which it is natural for the right density to minimize the 

energy, it is common for the right potential to maximize it. Let us illu- 

strate this point by the analogous (and closely related) situation in 

electrostatics. 
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An electrostatic analogy. Consider the problem of finding the electro- 

static potential, ~, to a given charge density, p, in the vacuum. 4 They 

are related to each other by the Poisson equation 

_ I V2 ~ = P (2-78) 
4~ 

The electrostatic energy can be expressed in various ways: 

I 
= J' I d O l  p {  = f IdOl I {I 2 

1 + = [(d~)[p~ - ~-{ (q~, )  2] (2-79) 

If we insert the ~ that obeys (78) into any of these expressions, they 

all give the same answer. Suppose, however, that we do not know the cor- 

rect { and have to resort to using an approximate one. In this situation, 

it is advisable to employ the third version of (79) in calculating the 

energy, because, unlike the other ones, this expression is stationary 

at the correct {: 

1 (~) 2] (2-80) 

A finite deviation A# from the right electrostatic potential results in 

the second order error in E that is given by 

I 
AE = - l(dr) IV(A~)I 2 < 0 (2-81) 

the energy is maximal for the right ~. The analogy to the TF functional 

is, indeed, close, since the same term occurs also in (75). 

Here is a little application of the stationary property of 

the electrostatic "potential functional. "5 Instead of inserting %(~), 

we evaluate the energy for ~(I~) : 

(2-82) 

For I=I, it is the correct energy. Consequently, 
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d E(1) = o for I=I 
d--~ 

which implies 

I 
8-{ f Ida) I~) ~ -- ; Ida) p~. I-~®) 

(2-83) 

(2-84) 

We have thus found an unusual expression for the electrostatic energy: 

the integral of the scalar product of the dipole density pr with the 

electric field -~. Note, in particular, that there is no factor of I/2. 

Since a translated charge distribution p(r+R) has the same electrosta- 

tic energy, 

;(d~) p(r+R)+ ÷ +r • (-~(~+R)) = f(d~)p(~)~. [-~#(~)] , (2-85) 

+ + + 

we find, after substituting r÷r-R on the left hand side, that the self 

force of any charge density vanishes: 

/(d~)p(-~#) = o (2-86) 

(The stresses, of course, do not.) 

A different problem is that of finding the correct charge den- 

sity on the surface, S, of a conductor carrying a given total charge, Q. 

In this situation, the relevant equations are 

and 

/dS' a (~') _ 

i~-~' I 
const, for ~ on S , (2-87) 

;dS a(~) = Q , (2-88) 

where a denotes the surface charge density. Here the stationary energy 

expression is 

E = ~ ~/dSdS' o(r)a(r') + 
fir_r, I+ #o(Q-;dSa(~)) (2-89) ~d 

The last term incorporates the constraint (88). Infinitesimal variations 

of both a and ~o imply Eqs. (87) and (88), thereby identifying ~o as 

the (constant) electrostatic potential on S. This energy is a minimum 

if only a's obeying (88) are allowed in the competition, i.e., if vari- 

ous distributions of the same, given, amount of charge are compared. 
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We get 

As = 1 j 'dSdS'  Ao (~) Ao ( ~ ' )  2-90) 

where Ao is the deviation from the optimal density o. Since this is 

the electrostatic energy of some charge distribution, it is, indeed, 

positive. 

TF density functional. This digression into the realm of electrostatics 

raises the question if it is possible to write down a functional of the 

density, in addition to the potential functional of (45), thus getting 

upper bounds on the energy, lower ones on the constant B. This can be 

done, indeed. It requires appropriate rewriting of (45), whereby the 

potential is replaced in terms of the density. Both Eq. (51) and the 

electrostatic relation 

÷ Z ] ÷ n(r') 
V(r) = - ~ + (dr') I~-~' I ( 2 - 9 1 )  

can and must be used in this process. 

We start by undoing the step from Eq. (43) to Eq. (44), so that 

E I is split into the kinetic energy, Eki n, and a potential energy part: 

E 1 = J" ( d ~ )  

t + = ( d r )  

I [-2(V+~) ]5/2 _ ;(d~) 1 [-2 (V+~)]I+3/2 

1 01t 2 6rc 2 

I (3T~2n) 5/3 + /(d~) (V+6)n (2-92) 
I 0T~ 2 

÷ Z ÷ Z n ÷ (dr) {; n (dr) r ) - r (dr) = Eki n + ; (V+ n [ + 

E 2 is rewritten by first performing a partial integration, then making 

use of the Poisson equation, followed by employing Eq. (91): 

I Z I Z) I 2 Z 
E 2 = - ~-~ ;(d~) [~(V+ 3) ] 2 = 2;(d~) (Ve r ~V (V+ 3) 

I Z ~ I )n(~)n(~') 
= - ~ f (d~)(V+ ~)n(r) = - ~f(d~)(d~' + +, 

Ir-~ I 

(2-93) 

Combining the two last versions into 
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I n(~)n(~') ;(d~) (V+~) n 
E 2 = ~ f ( d ~ )  (d~') l ~ - ~ '  I (2-94) 

makes the potential disappear from the sum of E I and E 2. The resulting 

TF density functional is 

E = E I + E 2 - cN 

f(d~) 1 - ( 3 ~ 2 n ) 5 / 3  - ;(d~)Zn + ~ - i ( d ~ ) ( d ' ~ ' )  n(~)n(~') 
1 o~ ~ r [~-~ '  t 

- ~(N- ;(d~)n) (2-95) 

All we know at this stage is that Eq. (95) gives the correct value of 

the energy, provided we insert the correct density. To be useful this 

functional has to be stationary about the right density. Not surprising- 

ly, it is: 

I Z 

- 6~ (N - f(d~)n) = o 

+ ;(d~') n(~') + :] 
rr-r'  I 

(2-96) 

which uses Eqs.(51) and (91) in the combination 6 

V(7) I 2 ÷ 2/3 Z + f ÷ n(r') . . . . . .  (dr) (2-97) 
~(3~ n(r)) ~ r Ir-r' I 

and the constraint (49), now reading 

f ÷ (dr) n = N (2-98) 

The successive terms in Eq. (95) have the physical significan- 

ce of the kinetic energy• the potential energy between the nucleus and 

the electrons• and the electron-electron potential energy. The last term 

incorporates the constraint (98), thereby identifying ~ as the corres- 

ponding Lagrangian multiplier. In contrast, the potential functional of 

Eq. (45) consists of the sun% of independent particle energies• EI-~N, 

plus the removal of the doubly counted electron-electron-interaction 

energy, E 2. It is important to appreciate this difference in structure. 

Let us now check if the density functional does have the ex- 

pected property of being minimal for the correct n and ~. 
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Minimum property of the TF density functional. In analogy to the pre- 

vious discussion of the maximum property of the TF potential functional, 

we consider finite deviations An and A( from the correct n and ~. Again, 

A( is quite arbitrary, whereas An is restricted by the requirement that 

the density be non-negative, 

n + An > o for all r (2-99) 

The derivation of (95) made use of (51) so that negative densities had 

been implicitly excluded. 

The various contributions to AE are then 

AEki n f(d~) (3~2)5/3 5/3 n5/3] , = [ (n+An) - (2-I 00) 
I 0~ 2 

and 

A(-  ; (d~)  Zn + 1 ; (d~ )  (d~' )  n ( ~ ) n ( ~ ' ) )  
r 2 

I r - r '  J 

Z n(~') 
= ;(d~)An(~) [- r + f (d~') ] 

I An (7) An(~') + ~ [ Cd~) Ida') 

= ; (d~)  (3~2)5 /3 [  - 5 2 /3 .  , 
~n An] - (;(d~)An 

I 0~ 2 

I An(~) An(~') 

[ r - r '  I 

which uses Eq. (97), as well as 

A[-  ( ( N -  ; ( d ~ ) n ) ]  = (( + A() ; (d~)An 

Consequently, 

AE = fld~) 
(3~2) 5/3 

1 0~ 2 
[ (n+An)5/3 n5/3 5_2/3• 

- - ~n AnJ 

+ ~ [ (dr) (d~ ' )  An(~)÷ +An(~') + 
l r - r ' f  

(2-101) 

(2-102) 
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+ AC [ (d~-)An (2-103) 

The first term here is positive definite, which becomes obvious when 

we write it [compare Eq. (76)] in the form 

An 
S(d~ ) {3E2) 5/3 10 Sd~(An_v ) (n+v) 

9 10~2 0 

~o ; = O only if £n(~)=o 

-I/3 

for all 

(2-I04) 

The second term in (103) is the electrostatic energy of the charge den- 

sity £n(~), thus it is also positive, unless An=o everywhere. The third 

term does not have a definite sign. Therefore we restrict the class of 

trial densities n and trial ~'s such that 

A~ S(d~)An = o (2-105) 

Then 

AE > o ; = o only for An(~)=o for all ~ ; (2-106) 

the TF density functional of Eq. (95) has an absolute minimum at the cor- 

rect density, provided Eq. (I05) holds. 

In general, satisfying (105) will mean to consider only such 

trial densities that obey the constraint (98), since then 

S(d~)An = o (2-107) 

The main exception are neutral atoms, about which we know that ~=o. Con- 

sequently, trial values for ~ need not be chosen, so that A~=o. Then 

Eq. (I05) is satisfied without restricting the density according to (107). 

This observation will prove useful, when seeking lower bounds on the 

constant B. 

Upper bounds on B. We pick up the story at Eq. (69). The calculation is 

considerably simplified by employing the TF variables x, x o, and f(x), 

which have been introduced in Eqs. (57) through (60). In these, the TF 

potential functional appears as [f' (x) E~xf(X)] 

co co 

2 ;dx If(x)]512 I Sdx[f'(xl÷ J2+ E = - (Z7/3/a) {~ I/2 + 
0 X 0 
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+ q !!-q)_ } 
Xo 

(2-108) 

where, replacing V and ~, it is now f(x) and x o that have to be found. 7 

Whereas arbitrary variations of x o may be considered, f(x) is subject 

to 

f(o) = 1 (2-I 09) 

and 

f' (x) = - -~- for x ÷~ (2-110) 
x o 

The first of these is Eq. (52), the second comes from the inclusion of 

~, in Eq. (57), into the definition of f(x). In (108) it is needed to 

ensure the finiteness of the second integral. Note, in particular, that 

the trial functions do not have to obey 

f(x o) = o , -Xof' (Xo) = q (2-111) 

[see(60)]. This, and the differential equation 

f" (x) [f(x)]3/2 
= I/2 

X 

(2-112) 

[see (59)] are implications of the stationary property of (108). Here 

is how it works: infinitesimal variations of f(x) cause a change in E, 

o = 6[-(a/Z7/3)E] 

co co 8fix){E fIX)f312 £ 
I/2 - f" Ix) } + ;dx {6f(x) [f' (x)+ 1 } 

0 X 0 

3/2 oo 

[f (x) ] 
= ;dx 5f(x) { i/2 

o x 

(2-113) 

- f" (x) } 

where the first equality is the stationary property and the last one 

uses (109) and (110) in finding the null value of the integrated total 

differential. Thus (112) is implied. We combine it with (110) to con- 

clude that beyond a certain (yet unspecified) ~, f(x) is negative and 

linear: 

X--X 
f(x) = q - for x >_- ~ (2-114) 

Xo 
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Next, we consider variations of x o. They produce 

o = 8[-(a/Z7/3)E] 

co 

o 

, (2-115) 

implying the vanishing of the contents of the curly brackets. In view 

of (114), the integration stops at x: 

o = fdx[f' (x)+ ~q] + (l-q) 
o x° 

= f(~) - f(o) + q~-~ + I- q = q (~-~ -I) 

(2-116) 

the last step makes use of (109) and (114). Now we see that x=x o, so 

that (114) becomes (61) and implies (111). 

Let us now turn to neutral atoms, q=o. The maximum property 

of the functional (108), combined with the known form of the neutral atom 

binding energy , Eq. (67), reads 

co co 

3 2 fdx [f(x)]5/2 I fdx[f' (X)] 2 
7B--<~ I/2 +3 

o x o 
, (2-117) 

where the equal sign holds only for f(x)=F(x). Note that x o disappeared 

together with q, so that we do not need to use explicitly our knowledge 

of Xo=~ for q=o. According to (109) and (110), the competition in (117) 

is among trial functions that are subject to 

f(o) = I , f' (x ÷ ~) = o. (2-118) 

For any trial f(x), we can always change the scale, 

f(x) ÷ f(~x) , (~>o) , (2-119) 

and obtain another trial function. The optimal choice for ~ minimizes 

t h e  r i g h t  h a n d  s i d e  o f  

3 B < 2 fdx [f~x)]5/2 I 
7 = g 1/2 + y ;dx[ f(~x)l 2 : 

0 x 0 
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It is given by 

3/2 

-I/2 2 Sd x [f(x)] 5/2 
5 112 

o x 

oo 

I Sd x[f, (x)]2 + ~ g  
o 

= 50 2 - dx[f' (x)] 2 

(2-120) 

(2-121) 

We insert it into (210) and arrive at the scale invariant version of 

(117): 

7 fax [f (x)15/212/3  ;dx[f '  (x) l ~ (2-122) 
o x I/2 ] o 

where now the equal sign holds for f(x)=F(~x) with arbitrary ~>o. 

We are now ready to invent trial functions and produce upper 

bounds on B. Before doing so, let us make a little observation. If f 

equals F, the optimal ~ in (120) is unity, since the equal sign in (117) 

holds only for f(x)=F(x). Consequently, the numerator and denominator 

in (121) are equal for f=F. In this situation the related sum in (117) 

is (3/7)B. We conclude 

and 

2 Sd x [F(x)]5/2 _ 2 

o x I/2 - 

co 

I fdx[F' (x)]2 = "~ BI 

o 

B , (2-123) 

(2-124) 

An independent (and rather clumsy) derivation of these equations uses 

the differential equation obeyed by F(x) [Eq.(62)], combined with some 

partial integrations. Equations (123) and (124) can be employed for an 

immediate check of the equality in (122) for f(x)=F(~x) : 

7 I/2 2 2/3 2 1/3 
B = ~ (~- 7 B) (~ 7 B) (2-125) 

More about relations like (123) and (124) will be said in the section 

on the scaling properties of the TF model. 

A very simple trial function is 

I 
f(x) = i;x " (2-126) 
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for which 

oo co 

of :-8 2 dx [f(x)]5/2 = 2 fdx x-I/2(1+x)-5/2 15 
xi/2 5 o 

(2-127) 

I 4 [the integral, in terms of Euler's Beta function, is B(~,2} = ~], and j- 

co co 

;dx[f' (x)] 2 = f dx I = -- 

o o (1+x) 4 3 
(2-128) 

Accordingly, 

B < ~ 5 -2/3 = 1.596 

A better value is obtained for 
r 

(x) = (~]__)4/3 , f 
I ~ X  

(2-129) 

(2-130) 

when 

B < 2 -19/9 (--737--)I/3 [~ (21 :] 2/3 [(1) :]-4/3 
= 1.5909 (2-131) 

This number is, as we shall see, very close to the actual one; so there 

is no point in considering more complicated trial functions. 

Lower bounds on B. In order to express the density functional of Eq. (95) 

in terms of TF variables, we write 

I V2 (V+ Z n(~) = - ~ - ~  ~) 

I I d 2 Z 
[r(V+ ~)] 

4~ r dr 2 

I I d 2 
- -  (zf(x)) 

4~ r dr 2 
(2-132) 

I Z 2 f" (x) 
= 

4n a 3 x ' 

or, more conveniently here, 
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I Z 2 g' (x) (2-133) n 
a 

The function g(x), thus introduced, differs from f' (x), at most, by a 

constant. We choose this constant to be q/x o, 

g(x) = f' (x) + -q- , (2-134) 
x o 

which in view of 1110) is equivalent to requiring 

g(x ÷~) = o (2-135) 

With (133) and (135) we have for the interaction energy bet- 

ween the nucleus and the electrons 

Z7/3 ~ Z7/3 
-/(d~) ~ r n a Idx g' (x) = a g(o) , (2-136) 

o 

whereas the electron-electron energy is 

I f(d~) (d~') n(~)n(~') _ z 7/3 I fdx[gix)] 2 
÷ ÷, a 2 I r-r I o 

(2-137) 

[This quantity equals -E2, so that Eq. (134), used in the second integral 

of (108), gives this result.] The remaining contributions to the densi- 

ty functional can be expressed in terms of g(x) immediately. We arrive 

at 

Z7/3{ 3 ;dx x I/3 5/3 I ;dx[g(x)] 2 
E - a 5 [g' (x)] + g(o) + 

o o 

co 

- --q-It-q- fdx x g' (x)]} 
xo o 

(2-138) 

Again arbitrary variations of x o may be considered, whereas g is restric- 

ted by the requirement of non-negative densities, 

g' (x) > o , (2-139) 

and by Eq. (135). Together, they imply 
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g(x)< o (2-140) 

According to the discussion of Eq.(103), Eq.(138) supplies 

upper bounds on the energy, provided that Eq. (I05) is obeyed. Expressed 

in terms of x o and g, it reads 

A(~) fdx x ~g' (x) = o (2-141) 
"'O o 

We did notice already [see the remark following Eq.(107)], that in the 

atoms, our knowledge of Xo=~ results in ~(~)=o, situation of neutral 

so that (141) is satisfied without further ado. In particular, g~x) 

need not be subject to 

; dx x ~g' (x) = o , (2-142) 
o 

or [this is Eq. (98)], more precisely, 

oo 

fdx x g' (x) = 1-q ; = I for q=o 
o 

(2-143) 

The minimum property of the functional (138), together with 

the known form of the neutral atom (q=o) binding energy, Eq.(67), im- 

plies 

3 3 ;dx x I/3 5/3 I 2} , B ~ - {~ [g' (X)] + g(o) + ~ fdx[g(x)] (2-144) 
o o 

where the equal sign holds only for g(x) = F' (x). For this g(x), the 
3 I 

value of the two integrals is ~B and ~B, respectively, as follows from 

Eqs. (123) and (124), and the differential equation (62) obeyed by F(x). 

Consequently, 

F' (o) = -B , (2-145) 

which is nothing more than the original definition of B in (64). 

As in the preceding section, we can consider changes of the 

scale. Here the possible scalings are even more general, 

g(X) ÷ ~ig(~2 x) , (~i,~2 > o) , (2-146) 
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because there is no analog to the restriction f(o)=1, that we had to 

watch before. The optimal choices for ~I and ~2 maximize the right hand 

side of 

oo 

3 {3 ;dx x I/3 d 5/3 
7 B > - 5 [~Id--x g (#2 x) ] 

o 
I ;dx[#ig(#2x) ] 2 } + #Ig(o) + 

0 

oo 

5/3 I/3 3 [dx x ~/3 5/3 
t~1 ~2 ~ [g' (x)] + ~ig(o) 

o 

2 
co 

~I I ;dx[g(x)] 2} + - -  

~2~o 

(2-147) 

They are 

and 

~1 = 

co  

(1) 413 [-g [o) ] 4/3 I ;dx[g(x) ] 2)-I/3 oo (y 
~-fdx I/3 [g, ix) ] 5/3 o 

o 

co 

~2 (1)4/3 [-g(o) ] 4/3 I ;dx[g(x) ] 2)2/3 
= ~ I~ 

1;d x x l /3 [g ,  (x)15/3 o 
0 

2-148) 

2-149) 

Inserted into (147) they produce the scale invariant version of 144): 

B > (1) 4/3 . [-g(o)]7/3 
= , (2-150_) co  eo 

(l/dx xl/3[g ' (x)]5/3)(l[dx[g(x )]2)I/3 

o o 

where the equal sign holds only for g(x)=~iF' (~2x) with arbitrary 

~i,~2>o. Indeed, for such a g(x), we get 

B = (1) 4/3 [~I B]7/3 
..... (2-151) 
.513 113 1B)(~I 2 1B)113 

(IJ,~ I I~ 2 ,u, 2 

The main contribution to the energy of an atom comes from the 

vicinity of the nucleus. Now, Eqs. (62) and (63) imply, 
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F" (x) -'- ~x for x ÷ o 

Consequently, a good trial g(x) has to be such that 

1 

An example is 

( 2 - 1 5 2 )  

for x ÷ o (2-153) 

g(x) =- (1+/x) -~ , ~>o (2-154) 

It turns out, that the right hand side of (150) increases with ~, so 

that we may immediately consider the limit ~÷~. The scaling invariance 

helps in this limit, since it allows to evaluate g(x/~ 2) for ~÷~, in- 

stead of g(x) for ~+~. The limiting trial function is a simple exponen- 

tial: 

g(x) = lim[-(1+ I -a -/x K/~) ] -- - e (2-155) 
[Z÷oo 

For this g(x), we have in (I 50) 

[-(-i)] 7/3 25 (.~) 4/3 --y 
(~5 2"2/3) (1) I/3 = 

B > (1) 4/3 

(2-156) 

= 1.5682 

Binding energy of neutral TF atoms. We have found an upper bound on B 

in (131) and a lower one in (156). Now we combine the two and state 

1.5682 < B < 1.5909 , (2-157) 

or 

B = 1.580 -+ 0.012 ( 2 - 1 5 8 )  

The margin in (158) is about 1.5% of the average value, so that we 

know B with a precision of 0.75%. Please appreciate how little numeri- 

cal effort was needed in obtaining this result. In view of the crude 

physical picture that we are still using, the value for B in (158) is 

entirely sufficient. A higher precision is not called for at this stage 
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of the development. 

Inserted into (67), this B value produces 

-ETF = 0.765 Z 7/3 , (2-159) 

which is the TF prediction for the total binding energy of neutral 

8 I I I I 1 

6 

.,.+ 
/ 

÷ 

÷ 

TF 

I-IF 

OL i J j J _I 

0 25 50 75 100 125 
Z 

Fig. 2-2. Compar~on of the TF prediction (160) with HF binding £n~gi~ (crosses). 
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atoms. In Fig.2 the quantity 

-ETF = 1.53 Z I/3 (2-160) 
1 2 yz 

is compared to the corresponding HF predictions 8 for integer values 

of Z. This plot shows that (160) does reproduce the general trend of the 

atomic binding energies. Altough the need for refinements is clear, it 

is nevertheless remarkable how well the TF model works despite the 

crudeness of the physical approximation that it represents. In Fig.2 

the continuous TF curve is closer to the integer-Z HF crosses at small 

Z values than at large ones. This is, however, a deception since it is 

the fractional difference that counts. The amount of this relative de- 

viation is 29, 24, 21, 17, 15, and 13 percent for Z=I0, 20, 30, 60, 90, 

and 120, respectively. It decreases with increasing Z. 

Why do we compare with HF predictions, and not with experimen- 

tal binding energies? The reasons are the ones mentioned in the Intro- 

duction. Total binding energies are known experimentally only up to 

Z~20 (in Fig. 2 they are indistinguishable from the HF crosses). Even if 

they were available for large values of Z, the TF result should still 

be measured against different predictions based upon, e.g., the many- 

particle Hamilton operator of (I-7) ; this way we are sure to not be 

misled by relativistic effects, which are the more significant the lar- 

ger Z. 

TF function F(x). We have learned a lot about the initial slope B of 

the TF function. Naturally, there is much more to say about F(x). We 

shall do so in this section. 

Let us proceed from recalling the defining properties of Eqs. 

(62) and (63). F(x) obeys the differential equation 

d 2 [F(x) ] 3/2 
dx 2 F(x) = F" (x) I/2 

x 

and the boundary conditions 

(2-161) 

F(o) = I , F(~) = o (2-162) 

Upon using /x as the main variable, the differential equation (161) 

appears as 
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d 
F(x) = 2/x F' ix) , 

d F' (x) : 2[F(x)] 3"2 / 
d6x 

(2-163) 

Whereas (161) is singular at x=o , this system of differential equations 

is well behaved at /x=o . We conclude that around x=o , F(x) can be ex- 

panded in powers of /x : 

F (x) = ~ s k x k/2 , 
k=o 

which has become known as Baker's series 9 The comparison with 

F(x) = I - Bx + 0(x 3/2) 

(2-164) 

(2-165) 

[this is Eq. (64)] shows 

s O = I , s I = o , s 2 = -B (2-166) 

For the successive calculation of the Sk'S for k>2, we need a recurrence 

relation. We gain it by inserting (164) into the differential equation 

(161). The left hand side is simple: 

k k - ) x k-2-2/ 
F"(x) = ~ s k ~(~ I 

k=o 

3 -I/2 ~ (/-I)/2 (£+I) (£+3)s/+3 = ~ s3 x + x 
Z=I 4 

(2-167) 

where s1=o has been used, and the summation index shifted (k=/+3). The 

right hand side of Eq. (161) is nonlinear in F(x), so that the power se- 

ries becomes more complicated. We have 

[F (x) ] 3/2/x1/2 = x-I/211 + ~ s k xk/2] 3/2 

k=2 

3/2 ~ xk/2) j = x-I/211 + ~( j ) (7k=2 sk ] 
(2-168) 

r 
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where the binomial theorem is employed. Next, we make the j-th power 

of the sum over k explicit by writing it as the product of j sums over 

k I , k 2 , .... kj ; then the Kronecker Delta symbol , 

1 for k = 1 

81,k = o for k ~ I ' 

is used to collect all terms of order x -I/2 x 1/2 x (/-I)/2 = 

(2-169) 

[F(x)]3/2/x1/2 = x-I1211+~(3<2)~-~ ~---.. ~" ... 
j=1 ~ ki=2 k2=2 "kj=2 Skl Sk2 

×..Sk. x(k1+k2+'''+kj )/2] 
3 

= x I/2 + x s, 
J k1=2"''k,=2 Ski'' 3 

J 

× 6/,k1+k2+...+kj 

(2-170) 

Since each k is at least two, we have 

> 2j > 2 (2-171) 1 = k I + k 2 + ... + kj = = , 

so that the summation over 1 starts really at /=2 , and the largest j 

does not exceed 1/2 : j ~ [//2] , which makes use of the Gaussian nota- 

tion for the largest integer contained in 1/2. The individual k-summa- 

tions stop, at the latest, at /-2(j-I) , since, again, the other k's, 

which are j-1 in number, are not less than two each. Accordingly, 

[F(x)]3/2/x1/2 = x-I/2 

/=2 j=l 3 k I =2 

×'''/k =2 Sk1"''Skj6/,k1+...+k. 
3 3 

(2-172) 

This must equal (167), implying 
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and 

s 3 = 4/3 s 4 = o , (2-173) 

sl+ 3 = 

[//2] ~ /-2j+2 
(/+1) (l+3) ~--(3/2) ..> . 

j=1 3 k1= 2 k.=2 Ski "SkjS/'kl +''+k" 
3 3 

for £ = 2,3, .... 
(2-174) 

The s k with the largest index occurs on the right hand side for j=1; 

it is s 1. Thus s/+ 3 is here expressed in terms of Sk'S with k~/, so 

that this is a recurrence relation, indeed. For illustration, consi- 

der /=2,3,4, and 5. There is only the j=1 term for /=2 and /=3: 

43/2 43(_B) = 2 
s5 = ]-5( I )s2 - 152 -~B 

If3/2% 134 I 
s6 = 6' I 's3 = 623 - 3 

(2-175) 

For /=4 and /=5 , there are both the j=1 and the j=2 contribution: 

4 3/2, 3/2 2] = 43 3(-B) 2] ~0 , (2-176) s7 = ~[( I ;s4 + ( 2 )s2 ~[~0 + ~ = B 2 

I 3/2, 3/2 
s8 = ~[( I Js5 +( 2 ) (s2s3+s3s2)] 

= I--21 [3(_ 2B)+ 3~2 (-B) 4] = - ~5 B 

It is not difficult (only boring) to compute more Sk'S. Let us be con- 

tent with what we have so far: 

4 3z2 2 5/2 1 3+ B2x712 F(X) = I - Bx + ~ x - ~X + ~x BX 4 

+ 0 (x 9/2) 
(2-177) 

The B dependence of the coefficients and their complicated recurrence 

relation (174) prohibit asking for the range of convergence of the ex- 

pansion (164). We can, however, test the quality of the approximation 

to F(x) obtained by terminating the summation at, say, k=8. This is 

done by inserting the truncated series into the differential equation 
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obeyed by F(x), and comparing both sides: 

~k(k-2)Skx(k-4)/2 ~ 3/2/xi/2 
k= 3 4 ~ [ = skxk/2] (2-178) 

For B=1.580 , our estimate in (158), the comparison is made in Table I. 

It shows us, that this approximation to F(x) solves the differential 

i~ < ; 
equation with an accuracy of I% for /x ~ 0.4 ; of % for /x 0.25 

of i~0 % for /x ~ 0.20 . This kind of analysis can be repeated for sums 

truncated at a value of k much larger. One observes that a highly accu- 

rate solution to the differential equation (161) is given by these sums 

for ~ < 0.4 only. This is, therefore, the (numerical) range of conver- 

gence of the series in Eq. (164); as a consequence, this expansion in 

powers of /x is utterly useless. I0 

Table 2-I. Left hand side (LHS) and right hand side (RHS) of 

Eq. (178), and their relative deviation (DEV) for /x = 0.05, 

..., 0.50 . For B the value of Eq. (158) is used. 

/x LHS RHS DEV 

0.05 19.8866012 

0.10 9.783683 

0.15 6.35805 

0.20 4.60944 

0.25 3.5373 

0.30 2.8071 

0.35 2.275 

0.40 1.867 

0.45 1.542 

0.50 1.27 

19 8866017 

9 783698 

6 35816 

4 60991 

3 5387 

2 8106 

2 282 

I 882 

1 568 

1 32 

2.3 × 10 -8 

1.5 x 10 -6 

1.7 × 10 -5 

1.0 x 10 -4 

4.0 x 10 -4 

1.2 x 10 -3 

3.3 x 10 -3 

7.8 × 10 -3 

1.7 × 10 -2 

3.4 x 10 -2 

For a precise knowledge of F(x), we cannot rely upon (164) be- 

cause of its small range of convergence. The differential equation (161) 

itself has to be integrated numerically. It is not advisable to attempt 

doing this by starting from x=o with F(o)=1 and F' (o)=-B , using 

a suitable guess for B [as in Eq. (158)]. If the chosen value for B is 

too large, the numerical F(X) will turn negative eventually; if B is 

too small, it will start growing instead of decreasing steadily. One 

could imagine pinning down the correct value of B by an iteration ba- 

sed on this distinction between trial B's that are too large or too 
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small. This is not going to work, unfortunately, because rounding-off 

errors cause a wrong large-x behaviour of the numerical F(x), even if 

one would start with the correct value of B. This difficulty can be 

circumvented, however, by integrating inwards from x=~ towards x=o in- 

stead of outwards. Let us, therefore, turn our attention to the large-x 

properties of F(x). 

We start by noting that 144/x 3 is a particular solution of the 

differential equation (161)! I Of the two boundary conditions in (162) 

it satisfies the one at x =~, whereas it is infinite at x=o. It is clear, 

that F(x) approaches 144/x 3 for x÷~ from "below": 

F (x) ~ 1 44 x3 for x ÷ ~ (2-179) 

This invites the ansatz 

F(x) - 144 G(y(x)) (2-180) 
x 3 

with 

y(x) ÷ o for x ÷ ~ (2-I 81) 

and 

G(y) = 1 for y = o (2-182) 

The best choice for the function y(x) must be found from inserting (180) 

into the differential equation obeyed by F(x), Eq. (161). This leads to 

I [xy' (x) ] 2G" 1~[x2y " I--2 (y(x)) + (x) - 6xy' (x)]G' (y (x) ) +C- (y (x) ) 

= [G(y(x))] 3/2 , (2-183) 

which takes on a scale invariant form if we choose xy' (x) to be pro- 

portional to y(x): 

xy' (x) = - yy(x) (2-184) 

The optimal value for y>o has to be determined. Equation (184) and its 

immediate consequence 

x2y"(x) = (X d-I) xy' (x) = ¥(¥+l)y(x) , (2-185) 
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used in (183), produce 

¥2 Y2G"(Y) + y(¥+7) I--2 12 yG' (y) + G(y) = [G(y)] 3/2 (2-186) 

The aforementioned scale invariance is obvious here: with G(y) also 

G(~y) is a solution to (186), for arbitrary ~. A unique value for y is 

now implied by the requirement that G(y) be regular at y=o, 

G(y) = I - y + 0(y 2) for y ÷ o (2-187) 

Note that because of the scale invariance of (186), the coefficient in 

front of the term linear in y can be chosen to be minus one [it has to 

be negative to not be in conflict with Eq. (179)]. With (187), Eq. (186) 

reads 

I - [I+ ~(¥+7)1y + 0(y 2) = I - ~ y + 0(y 2) , (2-188) 

whence 

y(y+7) = 6 , (2-189) 

or, 
1 

y = ~(-7+ 7~) = 0.77200... (2-I 90) 

The second solution to (189) is -(y+7) = -7.772... and of no use to us 

in the present context. 

The differential equation (186) is simplified a little bit by 

making use of (189): 

¥--~2 y2G"(y) + lyG' (y) + G(y) = [G(y)] 3/2 
12 

(2-191) 

G(y) is thereby subject to (187), which determines the solution to (191) 

entirely. This does not mean that we know F(x) after finding G(y), sin- 

ce the implication of Eq.(184) 

y(x) = 8 x -¥ (2-192) 

contains an undetermined constant, B. Its value is fixed by the require- 

ment F(x=o)=1. This is, of course, analogous to the previous situation 

when F' (o)=-B was determined by F(x÷~)=o. 

Since G(y) is, by construction, regular at y=o, we can expand 

it in powers of y:12 
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G (y) = ~ Ck yk 
k=o 

(2-193) 

where 

c o I , c I -I (2-194) 

The steps that led us to (174) can be repeated here for (191) 

and (193) with the appropriate changes. Comparing powers of yl on both 

sides of Eq. (191) gives 

y2 1 
[-~- / ( / - 1 )  + ~ l + 1 ]c£  

Z-j+1 Z-j+I 
= 13(2) 7--- . . . .  > 

j=1 3 k I =I kj =I 
.. c 5 

Ck I " kj l,kl+k2+...+kj 

(2-195) 

3 
for £~I. The j=1 term equals ~c I and has to be brought over to the left 

hand side. We then arrive at the recurrence relation 

cl = 12 ~(3(2)~-~+1...2Ck...Ckj 6 l ' k 1 + ' ~  .+kj 
(y2Z+6) (£-I) j=2 3 k1= I k.=1 1 " ' 

3 

(2-196) 

for Z = 2, 3, ... 

For example, 

c 2 
= i__3_21312)c 9 201+21  

2y2+ 6 4y2+12 608 

c 3 - 

= 0.625697 .... 

13/2 3/2, 3 } 
12 {' 2 ) (CLC2+C2CI)+( 3 ;Cl 

(3y2+6) 2 

3-¥2/8 15377+1813 7~ 
= -- 

(y2+2) (y2+3) 98496 

(2-197) 

= -0.313386... 

AS we did before, in Eq. (178) and Table 1, we can again insert trunca- 
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ted versions of (193) into the differential equation (191) in order to 

find the numerical range of convergence of this series. The outcome is: 

the expansion (193) represents a highly accurate solution to (191) for 

y~1 , or, x~ I/Y Anticipating that the actual value of ~ is about 13, 

is x~30) 3 Does this mean that the expansion (193) is as useless as this 

the one of Eq. (164)? 

No. The power series of G(y), for some o<y<1, is needed to get 

away from x=~, i.e., y=o, when integrating the differential equation for 

F(x), Eq. (161), inwards. Here is a brief description of the essential 

ingredients of a computer program calculating F(x) for the whole range 

of x, o~x<~ : (i) find G(y) and G' (y) for a suitably chosen y1(~0.3 is 

a good choice) by employing (193), truncated at a sufficiently large k 

(depends on the chosen Yl and the accuracy of the machine); (ii) inte- 

grate numerically the differential equation (191) up to a certain Y2 

(~5 is a good choice), so that we now know G(Y2) and G'(Y2) within the 

accuracy of the computer (the standard Runge-Kutta scheme is well sui- 

ted for the numerical integration); (iii) choose a trial value, ~(~13), 

for ~, and use Eqs. (192) and (180) to find x2=( ~-/y2 ~ ) I/y together with 

~(~2 ) and ~' ~ (x2); (iv) now integrate the differential equation for F(x), 

in the form (163) with /x as the relevant argument• down to x=o. At 

this stage• we have a solution to (161), the one corresponding to ~=~. 

This ~(x) obeys ~(x=~)=o , but not ~(x=o)=1 •. Fortunately• one does not 

have to vary ~ until ~(x=o)=1 in order to find F(x). Instead, • the ob- 

servation that, if ~(x)obeys (161), so does ~3~(~x) for arbitrary ~>o, 

enables us to simply rescale ~(x). The last step in the procedure is 

therefore: (v) set 

F(x) = ~(x)/~(o) , (2-198) 

where 
= x/[~(o) ] I/3 (2-199) 

Accordingly, we have B given by 

B = -F' (o) = -F' (o)/[~(o)]4/3 (2-200) 

and• as a consequence of 

Y2 ~ x2Y ~ %-Y = = x 2 , (2-201) 

B is related to ~ through 
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[3 = 13(x2/~:2 )Y = ~ [ F ( o )  1 x / 3  (2 -202 )  

The sensitivity of the numerical results for B, ~, and F(x), to the 

rounding-off errors of the computer can be tested by varying the para- 

meters YI' Y2' and ~. Ideally, the outcome should be independent of 

them, numerically it is not. The little dependence that one observes 

shows how many decimals of the results can be trusted. For example, 

the realization of the procedure just described gave 

B = 1.58807102261 (2-203) 

and 

= 13.270973848 (2-204) 

on a computer with a 15-decimal arithmetic! 4 

we give a plot of F(x) for o~x~10. 

1 , 0  I | I I 

f 1  - B x  

For illustration, in Fig.3 

0.8 

A 

X 

u_ 0./-. 

0.2 

0 I I I I 
0 2 /-. 6 8 10 

X 

Fig .2-3 .  The TF f u n c t i o n  F(x). 

Now that we know the actual value of B, let us look back at 

the bounds that we found earlier, Eq. (157). The upper bound is extreme- 
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ly good: it is too large by less than 0.18%. On the other hand, the 

lower bound is significantly worse: it is too small by 1.25%. This is 

a first sign of the superiority of the potential functional over the 

density functional. 

With (203) we can give more significant decimals in the TF 

binding energy formula. Inserting B into Eq. (67) gives 

- ETF = 0.768745 Z 7/3 (2-205) 

There is no point in displaying more than six decimals. 

Scaling properties of the TF model. In step (v) of our "computer pro- 

gram" for F(x) we made, in Eqs. (198) and (199), use of the invariance 

of the TF equation for f(x), 

f"(x) [f(x)]3/2 
= (2-206) 

xl/2 

[this is Eq. (59)], under the transformation 

f(x) ÷ ~3f(~x) , (~>o) (2-207) 

The TF model itself is not invariant under such a scaling, because the 

boundary condition f(o)=1 fixes the scale. Therefore, we have to be 

somewhat more careful when investigating the scaling properties of the 

TF model. 

When we were looking for bounds on B, we found it advantageous 

to exploit certain scaling properties of the respective functionals. The 

scaling transformations that we considered then, were, Eq. (119): 

f(x) ÷ f(~x) (2-208) 

and, Eq. (146) with g(x)=f' (x)+q/Xo=f' (x) for q=o: 

f(x) ÷ ~q f(~2 x) , (2-209) 

where ~, ~I' and ~2 were arbitrary (positive) numbers. Let us now exa- 

mine the implications of transformations as general as (209) applied 

to the TF potential functional. 

We return to Eq. (45), 
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I ) [_2(V+~)15/2 

15~ 2 

= E I + E 2 - {N 

and consider 

V(r) ÷ v V(~r) , 

(2-210) 

Since, for the existence of E2, we need [Eq. (52)] 

rV(r) ÷ - Z for r ÷ o , (2-212) 

such a scaling transformation of V has to be accompanied by a scaling 

of Z, 

Z ÷ ~-I Z (2-213) 

For convenience, we also scale ~ by 

÷ v E , (2-214) 

so that the structure V+E is conserved. 

In terms of f(x), (211) and (214), without (213), read 

f(x) + v-1 f(~x) , (2-215) 

which identifies (207) and (208) as the special situations v=4 and v=1, 

whereas (209) is realized by ~2=~ and ~i=~ ~. However, with (213), we 

just have (208), as we should have, since (212) is equivalent to requi- 

ring f(o)=1; and only (208) is consistent with this constraint. 

Under (211), (213), and (214) the various contributions to ETF 

scale according to 

E 1 ÷ E I (~) = f(dr) (- I ) [_2 V(V(~r)+~)]5/2 
15~ 2 

= 55v/2-3 El • 

(2-216) 

and 
IIVZ. 

E2 ÷ E2(I~) = _ 8 ~ f ( d ~  ) [ ~ ( l l V V ( g r )  + _ ~ ) ] 2  = 

(~>o) (2-211) 
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29-I = 

as well as 

~N + V ~N 

Consequently 

E 2 , 

(2-217) 

(2-218) 

ET F ÷ ETF(~) = ~5~/2-3 El + 2v-I E2 _ ~V~N (2-219) 

For ~=I, this is just ETF; for ~=I+5~, we have ETF+6 ETF . Now, since 

the energy is stationary under infinitesimal variations of V and ~, all 

first order changes must originate in the scaling of Z. That is 

~ETF ~ETF ( v-1 Z) = (~-I)Z--~--5~ (2-220) 5 ETF = ~ 6 

On the other hand, from (219) we get 

5 ETF = [(5v-3)E I + (2~-I)E 2 - ~N]6~ , (2-221) 

so that we conclude 

(-~-3)E I ÷ (2~-I)~ 2 -~ = (v-1)z~z~T~ (2-222) 

This is a linear equation in v. It has to hold for any v. So we obtain 

two independent relations among the different energy quantities - two 

"virial theorems." Besides v=1, when 

I 
- ~ E I + E 2 - ~N = o , (2-223) 

the other natural choice is the TF scaling v=4 [see the comment to Eq. 

(215)], for which 

7E I + 7E 2 - 4~N = 3Z~zETF (2-224) 

The latter combines with ETF=EI+E2-~N and 

8-~ ETF = - ~ (2-225) 
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to give 

~ (z ,N) 7ETF (Z ,N) = 3 (Z-~+Ny~) ETF (2-226) 

We have made explicit here, that the energy of an atom is a function 

of Z and N. 

For N=Z, Eq. (226) has the simple implication 

7ETF(Z,Z) = 3Z~zETF(Z,Z) , (2-227) 

or 

ETF(Z,Z) = - C Z 7/3 , (2-228) 

where the constant C is yet undetermined. It is found by combining our 

knowledge of C=- ~ETF/~N=o for N=Z with 

(dr) (V+) V 2Z 
~ r 

B Z7/3 for N = Z : - z(v+ )1 ;: - 
r=o 

(2-229) 

The third step here is a partial integration; the fourth one recogni- 

zes -ZS(r) as the source of the Coulomb potential Z/r; the last one, 

valid for N=Z only, uses Eq. (65). [The comment to that equation says 

that (229) identifies the interaction energy between the nuclear charge 

and the electrons: 

ENe = Z~ZETF , (2-230) 

which, according to (I-96), is a general statement, not limited to the 

TF model in its validity.] Now, 

ETF(Z,Z) -- 71Z ÷N )~T~(Z,m[ : ~Z~ET;(Z,N) [ 
N=Z N=Z 

3 B Z7/3 (2-231) 
=-TK 

which identifies the constant C. This is, of course, the result that 
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we had found earlier in Eq. (67). 

The first of our "virial" theorems, Eq. (223), has the conse- 

quence 

E I = 2(E2-%N) = 2(ETF , E I , (2-232) 

orr 

and 

2 
E I = ~ ETF , (2-233) 

I 
E 2 - ~N = ~ ETF . (2-234) 

For a Coulomb system, like the one we are considering, one expects the 

usual theorems about the kinetic and the potential energy: 

Eki n = - ETF , Epo t = 2ETF (2-235) 

Indeed, they emerge from the relations that we have found so far. It is 

essential to r emember  how E 1 and E 2 a r e  composed  o f  Ek i  n and Epo t  = ENe 

+ E : 
ee 

E I = Eki n + ENe + 2Eee + ~N , 

(2-236) 

E 2 = _ Eee 

Note in particular the double counting of the electron-electron energy 

in E I. With (230) we have 

Epo t = ENe + Eee = Z~TETF~_ - E 2 

(2-237) 

which makes use of (225). Now Eqs. (226) and (234) can be employed to 

produce the second statement of (235), which then implies the first one 

immediately. 

The relative sizes are 

E 
ee : Eki n : (-ENe) : (- ~--ETF-~N): (-ETF): (- 7ETF+~N) ; 

= I : 3 : 7 for N = Z, when ~ = o . 

(2-238) 
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In words: the electron-electron energy of a neutral TF atom is one third 

of the kinetic energy and one seventh of the (negative of the) nucleus- 

electron energy. 

For ions, there is less specific information in Eq. (226). It 

merely implies that ETF(Z,N) can be written in the form 

N (2-239) ETF(Z,N) = Z 7/3 x [function of ~] 

This invites introducing a reduced binding energy, e(q), that is a func- 

tion of q=I-N/Z, the degree of ionization: 

Z7/3 
ETF(Z,N) = - ~ e(q) (2-240) 

We know e(q) for q=o, i.e., N=Z : 

3 
e(o) = 7B , (2-241) 

which is simply Eq. (231). The factor multiplying e(q) in (240) is the 

same as the one in Eqs. (108) and (138). The maximum (minimum) property 

of the TF potential (density) functional is, therefore, here expressed 

as 

2 fax [f(x)]5/2 I fdx[f' (x)+ q]2 + q(1-q)} 
{5 o x I/2 + ~ o Xo x° 

e(q) 

_ {! fdx x I/3 ' 5/3 5 [g (x ) ]  
o 

oo 

I fdx[g(x) ] 2 } + g(o) + y . 
o 

The competing g(x)'s are hereby restricted by [Eq. (98)] 

whereas 

co 

fdx xg' (x) = 1-q 
o 

(2-242) 

, (2-243) 

f(x=o) = 1 (2-244) 

The equal signs in (242) hold only for g(x)=f' (x)+q/x o, when f(x) obeys 

Eqs. (59) and (60), which also determine x o. 

We can relate e(q) to Xo(q) by recognizing that Eq. (225) says 
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Z 7/3 Z 4/3 d 
~--~(- ~ e(q)) - a dq 

_-- _ ~ -- 

e(q) 

Z4/3 q 
a x o (q) 

thus, 

d e (a) = q 
dq - x O (q) 

Consequently, 
q 

q, 

3B - fdq' Xo~q') e (q) = 7 o 

(2-245) 

and 

I q' 
e(q) = Sdq' 

xo(q') q 

(2-246) 

, (2-247) 

, (2-248) 

of which the first one should be applied to weakly ionized systems 

(N~Z, q~o), whereas the second one is designed for highly ionized atoms 

(N<<Z, q~1). In Eq. (248) the obvious statement 

e(q=1) = o (2-249) 

has been used; it says: no electrons - no binding energy. 

For ions, Eq. (229) gives 

7Z Z 
Z ETF = - Z(V+~+ ~)I + ~Z 

r=o 

Z7/3 
- [f" (o) + -~-q] 

a q x o 

(2-250) 

so that Eq. (226) translates into 

q2 
7e(q) = 3[-f'q(O) - Xo(q)] (2-251) 

By writing a subscript q we emphasize the q dependence of fq(X) and its 

initial slope f' (o). The comparison of (251) with (247) results in 
q 
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-f' (o) q 

q2 7 . q a' 
= B + - --|dq' , 

x O (q) 3 ~o x° (q) 

q 
q,7/3 d I 

= B ÷ ofdq' ] 

(2-252) 

The latter equality is verified by performing a partial integration. 

Since -f' (o) increases with increasing q, we learn here that 
q 

~q[q l/3xo(q)] < o (2-253) 

We observe in these relations, that in studying ions the cen- 

tral quantity is Xo(q). It is basically available from solving numeri- 

cally the differential equation for f (x), Eq. (59): q 

f" (x) [f~(x) ] 3/2 q = - - ~  
x 

(2-254) 

with the boundary conditions (60): 

fq(O) = I , fq(Xo(q)) = O , -Xo(q)fq(Xo(q)) = q (2-255) 

Nevertheless, in the two limiting situations q~1 and q~o it fs possi- 

ble to make precise statements about the analytic dependence of Xo(q) 

on 1-q(=N/Z), or, q, respectively. Let us first concentrate on highly 

ionized atoms, q~1. 

Highly ionized TF atoms. In the limit of extremely high ionization, 

N/Z÷o, the interelectronic interaction becomes insignificant as com- 

pared to the nucleus-electron interaction. In this situation V is sim- 

ply the Coulomb potential -z/r, and we are dealing with Bohr atoms, 

which have been studied in the first Chapter. We concluded already, in 

Eq.(46), that then 

ETF(Z,N) = -Z2(3N) I/3 for N/Z ÷ o (2-256) 

As a statement about e(q) this reads 

3 I/3 3 ~ 2/3 1/3 
e(q) = a[~(1-q)] = ~(~) (l-q) 
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for q ÷ I (2-257) 

After employing Eq. (246) we find 

Xo(q) = [~(1-q)] 2/3 for q + I , (2-258) 

which is recognized to be Eq. (I-35) when ~=(Z4/3/a) (q/Xo) , etc., is in- 

serted there. 

If N/Z is not that small, Eq. (257) and (258) acquire correc- 

tions that account for the repulsion among the electrons. A systematic 

treatment proceeds from noting that f(x) is not the best suited para- 

metrization of the potential for the present purpose. It is advantage- 

ous to introduce another function ~(t) by means of 15 

Z-N ~ (r/ro) (2-259) V (r) + ~ - r 

or, recalling ~ = (Z-N)/r o [Eq. (55)] , 

V + ~ = - ~ ~(t) t=r/r o = x/x o (2-260) 
t 

Because of the great similarity between the definition of f(x) in (57) 

and the one of ~(t) in (259), the two functions are simply related to 

each other: 

I f (tXo) (2-261) f(x) = q ~(x/x o) , # (t) = 

Consequently, ~(t) 

~" (t) = 

obeys the differential equation 

[~(t)] 3/2 

ti/2 
(2-262) 

and is subject to 

1 
q~ ( o )  = - q 

, { ( 1 )  = o , { '  ( 1 )  = - 1  , (2-263) 

where l=l(q) is given by 

(q) = ql/2[x o(q)]3/2 (2-264) 

AS a consequence of (258), I is small for q~1 : 
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I ~ 16(I-q) - 16 N for N ~-- ~ Z Z = 1-q o (2-265) 

Why is it fitting to switch from f(x) to ~(t)? The reason is that the 

appearance of I in (262) offers the possibility of expanding ~(t) in 

powers of I, whereby the smallness of I promises a good convergence of 

the expansion. 

The differential equation (262) and the boundary conditions 

at t>1 in (263) can be combined into the integral equation 

I [~1(t')] 3/2 
~1(t) = I - t + I Sat' (t'-t) 

t t 'I/2 
(2-266) 

where we wrote ~1(t) in order to emphasize the I dependence of ~. After 

solving this equation for a chosen I, the corresponding value of q emer- 

ges from 

I 
I _ 91(o ) = I + I fdt tl/2[~l(t)]3/2 
q 

o 
(2-267) 

In the first place, one obtains I/q as a function of I, from which l(q) 

is to be found in an additional step. Then Eq. (248), here in the form 

I 7/3 
e(q) = fdq' q' 

q [1(q')] 2/3 
, (2-268) 

supplies the desired e(q). The evaluation of this integral is eased 

by writing it as an integration over I instead of q, since then q(1) 

enters, not 1(q). The rewriting begins with 

o 
e(q) = ] d1' dq(1') [q(1')] 4/3 

1(q) d1' 1,2/3 

1(q) I' -2/3 -_3 fdl, 
7 

o 

d (i_[q(i,)]7/3 
d1' 

) ; 

(2-269) 

in view of this implication of Eq. (265) : 

i-2/3(I-[q(i)] 7/3) = i-2/3(i-[1- ~61+...] 7/3) = 
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7~ 11/3 (14/3) 48 + 0 ; = o for I=o , (2-270) 

a partial integration can be performed with the outcome 

I (q) ,) 7/3 3 1-q 7/3 2 5 d1' I-[q(I ] 
e(q) - 7 [i(q)]2/3 + 7 o 1,5/3 (2-271) 

An alternative exDression makes use of (251); here it reads 

3 q4/3 
e(q) = 7 [i(q)']2/3 (-~i(o)-q) , (2-272) 

where 

I [~1(t)] 3/2 

-~(o) = I + I o Sdt" t I/2 (2-273) 

is the initial slope of ~1(t). Note that the equivalence of (271) and 

(272) allows to relate ~(o) to ~i(o) = I/q(I) [this is Eq.(267)]: 

1 I-[~(o)] -7/3 
, 2 12/3 fat' -~I (o) = [~i(o)]4/3{I + o f 5/3 } ,(2-274) 

which is a useful equation for checking against algebraic mistakes. 

Let us now, indeed, expand ~1(t) in powers of I, 

oo 

~1(t) = I - t + ~---I k ~k(t) (2-275) 
k=1 

This, inserted into (266), implies 

~--IZ~l(t) = I 5dt' (t'-t) t '-1/211-t'+~--Ik ~k(t')] 3/2. (2-276) 
£=I t k=1 

The technique that produced the recurrence relation for the s£ in Eq. 

(174) can be applied here, too. We find 

1 
~I (t) = 5dt' (t'-t)t '-I/2 (I-t')3/2 

t 
, (2-277) 
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and 

I ~(3/2) (1-t') ~l(t) = ]at' (t'-t)t '-I/2 3/2-9 
t j=I J 

_. (2-278) 

x ~-~...i 3= ~kl (t')...~k (t')Sl_1,k1+...+k. 
ki=1 9 1 9 3 

for Z=2, 3, ... 

The first few ~l(t) can be expressed in terms of elementary 

functions; unfortunately, the degree of algebraic complexity increases 

rapidly. Let us, therefore, confine ourselves to explicitly stating on- 

ly ~1(t) as it emerges from (277) : 

41 (t) = (~- 3 /2 + 2 _ ~t2)t1/2 ~t)arccos(t I ) + (~ ~t 

In particular, we have 

(1_t) I/2 

(2-279) 

1 
#I (o) = fdt t1/2(1-t)3/2 - ~ 

16 o 

I t)3/2 = 3~ -~ (o) = ]at t -I/2 (1- -~- 
o 

, (2-280) 

Equation (279) is utilized in 

and 

3 ~ ti/2 I/2 (t) = 2 3~ 2 
~2(o) = ~ dt (l-t) ~I 15 256 

o 

3 1 I/2 I/2 I 3~ 2 
-~(o) = ~ ]at t- (l-t) ~I (t) = 3 256 

o 

, (2-281) 

(2-282) 

We are now prepared to employ Eq. (267) in order to 

find the leading corrections to (265), (257), and (258). From 

I I 
q I- (l-q) 

- I + (l-q) + (l-q) 2 + ... 

= ~i(o) = I + ~i(o)I + ~2(o)12+ ... 

(2-283) 
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we get 

or 

I (q) = 
I 

~I (o) (l-q) [I+ (I 
~2 (O) 

[~1 (o) ] 2 
) (l-q) + ... ] 

= 16(I-q) [I+ (4- 512 ) (l-q) + ... ] 

1 5"n; 2 

N l(q) - 16~ NZ [I+(4- 15~ 2512) Z + 0(( )2)] for N/Z<<I 

(2-284) 

(2-285) 

Then, using either one of the Eqs. (268) , (269) , or (271) , we find 

e ( q )  = ~ ( ~ ) 2 / 3 ( 1 - q )  1,311_(i_/ 256 ) (l-q) + ... ] 

45~ 2 

= ~ [I-(1- ~ + 0( 
45~ 2 

(2-286) 

Also, from (264) or (246), 

Xo(q) = [~(i_q) ] 2/311+ (3 _ I ~  i024) (i_~) + ... ] 
45~2 

N 2/3 1024) N (N) 2 
= (--- ~) [I+(3- ~ + 0( )] 

45T~ 2 

(2-287) 

The numerical versions thereof are 

N 
I = 5.093 (I+0.5416 ~ + ...) , 

e = 1.0135( )1/3(1-0.4236 ~ + ..) , 

x o = 2.960( )2/3(I+0.6944 ~ + ...) 

(2-288) 

Here then is the modification of Eq. (46) that we promised 

at that time: 

ETF(Z,N) = -Z2(3N)I/311-(1 - 256)N + ] 
45~2 Z "'" 

(2-289) 

for N<<Z ; 
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it is obtained by inserting (287) into (240). 

A simple check of consistency is provided by 

states 

(253). This 

d l(q) < o , (2-290) 
dq 

or, 

d 
d(N~ I(q=I-N/Z) > o (2-291) 

A quick look at (285) shows that this is true, indeed. 

We close this section on highly ionized TF atoms with a dis- 

cussion of the relative sizes of Eki n, Eee, and ENe. In order to be 

able to apply Eq. (238), we need ~N. It is given by 

~N = -N~N ETF(Z,N) 

1 2 3 N I/3 1024) N = ]Z ( ) [I-(4- ~ + ...] 
45~ 2 

so that Eqs. (236) and (234) produce 

I 
Eee = - ~ETF - ~N 

= Z2(3N)1/3[( I- N 256 ) Z + ...] 
45m 2 

(2-292) 

(2-293) 

The interaction energy of the electrons with the nucleus is given by 

[see Eq. (230)] 

ENe = Z~Z ETF (Z, N) 

N + I 128) 
-2Z2 (3N) I/3 [I- (2 45~2 • ..] , 

(2-294) 

whereas the kinetic energy is simply the negative of ETF, as is ex- 

pressed in Eq. (235). Consequently, 

E 
N 

-ENeee _ (21 _ 45~ 2128) Z + 0(( ) ) , (2-295) 

which states that Eee is negligible in the limit of extremely high ioni- 

zation. [We have already made use of this (physically obvious) fact re- 
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peatedly; see, for example, Eq. (256) ] Together with the neutral,atom 

statement of (238), we have, therefore, 

Ee e _ ji/7 for N = Z 
f 

-ENe ~0.2118~ for N<<Z 
(2-296) 

Likewise, one obtains 

Ekin 
~r3/7 for N = Z 

and 

Ee e _ ~I/3 for N = Z 

Ekin ~0. 4236 N for N< <Z 

, (2-297) 

(2-298) 

Weakly ionized TF atoms. As I increases, #l(t) grows larger for all 

t<1, as is evident from Eq. (262), or Eq. (266). Thus q=I/~l(o) decreases, 

finally reaching q=o for the critical value 

A = l(q) I (2-299) 
q÷o 

Consequently• 

Xo(q) = q-1/3 [l (q) ] 2/3 

A2/3 q-I/3 for q+o • 

(2-300) 

so that Eq. (247) implies 

3 3 ,A-2/3 q7/3 e(q) ~ 7B - 7 for q÷o 

Accordingly, we have in the limit of very weak ionization 

3 Z 7/3 A-2/3 q7/3] 
ETF(Z'N) ~ 7 ---~[B - = 

(2-301) 
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= _ 3 I[B Z7/3 _ A-2/3(Z_N)7/3] 
7 

(2-302) 

for N ~ Z 

If we insert Eq. (301) into the inequalities of (242), suitably chosen 

trial functions f(x) and g(x) supply bounds on A -2/3. Details are given 

in Problem 10, from where we cite 

0.0946 < A -2/3 < 0.1008 , (2-303) 

or, 

A -2/3 = 0.0977±0.0031 , (2-304) 

which tells us that A -2/3 is about six percent of B. A weakly ionized 

TF atom has, therefore, practically the same binding energy that has 

the neutral atom. In other words: the outermost electrons contribute 

very little to the total binding energy of the atom. 

In the limit q÷o, the relation between f(x) and ~(t) becomes 

singular. We cannot give sense to the right hand side of 

fq(X) I = F(x) = q ~l(q) (X/Xo (q)) I 
q+o q÷o 

(2-305) 

[Eq. (261)], because Xo(q÷~) = ~ squeezes t=X/Xe(q) into an infinitesimal 

vicinity of t=o. There is, nevertheless, a sensible limit to %l(t) as 

I approaches A. We write ¢(t) for this ~A (t). It obeys the differen- 

tial equation 

~"(t) = A [~(t)]3/2 

tl/2 
, (2-306) 

and is subject to 

~(1) = o , ~' (I) = -I , (2-307) 

and 

#(t) ÷ ~ as t ÷ o (2-308) 

Although ~(t) is somehow corresponding to the situation of neutral TF 

atoms, the trouble of Eq.(305) signifies that it cannot be used as a 
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parametrization of the potential V(r). Fortunately, there is still a 

use for Eqs. (306) through (308), in as much as they offer a simple and 

highly precise method for calculating A . Here is how it goes: #(t) 

possesses an expansion in powers of ~t °, with a yet undetermined con- 

stant ~ and 

o = 7 + y = 1(7+ 7/7~) 

of the form 

• (2-309) 

144/A 2 
#(t) =--[1-~ta+ 9 (a~t°) z + ...] , (2-310) 

t 3 12+ 4a 2 

which is, of course, an immediate analog to Eqs. (180), (193), (192), 

and (190). The coefficients of the powers of ~t ° obey the recurrence 

relation (196) after replacing y by o. The (numerical) range of conver- 

of this series is ~t°~0.6, or, anticipating that ~ is close to gence 

unity, t~0.94. On the other hand, #(t) can also be expanded in powers 

of (l-t) I/2, 

~(t) 4A;IA t 7/2 2A (I_t)9/2 = (l--t) + --~,I-- ) + --~ 

(2--311) 
A 2 

+ A(1-t)11/2 + i--~(I-t) 6 + .... 

this series being convergent for (l-t) 1"2 ! ~ 0.35, or, t ~ 0.88, when 

A is within the bounds of (303). There is a range of t around t=0.9 

where both expansions are converging. This allows to determine A and 

numerically by forcing the two expansions to agree within the accuracy 

to which they represent solutions to Eq. (306). Such a calculation 16 

resulted in 

A = 32.729416116173 (2-312) 

and 

= 1.0401806573862 (2-313) 

Naturally, physics does not need this many decimals; they are reported 

only in order to demonstrate the marvelous precision of this simple 

method. Please note that one cannot compute B and B in a similar way, 

because the expansions (164) and (193) converge for x~0.15 and x~30, 
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respectively. There is no overlap. 

The A of (312) yields 

A -2/3 = 0.0977330 (2-314) 

so that we obtain, from Eq. (302), 

-ETF(Z,N)=0.768745 Z 7/3 _ 0.047310(Z-N) 7/3 

for N ~ Z (2-315) 

The correction to the neutral atom binding energy is rather small; even 

for N=Z/2 it is only about one percent. 

Since A is large, the series of Eq. (275) does not converge 

rapidly (if at all) for weakly ionized atoms, and the switching from 

f(x) to ~(t) is pointless in this situation. Here we make use of the 

fact that the difference between F (x) and fq(X) is small, when q>~o and 

X<Xo(q) . In particular, fq' (o) does not differ significantly from -B, 

so that fq' (o)+B is a possibly useful expansion parameter. We use it 

in making the ansatz 

fq(x) = F(x) + ~---[f' (o) + B] k fk(x) , (2-316) 
k=1 q 

where the fk(x) are subject to 

fk(o) = o for k=I,2 .... (2-317) 

and 

f{ (o) = I , f~(o) = o for k=2,3 .... (2-318) 

To first order in f '(o)+B, the differential equation obeyed by fq(X) 
17 q requires 

d 
7 

3 F(x) 1/21 (x) = o 
- 2[~] fl 

J 
(2-319) 

One solution is 

I I d (x3F (x)) , fo(X) = F(x) + ~xF' (x) - dx 
3x 2 

(2-320) 
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because 

d~ ~ [--~--j x 2 x F(x) 

3x--- ~ d--x x - .--~-- F(x) = o 

However, inasmuch as 

fo(1) = I , f'o(1) = - ~B4 , 

(2-321 ) 

(2-322) 

fo(X) is not proportional to f1(x). The Wronskian of the differential 

equation (319) relates the two functions to each other: 

fo(X) f~ (x) - f'o(X) fl (X) = I (2-323) 

This is equivalent to 

d fl (x) -2 
dx fo ~ = [fo (x)] (2-324) 

which has the consequence 

x dx' 
f1(x) = fo(X) f 

o [fo(X')] 2 
(2-325) 

This does, indeed, satisfy the requirements fl (o)=o and f{ (o)=I , so 

that we need not add a multiple of fo(X) on the right hand side. 

For large x, we have 

fo(X ) I d[144 G (y (X))] (12) 2 d - - [1-y(x) + ...] 
3X 2 3X 2 

(12) 2 yy(x) = (12) 2 ¥~x-(¥+3) 
3 3 3 x 

(2-326) 

which uses Eqs. (180), (187), (184), and (192). This inserted into (323) 

or, equivalently, (326) produces 

I I xO-3 for large x (2-327) 
fl (x) -- 488 y(y+o) 
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[o = 7+y, Eq.(309)]. 

In deriving Eq. (319) the first order approximation (1+e) 3/2 
3 

I+~ has been used for e=[f~(o)+B]fl(X)/F(x). Consequently, 

fq(X) ~ F(x) + [f~ (o) +B] f1(x) (2-328) 

must not be applied to x~x o, where e=-1. We can, however, supplement 

(328) with 

X 

fq(X) ~ q(1- ~O ) (2-329) 

which is valid for X~Xo~ [This is obviously no more than the first term 

of Eq. (311) as it analogously appears in ~l(t)]. Let us now join the two 

approximations for fq(X), Eqs. (328) and (329), at a certain x=x I. The 
! three unknown quantities Xo(q) , x1(q) , and fq(O)+B are determined from 

the requirement that fq(X) and its two first derivatives are continu- 

ous at x=x I . This can be done explicitly in the limiting situation of 

very small q, since then both Xo(q) and x1(q) are large, which allows 

to employ the large-x forms of F(x) and f1(x). Thus, we have the three 

algebraic equations 

0-3 
x I x I 

fq: 144 + [f~(o)+B] 48By(y+O) = q(1- ~O ) 
3 - I 

x I 

432 (°-3) X1-4 
! = , fq:  - -  + [fq(O)+B] 488y(y+o') -q/Xo (2-330) 

Xl~ 

f,,: (12) 3 18 Xl-5 
q s + [fq(O)+B] 48~y(y+O) = O ; 

X I 

the last one uses (o-3)(o-4)=18. These three equations imply 

and 

Xl o+3/2 y+17/2 37+ 7~ 
- -  = = = 

x o+2 ~+9 48 o 
- -  = 0.9488 , (2-331) 

_ o+2 I/3 I/3 q-1/3 
Xo a+372 [96(o+2)] q- = 10.32 • (2-332) 

as well as 

-f' (O) = B + 1(96) -(Y+I)/3 8y(y+O)(0+2) -O/3 qO/3 = 
q 
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(2-333) 

= B + 8.05 x 10 -3 q2.59 

whereby identities like 0=¥+7 and yo=6 have been used. Of course, since 

these results are based upon the simple approximations (328) and (329) 

we should not take them too seriously. Nevertheless, their structure 

is certainly right. For instance, Eq. (332) says that the combination 

ql/3xo(q) approaches a constant as q÷o. This much we know already - the 

constant is A2/3=I0.2320. The estimate for A 2/3 obtained in (332) dif- 

fers from the actual value by less than one percent. 

Something new is to be learned from Eq. (333). As a prepara L 

tion, we differentiate Eq. (252) with respect to q: 

~q[- fq(O) ]  = q7/3 d [  I ] = q7/3 ~q[ l (c r ) ] -2 /3  ;(2-334) 
dq ql/3xo (q) 

the latter equality is a consequence of the definition of l(q) in Eq. 

(264). Now Eq. (333) implies that 

d -2/3 (a-7)/3 qy/3 
q ~[l(q)] % q = (2-335) 

We infer that 

~(q) = A [1+(powers of qy/3)] (2-336) 

for values of q not too large. Then, of course, 

Xo(q) = A 2/3 q-I /3 [1+ (powers of qy/3)] , (2-337) 

and 

= 3 3 A,2/3 q7/3[ e2q2y/3 e(q) 7B- 7 1+elqy/3 + + ...] , (2-338) 

which is an implication of (337) when it is inserted into Eq. (247). The 

challenge consists in calculating the coefficients el, e2, ..., which 

determine the corresponding coefficients in (336) and (337). In parti- 

cular, Eq. (246) supplies 

Xo(q ) = A2/3 q-I/311 + ~elqy/3 + ¢;7._J.Ye2q2y/3+ . . . ] - I  = 
(2-339) 
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o q¥/3+ o 2_ o+y ,q2¥/3+ 
= A 2/3 q-I/311_ 7ei ((7ei) -7--e2J ...] 

Then 

I (q) = [ql/3xo (q) ] 3/2 

30 qy/3 3 5 (~el) 2 = A [I- ~e I + ~(~ 
o+y q2~/3 

- --7--e2 ) 

(2-340) 

+ ...] , 

and from combining (251) and (246) with (338) 

-f' (o) 7 q2 7 ~q 
q = ]e(q) + Xo(q) = (] - q )e(q) 

= _qi0/3 d[q-7/3 e(q)] 
dq 

(2-341) 

or, 

3 q-7/3 : qi0/3 ~q(_ 7B 

-f' (o) = B + ~ A -2/3 q°/3[e I 
q 

+ 73 A-2/311+elqy/3+e2q2y/3+...]), 

+ 2e 2 qy/3 + ...] (2-342 

The comparison with (333) yields a first estimate for el: 

e I --- 0.75 , (2-343 

which, in view of the crudeness of the approximation used in arriving 

at (333), cannot be expected to have more significance than stating 

the order of magnitude. (We shall see below that the actual value is 

about ten percent larger.) 

A systematic computation of el, e2, ... starts from the ex- 
I pansion (316). Comparing powers of fa(o)+B in the differential equation 

obeyed by fq(X) produces 

£ 3/2-j £-j+I £-j+I 
fi(x I : 5-(3j2) EFIx)] (xl... J xlj2 fkl 

j =I k I =I kj =I 

x..fk.3 (x)6£'k1+'''+kJ (2-344) 
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The j=1 term on the right hand side is brought over to the left, so 

that 

_ 3 [ d2 y/~-/~] fl (x, 
dx 2 

= Z 3/2 .[F(x)]3/2-J ~-j+1 l-j+1 (x% ... 
7(j I xI/2 > fh 
9=2 k I =I kj=1 

x-'-fk (x)6Z,k1+...+k. 
3 3 

(2-345) 

This right hand side contains f1(x), ..., fl_1(x) but not fl(x). The 

solutions to the corresponding homogeneous differential equation are 

fo(X) and f1(x), given in Eqs. (320) and (325). With their aid we can 

construct Green's function G(x,x') which satisfies 

d 2 
[-- - 

dx 2 
3/F~-~-/x] G(x,x' ) = 8 (x-x') 

G(x,x') = o and ~xG(X,X ') = o for x=o 

(2-346) 

It is given by 

G(x,x') = [fo(X')f I (x) - fo(X) f I (x')]O(x-x') (2-347) 

Thus x 
fl(x) = fdx' [fo(X')fl (x)-fo(X)fl (x')] 

o 

x [ (d-~22-3/F(x')/x') f£(x')] , 
dx' 

(2-348) 

where we refrained from explicitly inserting the right hand side of 

(345). 

The use of Eq. (348) does not lie primarily in explicitly 

calculating f2(x), f3(x), etc. but in studying their structure. Recall 

that F(x) can be written as 

F(x) 144 G(y(x))= 144 ~--- o = i] +x___c~ [y (x) k] (2-349) 
x3 x3 L k=1 
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which is repeating Eqs. (180) and (193). As a consequence, fo(X) has the 

form 

f o ( X )  = 14__~4 1 x 3 ~ y y ( x ) [ 1 + ( p o w e r s  o f  y ( x ) ) ]  (2 -350)  

Inserted into (325) this implies 

fl (x) - 144 3 I x o x ~ (12)4 6y(y+o) [1+(powers of y(x))] , (2-351) 

of which we have seen the leading term in (327). Now we employ the re- 

currence formula (348) to conclude that 

fz(x ) = 144[_ 3 I x a ]Idz 
x3 (12) 4 ~y(y+o) [1+(powers of y(x))] , 

(2-352) 

where the constants d I obey 

d I = -I (2-353) 

and 

l-j+1 l-j+1 2y (3 2) - 
dz = (Zo+y)(Z-I) ~ ~ "> dk I 

j=2 k I =I kj =I 
"''dk 61,k1+. .+k j • j 

(2-354) 

This we recognize to be the recursion for the c k of Eq. (196), after y 

and o are interchanged. Consequently, the d~s are the coefficients that 

appear in the expansion of Eq. (310). That is 

144/x°t ~ {(t) = [ I+ dk(at°)k] (2-355) 

k=1 

This connection between the fz(x)'s and ¢(t), which is, of course, not 

accidental, is the clue to computing el, e2, ... of Eq. (338). We reveal 

its significance by inserting Eqs. (349) and (352) into the ansatz (316), 

fq(X) = 14411+ ~(-[fq(0)+B]-- 
X 3 

k=1 

[x ° (q) ] O k x 
3 ~ )  (__~ ,)kOdk ] + 

(12) 4 Xolq, 
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+ .... (2-356) 

where the ellipsis indicates the terms containing "powers of y(x)." 

After introducing h by q 

I 
-fq(O) = B + 7(12) 4~8y (y+G) [hq/X O(q)]° (2-357) 

Eq. (355) is employed: 

fq(X) = 
co 

Z X O)k] 1443 [ I+ dk(a[h q ~ ]  

x k=1 

+... (2-358) 

A 2h3 #(hq ~ )  + ... 
= q [i-~] q 

where [l(q)]2=q[Xo(q)] 3 is used. What is exhibited in (358) is the part 

of f (x) that goes with the zeroth power of y(x). Likewise, an arbitra- q 
ry power of y(x), say [y(x)] m contributes 

[y(x)]m 144 [ c m + (powers of ~(hqX/Xo(q))°) ] 
x 3 

x ~ a[~@q)]2 hq Cm[Y(X)] m ~m(hq x--~) 
(2-359) 

to fq(X). The functions ~m(t) thus defined are such that 

144/A 2 
~m(t) - [ I + (powers of ~t°)] (2-360) 

t 3 

We can now make explicit what supplements Eq. (358): 

x j 
fq(X) = q[l--~q)] 2 h~[~(hq x--~-~)+ Cm[Y(x)]m~m(hq x~q))] 

m=1 

(2-361). 

Whereas (316) is an expansion that is expected to converge rapidly for 

x not too close to Xo(q), the series of (361) is the faster convergent 

the smaller y(x) is. This identifies large values of x (i.e., x~x o) as 
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the domain of application. 

It is instructive to make contact with the original defini- 

tion of ~(t), 

_ I f (tXo(q)) ] (2-362) #(t) : ~l(q) (t) I q q 
q+o q÷o 

[see the comment to Eq. (305)]. Since 

y(tx o(q) ) J : ~(tx o(q))-Y[ 
q÷o q+o 

= o , (2-363) 

the combination of Eqs. (361) and (362) reads 

(t) = h 3 ¢ (hqt) ] 
q 

q÷o 
(2-364) 

from which we learn that 

h ] = I (2-365) q 
q÷o 

This tells us what e I is. Equations (342) and (357) together say 

el + 2e 2 qy/3 +... = -[fq(O)+B] ly A2/3 q-a~3 

7(12)4 B(y+a) A2/3 hq 

: [ql/3Xo (q) 

(2-366) 

or, after making use of ql/3xo(q)=[l(q)]2/3 , 

el + 2e 2 qy/3 7 (~) 4 A -2Y/3(hq A 2/3 
+... = ~ ~B(¥+o) [77~71 ) 

Now the limit q÷o identifies 

(2-367) 

7 A-2y/3 (_~)4 .e,13 (y+a) e I = ~ (2-368) 

With ~, B, and A from (313), (204), and (312), respectively, the nume- 

rical value of e I is roughly 10% larger than the estimate of (343): 
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e I = 0.825908 (2-369) 

Note that Eq. (368) reveals the physical significance of ~ and 6; that 

of B and A has been clear since Eqs. (67) and (301). 

The requirement fq(X=Xo(q))=o relates hq to yo(q), given by 

yo(q) -- Y(Xo(q) ) = 6[Xo(q)]-Y 

= BA-2y/3 qy/3[~]2y/3 

(2-370) 

inasmuch as x = Xo(q) in Eq. (361) yields 

{(hq) + f Cm[Yo(q)] m ~m(hq) = o. 

m=1 

(2-371) 

With the aid of ~' (I)= -I [which is Eq. (307)], we find to first order 

in yo(q), or, qy/3, respectively: 

h q = I + c I Yo (q) ~I (I) + 0(Yo (q))2) 

= I - ~ A -2Y/3 ~I (1)qy/3 + 0(q2y/3) 

(2-372) 

where ci= -I has been used. In conjunction with Eq. (340) this has the 

consequence 

a _BA-2¥/3 )qy/3 . .)o (hq[ ]2/3)o = (i+(7e I ~I (I) +. 

(2-373) 

o _6A-2y/3 ay/3 
= 1 + o ( . T e  1 ¢ 1 ( 1 ) ) _  + . . . .  

so that the order qy/3 in Eq. (367) is 

o _BA-2y/3 2e 2 = oe1( 7e I ~i(I)) (2-374) 

To proceed further, we need to know ~i(I). 

The insertion of Eq. (361) into the differential eauation 

obeyed by fq(X) produces 

d 2 3 t-y 
[-- 2 A /~-~/~] ~1 (t) = o , (2-375) 
dt 2 
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when terms linear in y(x) are identified. This is quite analogous to 

Eq. (319) , so that 

I 9o(t ) - tY[9(t)+ ~t %'(t)] 

is one solution of (375), the one corresponding to fo(X) of 

Wronskian of 91 (t) with 9o(t) is 

, I ,12, t 2 , 
9o(t)~1'(t) - ~o(t)91 (t) = ~-~-;4~o(o+X) Y 

(2-376) 

(320). The 

(2-377) 

which makes use of Eq. (360) ~ and the small t form of 9o(t), 

9o (t) = t ¥ I d 3q 2 d--{(t3% (t)) 

= 13 t-(2-Y) (Y) 2~t[1-c~t°+d2(°~t°)2+'''] (2-378) 

I ~_2 2~ to+Y-3 = - 7( ) o [I-2d 2 ~t°+..] 

Equation (377) now implies 

I ,12, I t '¥ 2] 
~1(t) = 9°(t) [91(I)/~°(I) - ~l-A-;4 cx°(°+Y)fdt' (t ~ )  ' 

(2-379) 

where 91(I) is determined by the t÷o form of 91 (t), statet in Eq. (360). 

In connection with (378) this requires that the square brackets in (379) 

possess the form 

- 3t-(O+Y) [I+ (powers of 0~t°)] 
~o 

t,Y 1 1 ( y )  2 c ~ o  2 
91 (1)/90(I) - 3(°+Y)fdt't [- ~ ~ ]  

I 
~I (I)/9o(I) - ~(o+y)fdt' t -2(O-3) (1+4d2~t°) 

t 

(2-380) 

~O (G+¥) I I(~)2 ~O t 'Y t-2 (O-3) fdt'{[- ~ ~ 1 2 _  
t 

(I+4d20~ t°) }. 
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In the latter version, the second integral is no longer singular at 

t=o, since the integrand has the structure 

{ ... } = a2t ' s [const. + (powers of o t ° )] (2-381) 

which integrates to 

I I 
Idt' { ...} = fdt' { ...} + ~ztT[const.+(powers of at°)] 
t o 

I 

= ;dt' {...} + t -(m+x) (~tm) 2[const.+(powers of at°)] 
o 

The first integral in (380) is 

_ ~(o+¥)[ 1-t7-2° -t 7-° 
7-20 + 4d20 17-o ] 

(2-382) 

(2-383) 

_ ~(i+~d2 o+x a) - 3 t-(o+x) (i+4d2 o+x at 0) 
-V- a-6 y 

The consequence of (380) is therefore 

3 o+¥ 91 (I)/~o(I) + ~-~(I+4d 2 --~--o,) 

I 1,12, t Y 1+4d2at° - --~-3 (O+¥) ] d t {  [ -  ~-A- ;  20° ~lq--T~T] 2 } = 0 
~0 o ~o ~ t °+Y+l 

(2-384) 

With the aid of 9o(I) = -I/3 and, from (310) or (354), 

9 9/2 3 X 
d 2 = = = 12+4o2 o(2o+y) 4 2o+y 

, (2-385) 

this says 

1 (1+3 ~ a )  91(1) = ~6 

1 l+3~t ° 
+ o+x [dt { 

~o o t ~+¥-I 

t Y "1"12"2~0 ~ -~ -~ ] z }  
-[3~x-~; 

(2-386) 

This expresslon does not lend itself to further algebraic simplifica- 

tions. 

The numerical value of 91(I), obtained by a method analo- 
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gous to the one that produced A and or in Eqs. (312) and (313), is 

#1(I) = 0.3216868353717 , (2-387) 

which illustrates once more the high precision of the algorithm. The 

Wronskian (377), at t=1, is employed in finding 

~1'(I) = (4+¥)~i (I) - (~)4 ~o(o+~) (2-388) 

= 0.2869164052321 , 

whereas the differential equation (375) supplies 

~1"(1) = 2Y41'11 ) - y l y + 1 ) 4 1 ( 1  ) 

(2 -389)  

= 0 .002936027410  

The a l g e b r a i c  s t a t e m e n t s  o f  (388) and (389) can be comb ined  i n t o  

4 1 ( 1 )  = 21 )4c~(o+y) + g ~1"(1) , ( 2 -390)  

w h e r e ,  b e c a u s e  o f  t h e  s m a l l n e s s  o f  ~1"(1) ,  t h e  l a t t e r  p a r t  i s  o n l y  a b o u t  

0.15% o f  t h e  sum. I n  c o n j u n c t i o n  w i t h  Eq.  ( 3 6 8 ) ,  t h i s  i m p l i e s  

6 1 A-2,~/3 [SA -2~ /3  41 (1) = 7 el  + g 6 ~1"(1) , (2 -391)  

which we insert into (374) to find 

_ 0+6 I ~1 ''(I) 
e2 14 e1211 .12,~ ] ; (2-392) 

~-6 2 [-Ej ~(o+y) 

here, the ~i"(I) term represents a 0.5% correction to 

0+6 
-~- e12 = 0.671015 , (2-393) e 2 

resulting in 

e 2 = 0.667554 (2-394) 

Naturally, the subsequent coefficients in (338) can be computed the 
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same way. 

The results of this section are summarized in 

-ETF(Z,N) = 0.768745 Z 7/3 

-0. 047310 (Z-N) 7/3 [ I+0. 825908 (I-N/Z) 0. 257334 

+0. 667554 (I-N/Z) 0.514668 

+ ... ] , (2-395) 

which is the weak-ionization analog to the high-ionization result of 

Eq. (289) [and its supplement of Problem 7]. 

One last remark is in order. How could we get around without 

making explicit use of the requirement -Xo(q)f~(Xo(q)) = q ? As applied 

to (361) it reads 

OO 

hq~' (hq) + > Cm[Yo(q)]m[hq~m(hq) - Ym ~m(hq)] 

m=l 

= - [ I(_~A) ]2 h-3 
q 

(2-396) 

Indeed, this together with (371) gives %(q) as a function of yo(q), 

which can be converted into %(q) as a function of q, whereafter Eq. (340) 

identifies el, e2, etc. Fortunately, we came to know the relation bet- 

ween f~(o) and hq in Eq. (356), so that we could avoid the more tedious 

(though, of course, equivalent) procedure based upon Eq.(396). 

Arbitrarily ionized TF atoms. We have spent some time on studying the 

analytic form of such quantities like e(q), Xo(q), and -f~(o) as func- 

tions of q - both for q~1 and for q~o, which are the situations of hi- 

ghly and weakly ionized atoms, respectively. These considerations, how- 

ever, did not tell us how good are few-terms approximations as in Eqs. 

(289) and (395). Let us, therefore, make the comparison with the re- 

sults of numerical integrations of the differential equation obeyed by 

fq(X) for various values of q. 

We present in Table 2 the outcome of such calculations for 

the nineteen q values 0.95,0.90, .... 0.05 , supplemented by what we know 

for q=1 and q=o. The fractional binding energy 
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e(q)/e(o) = ETF(Z,N)/ETF(Z,Z) (2-397) 

is additionally plotted, as a function of q, in Fig.4. We observe that 
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F i g . 2 - 4 .  The f r a c t i o n a l  b ind ing  energy  e(q)/e(o) as a f u n c t i o n  of q. 

removing 30% of the electrons from the neutral atom, reduces the binding 

energy only by I%; a reduction by 10% requires the removal of 65% of the 

electrons. Even when only 5% of the electrons are left, the binding ener- 

gy is still more than 50% of the neutral-atom one. Here is the quanti- 

tative version of the qualitative remark that the innermost electrons 

contribute most to the binding energy, the outermost least. 

From Eq. (286), (241) and Problem 7 we find that, for N<<Z, 

e(q)/e(o) N N 2 
1.489(N/Z)1/3 = I - 0.4236 ~ + 0.0909(~) + ... (2-398) 

The successive approximations that this represents are compared to the 



98 

Table 2-2. TF quantities Xo(q) , 

1-q = 0, 0.05, ..., I. 

-fq'(O), and e(q)/e(o) for N/Z= 

N/Z x O (q) -fq'(O) e (q)/e (o) 

0 0 ~ 0 

0.05 0.416269 3.020996 0.537084 

0.10 0.685790 2.233243 0.662517 

0.15 0.934348 1.952470 0.742539 

0.20 1.179253 1.813524 0.800221 

0.25 1.428919 1.734116 0.844082 

0.30 1.689292 1.684993 0.878380 

0.35 1.965691 1.653119 0.905616 

0.40 2.263681 1.631819 0.927406 

0.45 2.589715 1.617337 0.944875 

0.50 2.951825 1.607410 0,958847 

0.55 3.360561 1.600602 0.969946 

0.60 3.830452 1.595965 0.978668 

0.65 4.382486 1.592853 0.985410 

0.70 5.048683 1.590815 0.990503 

0.75 5.881272 1.589530 0.994227 

0.80 6.973385 1.588763 0.996824 

0.85 8.513784 1.588345 0.998508 

0.90 10.92728 1.588149 0.999475 

0.95 16.10273 1.588081 0.999908 

I ~ B=1.588071 I 

actual values in Fig.2-5. We see that the quadratic approximation repro- 

duces the actual data almost perfectly even for N~Z. [Incidentally, the 

inclusion of the next term, 0.0024369(N/Z) 3,18would make the deviation 

unrecognizable in Fig.5.] 

In contrast, the performance of the weak ionization ex- 

pansion [Eqs. (338), (369), and (394)], 

1-e(q)/e(o) = I + 0.8259 qy/3 + 0.6676 q2y/3 + (2-399) 
0.06154q7/3 .... 

is significantly worse; see Fig.6. ObviouslY, the coefficients in this 

expansions do not get small as rapidly as the ones in (398). One needs 

a few more terms in (399) for a high quality approximation over a large 
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range of q¥/3. At this time, only the numerical value of e 3 = 0.550066 

has been calculated 19, whereas e 4, e 5, ... are not known as yet. This 

value for e 3 leads to the dashed curve in Fig.6. 

Validity of the TF model. The detailed discussion of the TF model, 

which touched upon all its important aspects, has made us familiar with 

the properties of TF atoms. In order to improve the description we must 

now find out what the deficiencies of the model are. 

The approximations that define the model are those which 

brought us from Eq. (40) to Eq. (41 . They are: (i) the (highly) semi- 

classical evaluation of the trace in Eip according to the recipy of Eq. 

(I-43); and (ii) the disregard of electron-electron interactions ex- 

cept for the (direct) electrostatic one (in particular, we did not care 

for the exchange energy). Of the two, the first one is the more serious 

one, because it leads to an incorrect treatment of the most strongly 
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the  corresponding cubic approximation.  

bound electrons, the ones close to the nucleus that contribute most to 

the energy. To make this point, let us recall that the application of 

Eq. (I-43) (i.e., the evaluation of traces of unordered operators by phase 

space integrals) is justified when commutator terms, as they appear in 

the ordering process, are negligible. In the present context this re- 

quires that the commutator of the momentum and the potential, which 

equals i times the gradient of the potential, be "small." Small com- 

pared to what? Physically, this oradient is small if the potential does 

not change significantly over the range important for an electron. Sin- 

ce the quantum standard of length, associated with an individual elec- 

tron, is its deBroglie wave length, l, a small gradient means 

I~ ~ v l  << Ivl <2-4oo) 

Substantial changes in V occur on a scale set by the distance r, so 
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that criterion (400) requires that 

<< r (2-401) 

On the other hand, I is the inverse momentum (we ignore factors of two 

and pi for this kind of reasoning), which in turn is given by the square 

root of the potential, see Eq. (42). In short, we have, as criterion 

for the validity of the TF model, the relation 

r ~ >> I (2-402) 

Upon introducing TF variables, this reads 

Z I/3 Ix f (x) I I/2 >> I (2-403) 
q 

First, we learn here that, for a given x, the TF model is reliable only 

if Z is large enough. Second, there is information about the regions 

where the approximation cannot be trusted. 

At short distances, f (x) practically equals unity, and the q 
left-hand side of (403) is of the order of one, when x ~ Z -2"3, ! or r 

I/Z. Consequently, there is an inner region of strong binding where the 

TF approximation fails. Indeed, the innermost electrons are described 

incorrectly in the TF model. 

Then, near the edge of the atom at X=Xo, fq(X) has the line- 

ar form of Eq. (329). Now the left-hand side of (403) is of the order of 

one, when iX-Xol~Z-2/3/q 2, or Ir-rol%I/(Zq2). Thus we find the outer 

region of weak binding to be also treated inadequately in the TF model. 

The situation is, of course not basically different for neutral atoms, 

although the argument has to be modified. For q=o, the TF function F(x) 

appears in (403). Its large-x form F(x)~I/x 3 implies that the criterion 

is not satisfied, once x is of the order Z I/3," or r~1. 

In Figs.7 and 8 plots of the radial densities 

D(r) = 4~r2n(r) (2-404) 

are used to illustrate these observations concerning the validity of 

the TF model. Please note that the regions of failure shrink with in- 

creasing Z. We conlcude that (in some sense) the TF approximation be- 
20 comes exact for Z+~. 

Nice, but in the real world Z isn't that large, the more so 

Z I/3, which obviously is the relevant parameter. It ranges merely from 
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one to roughly five over the whole Periodic Table. Clearly, modifica- 

tions aimed at improving the TF model are called for. All following 

Chapters are devoted to their discussion. The TF atom is thereby the 

leading approximation, and the supplements to the TF model will all be 

regarded as small corrections. For this reason it was necessary to 

spend so much time with a detailed study of the TF model. 

It is important to appreciate that the density, which was 

used in Figs.7 and 8, is the right quantity to plot for this purpose. 

The TF prediction (51) 

nTF(r) = I [_2(V+~)]3/2 (2-405) 
3~ 2 

I (2Z/r) 3"2-/ for r÷o 
3~ 2 

is clearly very much in error at small distances. Also, for an ion of 
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degree of ionization q, we obtain 

nTF(r) ~ I [2Zq(1_r/ro)]3/2 for r<r O 
3~ 2 

~F(r) = o for r>r ° 

(2-406) 

for the density around the edge of the atom. This is a sharp boundary 

instead of the quantum-mechanically correct smooth transition into the 

classically forbidden domain, where the real density decreases exponen- 

tially. In the situation of neutral atoms, the large-r behavior of the 

density is 

nTF(r) ~ I [ 2 ~ 144 ]3/2 = 243 I ~-- , (2-407) 
3~2 r x 3 8 r 6 

where the large-x form of F(x) is employed. Again, this is not the cor- 

rect exponential dependence on the distance. 

The principal lesson consists in stating that the real den- 
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sity is not of the form 

n = nTF + ( a small correction) (2-408) 

As a consequence, the TF density functional of Eq. (95) cannot be used 

as the starting point when looking for corrections. In contrast, the 

TF potential is very much like the real effective potential, inasmuch 

as it behaves like -Z/r for r÷o and like -(Z-N)/r for r+~, being struc- 

tureless in between. The structure is in the second derivative of the 

potential (related to the density), not in the potential itself. There- 

fore, we must find modifications of the TF potential functional of Eq. 

(45) in order to overcome the insufficiencies of the TF model. If this 

is so, why does the vast majority of people working on TF theory use 

the language of density functionals? As far as I can see, the reasons 

are historical ones. In the original work by Thomas and Fermi 21 the 

principal variable was the density, whereas the effective potential 

played the role of an auxiliary quantity. This remained so over the 

years in basically all presentations of the subject, of which Gomb~s' 

textbook 22 is the most prominent one. Then, in 1964, the socalled Ho- 

henberg-Kohn theorem 23 (of which we shall sketch a proof in the next 

section) triggered the development of a density functional formalism. 

Because of this theorem, density functionals appear to be well foun- 

ded theoretically, in contrast to formulations based upon the concept 

of the effective potential, which is widely regarded as an intuitive 

approach (our introduction certainly is in this spirit) lacking a "ri- 

gorous" theoretical foundation. In the following section, which conti- 

nues the "general formalism" that we left after Eq. (40), we shall see 

that this preconception is wrong. The potential functional is as well 

defined as the density functional, and for the reasons given above it 

is the preferable formulation in atomic physics. 

Density and potential functionals. For a proo± of the aforementioned 

Hohenberg-Kohn theorem (we shall state it below), we return to the ma- 

ny particle Hamilton operator of Eq. (I-7), where we replace the nucleus- 

uy an arbitrary external potential Vext(~), electron potential ~Z / r 

and split Hmp into the kinetic energy operator Hkin, and the interac- 

tion energy operators Hex t and Hee: 

N N N 

= j~1 2 + ~---Vext(rj)+ {~----" I = Hmp '= ½ PJ 0=I j,k=1 rjk 
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= Hki n + Her t + Hee 

(2-409) 

Different ground states I~o > will correspond to differing choices of 

Vex t. In order to simplify the argument, we shall assume that, except 

for the irrelevant possibility of a reorientation of all spins, the 

ground states are unique (a slight, and otherwise innocuous, change of 

the external potential would destroy any degeneracy anyhow). Thus, the 

density in the ground state, 

n(~') : ~ (d~2') (d~3')... (d~N') I<~)~½ ÷' . ÷' ,r 3, .,rNi~o>I 2 

+ ~(d~)(d~)... (d~) [<r~,r',r~ .... rNI~o>I 2 

+ ... (2-410) 

+ f(drl)... (drN_ I) l<r~,r 2 ..... rN_ I ,r I~o>l 2 

Nf ÷, ... ÷, ÷ ÷ . 4, = (dr2) (dr N) I<~'~', -'-2 " 'rN[~o >12 

(the latter equality makes use of the antisymmetry of the wave function, 

and a trace affecting the spin indices only is understood implicitly), 

is a functional of the external potential V 
ext" 

Two different external potentials, Vex t and Vext, will lead 

to two different ground states I~o > and I~o> , since the respective 

SchrSdinger equations are different. (The situation ~ext = Vext + const. 

is not interesting, since we consider only potentials that are 

cally different). The expectation values of H and ~ are minimized 
mp mp 

by I~o > and I~o>, respectively, so that 

<~oIHmpI~o > - <~ol~mpI~o > < <~oIHmp-~mpI~o > (2-411) 

and 

<~olHmpI~o > - <~ol~mpl~o > > <~oIHmp-~mpI~o > , (2-412) 

which are combined into 

<~olHmp-~mpI~o > < <~olHmp-~mpI~o> (2-413) 

Now we insert 
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H -3 mp mp 

and obtain 

N 

= Hext - ~ext = ~--(Vext(~j )- ~ext(~j )) 
j=l 

(2-414) 

~olHmp-~mpl~o > 
N 

= ~(d~)... (d~) (Vex t(~i)- ~ext(rj)) 
j=1 

× ..... 2 

= f(d~') [Vext(~')- ~ext(~')]n(~') , (2-415) 

and likewise for I~o >. The implication of (413) is therefore 

f(d~') [Vext(~')- ~ext(~')][n(~')- ~(~')] < o , (2-416) 

from which we conclude that n ~ n. Different external potentials not 

only produce different ground states but also different ground-state 

densities. Consequently, a given n corresponds to a certain Vex t which 

is uniquely determined by n. In other words: Vex t is a functional of n. 

And since the ground state I~o> is a functional of Vex t, it can be re- 

garded as a functional of n as well. Then the expectation values of 

Hki n and Hee in the ground states are also functionals of the density. 

Here then is the Hohenberg-Kohn theorem: there exist universal (i.e., 

independent of Vex t) functionals of the density Ekin(n) and Eee(n), 

so that the ground-state energy equais 

E(n) = Ekin(n) + /(d~')Vext(~')n(~') + Eee(n) , (2-417) 

where n is the ground-state density. The minimum property of <~IHmpl~ > 

implies that the energy E(n) is minimized by the correct ground-state 
% 

density; trial densities n, which must be subject to the normalization 

S(d~')n~(~ ') = N , (2-418) 

yield larger energies E(~) than the ground-state energy E(n). It is 

useful to include the constraint (418) into the energy functional by 

means of 

E(n,~) = Ekin(n) + f(d~')Vext(~')n(~') + Eee(n)- 
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-~( N - f(d~)n ) , (2-419) 

since this E(n,~) is stationary under arbitrary variations of both the 

density n and the Lagrangian multiplier ~. 

Before proceeding to construct the related potential functi- 

onal, a few remarks are in order. The Hohenberg-Kohn theorem is a very 

general one; in particular, the specific forms of Hki n and Hee never 

enter• The price for the generality is paid in form of a total lack of 

knowledge concerning the structure of the density functionals Ekin(n) 

and E (n). The theorem states no more than their existence. Obvious- 
ee 

ly, the detailed form of these functionals must depend upon the speci- 

fic Hki n and Hee that are investigated [one could, for instance, con- 

sider relativistic corrections to the kinetic energy, or, in applica- 

tions to nuclear physics, reflect upon fermion-fermion interactions 

different from the Coulomb form of (409)]. Also, no technical proce- 

dure is known that would enable us to perform the step from H to E(n). 
mp 

One must rely upon some physical insight, when constructing functionals 

that approximate the actual E(n). 

The kinetic energy in the ground state of H of (409) is 
mp 

the expectation value 

N I 2 

Ekin = <~o[Hkinl~o > = <~oI~Pj {~o > , 
j=1 

(2-420) 

which, in configuration space, appears as 

Eki n = ~N S (d~')f (dry)... (dr~)V'~o (r',r~ .... r N) 

• ~'%(~',~ .... ~I (2-421 

= f(d~'l (d~"1½e (~'-~"1 ~'-~" nlll(~';r"l 

Here, once more, the antisymmetry of the wave function has been used, 

and we have introduced the one-particle density matrix 

n(1)(~';P ') Nf(dr~) ~' * ÷, ~ ÷, ÷, = + (drN)9 O +" +, , • .. (r ,r 2 ..,rN)~o(r',r 2 .... rN) , 

(2-422) 

which is an immediate generalization of (410), so that the density 

itself is the diagonal part of n(1)(~ , + ;r") , 
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n(~') = n (I)(~' ;~') (2- 423) 

Let us now attempt to interpret n(1)(r '.÷" ,r ) as the matrix element of an 

effective density operator, 

_ I p2_V(~ ) _ ~)i~,, > n(1)(~';~ ") = 2<~' lq( ~ (2-424) 

(A more careful discussion hereof will be presented in Chapter Four.) 

The effective potential V(~) that appears here is unspecified at this 

stage, except for remarking that it is a functional of the density, 
÷ 

n(r), because the density matrix on the left-hand side is such a func- 

tional. The factor of two is the spin multiplicity which we now choose 

to make explicit instead of further assuming that a trace on spin indi- 

ces is left implicit. Note that V is determined without the option of 

adding a constant, since Eq. (423) has to hold for the given density. 

The diagonal version of Eq. (424) showed up earlier, in Eq. 

(20). We are clearly back to the picture of particles moving indepen- 

dently in an effective potential V. The notation established then is 

useful here, too. In particular, we introduce the independent particle 

Hamilton operator 

÷ ÷ I p2 V(~) (2-425) H(r,p) = ~ + 

just as in Eq. (3). 

Eki n = f(d~') (d~") [I~,.~,, 5(~'-~")]n (I)(~' ;~") 

= f(d 'l 1½p 2 2 

I 2 
= tr ~p D(-H-~) , 

The kinetic energy of (421) is then rewritten as 

(2-426) 

where we remember that the trace operation includes multiplying by the 

spin factor. The quantity E I of Eq. (7), 

E I = tr(H+~)q(-H-~) (2-427) 

is a functional of V+~, thus a functional of n, as V=V(n). The kinetic 

energy (426) is contained in (427), 

Eki n = E I 

= E I 

- tr (V+~) ~ (-H-~) 

- f (d~')(V(~') +~)n (~') 

(2-428) 
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This we insert into (419) and arrive at 

E(n,~) = E I (V+~) - ](d~') (V(~') - Vext(~'))n(~') 

(2-429) 

+ Eee(n) - ~N 

In the present context, V is still regarded as a functional of n. There- 

fore, (429) is the same functional as in (419), we have done no more 

than reorganize the right-hand side. Consequently, the functional (429) 

is stationary under variations of n and ~ around their correct values, 

just as (419) is stationary. An infinitesimal variation of ~ induces 

a change in E(n,~) given by 

8~E(n,~) = (~E I (V+~) - N)8~ = o ; (2-430) 

it is, indeed, zero for the same reasons that implied Eq. (13). Now con- 

sider a variation of the density: 

6nE(n,~) = ~(d~')SnV(~')n(~') - ~ (d~')6nV(~')n(~') 

- / (d~') (V(~') -Vex t(~'))6n(~') 

+ f (d~')6n(~') Vee(~') 

= ~(d~')[-V(~')+ Vext(r ) +Vee (~')]Sn(~') 

(2-431) 

where Eqs. (14) and (25) have been employed. The stationary property of 

E(n,~) thus implies 

V = Vex t + Vee (2-432) 

In words: the effective potential equals the sum of the external poten- 

tial and the effective interaction potential, Vee , defined by Eq.(25), 

(dr' + 6nEee(n) = f ÷ )Sn(r,)Vee(~, ) (2-433) 

Note in particular, that V is always a local (i.e., momentum indepen- 

dent) potential. 

So far, V has been regarded as a functional of the density. 

Because of the circumstance that the contributions in (431), that ori- 
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ginate in variations of V, take care of themselves, we can equally well 

treat V as an independent variable. The energy functional 

E(V,n,() = E I (V+~) - f(d~')(V-Vext)n + Eee(n) - (N (2-434) 

is obviously stationary under independent infinitesimal variations of 

V,n, and (. If we do not want to have both V and n as independent quan- 

tities, we have the option of eliminating one of the two. The step from 

(434) back to (419) is done by first solving Eq. (20) for V, thereby 

expressing the potential in terms of the density, and then using this 

V(n) in (434). Likewise, to obtain a functional of the potential alone, 

one has to use Eq. (432), in which V is a functional of the density, 
ee 

to express n as a functional of V. This n(V) then eliminates the den- 

sity from (434) leaving us with a potential functional E(V,C). 

Let us illustrate these ideas with the respective TF func- 

tionals. Starting from 

ETF(V,n,() = f(d~) (- I ) [_2 (V+() ] 5/2 
15~ 2 

Z 
f (d~) (V+ ~) n 

(2-435) 

(N , 

÷ 

I ÷ ÷ n(r)n(~') 
+ ~ f (dr) (dr') I ~-~' I 

where Vex t is now the potential energy of an electron with the nucleus, 

-Z/r, we get the density funcitonal of Eq. (95), after first inverting 

[Eq.(51)] 

I 3/2 
n =--[-2(V+()] (2-436) 

3~ 2 

to 

_ I V = ~(3~2n) 2/3 - ( , (2-437) 

which then allows to rewrite the first and second term in 

dingly. On the other hand, if 

v z,[ ÷) = - -- (dr' n(r') 
÷ ÷ 

r I r-r' I 

is solved for n, 

(435) accor- 

(2-438) 

1 V 2 (V+ Z n = - ~ ~) (2-439) 
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(this is, of course, Poisson's equation), we can eliminate n from the 

second and third term in (435) and are led to the TF potential functio- 

nal of Eq. (45). Of course, within the framework of the TF model, the 

three functionals E(V,n,~), E(n,~), and E(V,~) are perfectly equiva- 

lent, but I repeat: as a basis for improvements over the TF approxima- 

tion, the potential functional is the preferable one. 

We have investigated earlier the scaling properties of the 

TF model. Let us now see, what one can state about the behavior of 

the exact density functionals Ekin(n) and Eee(n) under scale transfor- 

mations of the density, 

n(~')+n (~') : b3 n(~') (2-440) 

The TF approximations to Eki n and Eee 

intuitively expect: 

scale in the manner that one would 

(&in(n))TF = f (d~') 1 (3~2n(~,))5/3 
I 0~ 2 

-3 f(d~' ) I o ÷ ÷ ~ (3~b3n (~r') ) 5/3 
I 0~ 2 

= 2z (Eki n (n))TF ' 

and likewise 

I (d~" n (~') n (~") 
(Eee(n.))TF = 2 ] (d~') ) I F'-~''I 

+ a[Eee(n)]TF 

For the exact functionals, the equations 

Eki n(n ) = ~2 Ekin(n) 

and 

Eee(n ) = # Eee(n) 

do not hold, however; even their combination 

(2-441) 

(2-442) 

(2-443) 

(2-444) 

Ekin(n ) + Eee(n ) = ~2 Ekin(n ) + ~ Eee(n) (2-445) 
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is only true if ~=1+e with an infinitesimal E. This surprising obser- 

vation has been made only recently, by Levy and Perdew. 24 Please note 

that the statement (445) is, indeed, only needed for such ~1, in or- 

der to derive the virial theorem 

2 Ekin(n) = - Eee(n) + f(d~')n(~')~'.~' Vext(~') (2-446) 

from the minimum property of the density functional (417). 

As a first step towards proving these remarks about Eqs. (443) 

through (445), we recall that to any given density there correspond 

uniquely a certain external potential and a certain ground state. Let 

us keep the notation Vex t and 14o> for the ones related to the actual 

ground-state density n, and write Vext ~ and I~> for the ones that go 

with the scaled density n . Thus I~o~> obeys 

(Hkin + H ~ext + Hee) I~o ~> = Eo~ I~o ~> , (2-447) 

where E ~ is the ground-state energy for n . Clearly, if we transform 
o 

I~o > according to 

+, . + ,  3 ~ / 2  ÷ . .  ~ 1 ~ o  > , <r I .... rNl~o > ÷ <~r1' ,. , i2-448) 

then the density is scaled as in Eq. (440). Inasmuch as 

÷ +! + ÷ 
3N/2 <~r1,, .... ~rN[ = <r1' , .... r~IU(~ ) , (2-449) 

where the unitary operator U(~) is given by 

I N ÷ + ÷ + 
U(p) = exp { i ~---(rj.pj+pj.rj) 

j=1 

logp } , (2-450) 

we can read (448) as 

l~o> ÷ u(~)I~o> 

The point is that this scaled 

(2-451) 

I~o> is not equal to I~> . This emerges 

from considering the Schr~dinger equation obeyed by U(~) I~o>, which is 

immediately obtained from the one satisfied by I~o >. We have 

U(2) (Hki n + Hex t + Hee) U -I (~) U(2)[~o > = EoU(~)I~o>. (2-452) 
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The action of U upon ~j and pj is simply 

u(~) ~ u -I(I~) = ~ ~j 
] 

+ U-I I + U(~) pj (~) = ~ pj , 

so that 

u -I =! 
U(B) Hki n (~) p2 Hkin ' 

U(~) H U-I (~) = I-- H , 
ee ~ ee 

and 
N 

U(~) Hex t U "I (~) = > Vext(B~ j) 
j=1 

(2-453) 

(2-454) 

(2-455) 

Consequently, 

(Hki n + ~ZU(B)HextU-I (B) + ~Hee)U(B)14o> = B2EoU(~)I~o > , 

(2-456) 

which, in view of the factor B multiplying Hee , is not of the form re- 

quired for I~ > in Eq. (447). Thus, indeed 

u(~)I%> ~ I% ~> , (2-457) 

for ~I. Nevertheless, l~2>v and U(~) I~o> are not unrelated. In parti- 

cular, they give rise to the same density, n (r), when inserted into 

(410). This implies the equality 

<~2 IH ~ 1%~> = <~ I u -I(~) ~ ~ u(~)1%> (2-458) ext o ext ' 

and for the same reason 

U-1 <~o [ Hext I~o> = <~o ~ I U(~) Hext (~) [~o~> (2-459) 

We are now prepared to employ the minimum property of the expectation 

value of the Hamilton operator of Eq. (447) in the form 

<~O~ I (Hkin + H~ext + Hee) I~o ~> = < 
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<~o I U-I(~)(Hkin+He~xt+Hee)U(~) ~o > , (2-460) 

which, as a consequence of Eqs. (454) and (458), says 

Ekin(n ) + Eee(n ) =< ~2 Ekin(n) + ~ Eee(n) (2-461) 

The equal sign holds only for ~=I, in the first place. Since the right 

hand side always exceeds the left hand one for ~I, however, the two 

sides must agree up to first order in ~=~-I, at least, so that the 

equal sign actually applies to ~=I+~ with an infinitesimal ~. This is 

the statement we made at Eq. (445). Another way of expressing the same 

fact is 

d (n) + (n)] 2 (n) + (n) (2-462) d-~[Ekin Eee I = Ekin Eee 
~=I 

We can also exploit the minimum property of the expectation value of 

the Hamilton operator of Eq. (456). Here we have 

~2 -1 
<~o I U-I (~) (Hkin + U(~)Hex t U (~) + ~Hee)U(~)J~o > 

(2-463) 

<~o ~ I (Hkin + ~2U(~)Hex t U -I (~)+~Hee) I~o ~ > , 

or with (454) and (459), 

~2 Ekin(n) + ~2 Eee(n) _~ Eki n(n ) + ~ Eee(n ) , 

where, again, the equal sign is true for all ~'s that differ from uni- 

ty at most infinitesimally. 

Equations (461) and (464) can be combined into two state- 

ments about Eki n and Eee individually, namely 

(~-I) [Eee(n ~) - ~ Eee(n)] ~ o 

and 

2 = 
(~-I) [Eki n(n ) - Eki n(n)] < o 

(2-464) 

It seems natural to assume that the left-hand sides in (465) and (466) 

are of second order in ~=~-I for small g. If this were true, these equa- 

tions would mean that 

(2-466) 

(2-465) 
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d (n) I - E (n) > o (2-467) 
d-~ Eee ee 

~=I 

and 

d Ekin(n ) I - 2 Ekin(n) < o (2-468) db ~=I 

As a matter of fact, we shall see below that equal signs have to be 

written in (467) and (468) instead of ">" and "<". Consequently, the 

left-hand sides in (465) and (466) are, at least, of order g~, the re- 

spective square brackets of order g3. Therefore, also in Eq. (461) the 

equality sign holds up to order g3, at least. These remarks go beyond 

the results of Ref.24, where Levy and Perdew stopped at stating (465) 

and (466). 

For a proof of what has just been said, we have to turn to 

the potential functional EI(V+~). In Eq. (216) we found that the TF ap- 

proximation to E I responds like 

(El (V+~) ]T F + ~ 5v/2-3 [El (V+~.) ]TF , (2-469) 

when V and ~ are scaled according to Eqs. (211) and (214), 

V(r) ÷ bY V(~r) , ~ ÷ ~ (2-470) 

Although the exact El(V+{) does not behave like (469) for arbitrary v, 

it does so for v=2: 

for 

E I (V+%) ÷ 2 El (V+{) (2-471) 

÷ ÷ 2 ÷ V(r) ÷ V (r) = V(br) 

(2-472) 

We demonstrate this by first observing that 

I p2 2 ÷ Z 
n(- [ - ~ V(~r) - ~ {) 

= - 

I p2 ÷ U-I = U(~) n(- ~ - V(r) - ~) (~) 

(2-473) 
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where U(~) now denotes the one-particle version of 

U(~) = exp {i [(r.p + p.r) log ~} 

This is used in 

El(V+{) 

(450) , 

= tr(1 p2+ V(~)+~)~(- 1 p2_ V(~)-~) 

I p2 + I p2 2 ÷ 2 ÷ tr(~ + ~2V(~r)+~2~)q(- [ -~ V(~r)-~ ~) 

I v(~)+~) (- yp -v(~)-~) (~) = ~2tr U(~) (~p2+ H I 2 U-1 

(2-474) 

= ~2 EI(V+~ ) , (2-475) 

or 

EI(V ~ + ~2~) = ~2 EI(V+~ ) , (2-476) 

indeed. [The invariance of the trace under cyclic permutations has been 

employed in the last step of (475).] 

Before proceeding, it is instructive to show where the at- 

tempt of repeating the argument for v~2 fails. The analog of (473) would 

require an operator (not necessarily a unitary one), U (~), such that 

U~I ÷ U (~) ~ (~) = ~r , (2-477) 

÷ U~I -~/2 ÷ U(~) p (~) = p 

Unfortunately, there is no such operator, except for v=2, as emerges 

from considering the commutator of the transformed quantities: 

,-v12_ ÷ -I ++ I-v12 r ÷] [~ p]U = i I (2-478) i~ += [~ p : U , 

This is a contradiction, unless v=2. 

In the section about the scaling properties of the TF model 

we remarked that a scaling transformation of the effective potential 

V(r) must be accompanied by a corresponding transformation of the ex- 

ternal potential Vext(r). In that earlier context, this was achieved 

by changing Z appropriately [Eq. (213)], because the only Vex t conside- 

red then was the Coulomb potential -Z/r. In the more general present 

discussion, we preserve the structure V-Vex t by scaling Vex t like V in 

Eq.(473), 

Vext(~ ) ÷ Vext,~(~ ) = ~2 Vext(~) (2-479) 

The density is, of course, scaled as in (440). Under these simultane- 
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ous transformations of V,n,~, and Vex t, the potential-density functio- 

nal of (434) behaves as described by 

E(V,n,~) ÷ E (V,n,~) = E(V ,n ,~2~) 

= ~2{EI(V+ ~) - ~(d~')(V(~') -Vext(~'))n(~')-~N} 

+ Eee(n ) (2-480) 

Since E(V,n,~) is stationary under infinitesimal variations of V,n, and 

~, all first order changes must originate in the scaling of Vex t. [The 

same argument was also applied to ETF(2) of Eq. (219).] Thus, 

d-~d E (V,n,~) i = ](d~')n(~') ~ Vext, ~(~')I , (2-481) 
~=I ~=I 

or with (479) , 

d 
d-~ E2 (v'n'~) I 

~=I 
= (dr')n(~') [2 Vext(r')+r'-V'Vex t (~')]. 

(2-482) 

On the other hand, Eq. (480) implies 

d 
d-~ E2 (v'n'~)I = 2 {E I 

~=1 
(V+~)- f (dr'÷) (V(~')-Vex t(~')) 

× n(~')-~N}+ ~ Eee(n ) 1 
~=I 

(2-483) 

The equivalence of these two right-hand sides, combined with the virial 

theorem (446), yields 

d Ee e(n ) I - E (n) 2 (n)-2{E 1 (V+~)-f (dr')Vn-~N} . d-~ ee = Ekin 2=I 
(2-484) 

The last step consists of recognizing that for the actual V,n, and ~, 

the contents of the curly brackets equals the kinetic energy. This emer- 

ges from Eq. (428). Consequently, the right-hand side is zero. We arrive 
at 

d (n)[ = E (n) (2-485) d-~ Eee 2 ~=I ee ' 
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and as a consequence of (462), 

d (n) I = 2 (n) d-~ Ekin Ekin 
~=I 

(2-486) 

Indeed, the statements following Eq. (468) are justified. 

Please be aware of the following mental trap. If the density 

is eliminated from E(V,n,~), so that we are left with the potential 

functional E(V,~), one could think that the resulting kinetic energy, 

Ekin(V,~) = E I (V+~) - f (d~')V(~')n(~') - ~N (2-487) 

scales according to 

Ekin(V ,~2~) = ~2 Ekin(V,~) , (2-488) 

inasmuch as [Eq. (14)] 

6 V EI(V+~) = f(d~')6V(~')n(~') , (2-489) 

together with (471), implies 

n(~') * ~3 n(~') , (2-490) 

if V and ~ are scaled as in (472). This is not so, however, because the 

potential functional that is to be inserted into Eq. (487) for n(r') is 

not the one obtained from (489), but the one that emerges from 

6 n Eee(n) = f(d~')6n(~') [V(~') - Vex t(~')] (2-491) 

[Eqs. (432) and (433)]. In the TF approximation, for instance, this is 

the Poisson equation 

I V , 2  ÷ + 
n ( ~ ' )  = - ~ ( V ( r ' )  - Vext(r '))  (2-492) 

in which the scaling of V and Vex t [Eqs. (472) and (479)] produces 

n(r') ÷ n(~r' ) , (2-493) 

different from the desired form of (490). Therefore, Eq. (488) is not 

true, not even for ~'s that differ from unity by an infinitesimal amount. 
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The kinetic energy by itself is not a central quantity in the potential 

functional formalism. What we have just seen is an illustration of this 

remark. 

Relation between the TF approximation and Hartree's method. Somewhere 

at the beginning of Chapter One there is the promise to discuss the con- 

nection between TF theory and HF theory "to some extent in Chapter Two." 

This time has finally come. 

Hartree's 25 basic idea consists in approximating the ground- 

state wave-function by a product in which each factor refers to just 

one of the electrons: 

<~I' ' '""" ' ,r 2 ,r N i~o > ~ ~i(~i)~2(~2) ..~N(~N) (2-494) 

The ~j's are supposed to be orthonormal, 

f(d~') ~j*(r') ~k(~') = 5jk , (2-495) 

so that the wave function (494) is properly normalized to unity. The 

requirement of antisymmetry is not satisfied by (494). Consequently, 

exchange effects are not treated correctly. In the present context, 

where we want to make contact with the original TF model, neglecting ex- 

change is consistent. We are actually talking about Hartree's approxi- 

mation, not about the Hartree-Fock model, which does include exchange. 

This restriction is not essential for the discussion. The argument can 

be repeated for a comparison of HF theory with the proper extension of 

the TF model that includes the exchange interaction, which will be de- 

rived in Chapter Four. At this moment we are content with the simple 

TF model and Hartree's ansatz (494). 

With Eq. (494) we obtain approximations to the expectation 

values of the three parts of the many-particle Hamilton operator (409). 

These are given by 

and 

Eki n = <% IHkin I~ O> 

N 
I , .~, 

~--- f (d~') ~ ~'~j (~') ,j 

j=1 

(2-496) 

Eext = <~olHextl ~o > 
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~"" f (d~') 
j=1 

~j*(5') Vex t(~') 0j (~') 
(2-497) 

as well as 

Eee = <0o I Hee I ~o > 

N N 
. +  -~. 

I r ' - r "  I j=1 k=1 
k~j 

--0k(~")] 

x 0j (5') (2-498) 

Since the description does not pay attention to the exchange energy, we 

do not have to be pedantic either when it comes to excluding the self- 

energy. In other words: it is perfectly consistent to include the k=j 

term in Eq. (498). The approximation to the ground-state energy is then 

E = <0olHmpl~o > ~ EHartre e 

N 
~(d~' I_+, ,(~,).V 0j (~' (~' (~')0j (r') = ){2 V ~j )+0j* )Vex t 
j=1 

N 

+ ~0jl *(~') [ ~--~(d~")0k*(~") I F'-~"II O k(~'')]0j (~')} 
k=1 

(2-499) 

The as yet undetermined 0j's are now chosen such that EHartre e is sta- 

tionary under infinitesimal variations of them. Thus 

N , I , ÷, N + ÷ 

~f(d~')60j (~') {- ~V 2+Vext(r ) +~f(dr")0k*(r")-- 
9=I k=1 E~,+I _r II 

× ~k(~")}0j(~') = o (2-500) 

The variations 6~j* are not arbitrary but subject to 

f(d~')8~j*(~') ~k(~') = o , (2-501) 
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which is a consequence of the orthonormalization (495). Therefore, Eq. 

(500) implies 

N (~,, I 1 ,2 + (~ ' )  +~---~ ( d ~ " ) , k *  ) *k  (~'') }~ j  (~ ' )  
{- gV Vex t k=1 l~'-~"I ¢2-502) 

N 

= > ejl ~l (~') 
/=I 

where the constants sjl are the Lagrange mulitpliers of the constraints 

(495). The single-particle wave-functions ~j and the sjl are to be de- 

termined simultaneously from Eqs. (502) and (495). 

The hermitian property of the differential operator {...} in 

(502) is employed in demonstrating that the matrix (sj/) is hermitian: 

Ejl = f(d~') ~/*(~'){...} ~j(~') 

= ~(d~') ~j(~'){...} ~l*(~') = e~j 

(2-503) 

Another observation is the nonuniqueness of the solution to (502) and 

(495). If ~j and Sjl are one solution, then 

N 
~j = ~-- uj/ ~£ (2-504) 

/=I 

and N 
= uL 

k,m=l 

(2-505) 

is another one, whereby (uj/) is any unitary matrix, 

N 

) Umk = 6jk 
m=l 

(2-506) 

It is essential here that the density, that appears in (502), is in- 

variant under such a unitary transformation: 

N 
~*(~') ~k (r') (r') = ~k 

k=1 
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N 

=> ~k*(~') ~z(~'l = n(~') (2-5071 
k=1 

[The approximate wave-function (494) is obviously not invariant under 

(504). This is nothing to worry about, because as soon as (494) is anti- 

symmetrized, the effect of (504) reduces to the mulitplication by a 

phase-factor.] 

Since (s41)j is hermitian, we can choose (U4/)j such that 

(~j/) is diagonal, 

sj/ = Ej 6j/ (2-508) 

Then Eq. (502) is Schr~dinger's equation in appearance, 

~ ~ (~') (2-509) {_ ?,2 + V(~,)}~3(~, ) = ej ~j 

where the effective single-particle potential V is 

N 
* I 

V(~') = Vext(~') + T--f(d3")~k (3")13'-3"I ~k(r") ' (2-510) 
k=l 

which is equivalent to 

N 

> ~k* (3') ~k (3') 
k=1 

4rcI V'2(V(3')-Vext(3') ) (2-511) 

Let us now look at the Hartree energy. It is 

N 
• I ,2 (3') 

EHartree = j~=1 f (d3')~j* (~') {- ~V +Vex t 

I (V(~') - (3')) }~j (~') + ~ Vext 

N N 
= ~](d3')~j (3') 7-- ejl ~/(r ) 

j =I /=I 
(2-512) 

-lf (d3') (V(~') -Vex t 
N ¸ 

(3'))Z~j*(3')~j (3') 

j=l 

where both (502) and (510) have been used. With the aid of the ortho- 
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normality of the ~j's and with Eq. (511) we obtain 

N 

EHartree = ~=I ejj ~ f(d~')[~' (V(~') -Vex t (~,))]2 . (2-513) 

This will look even more like the TF potential functional after we use 

N N N 

> ejj = gjj = ej , 

j =I j =I j =I 

(2-514) 

% 

in conjunction with the fact that the E. are the N smallest eigenvalues 
3 

of the single-particle Hamilton operator 

H = ~I p2 + V(~) , (2-515) 

to write 

N 
ejj = tr H q(-H-~) 

j=1 

, (2-516) 

where, of course, ~ is such that the count of occupied states equals 

the number of electrons: 

N = tr q(-H-~) (2-517) 

If we combine (516) and (517) in the now familiar way, 

N 

= tr(H+~)q(-H-~) - ~N ejj 

3=I 

= E I (V+~) - ~N , (2-518) 

then 

EHartre e = E 1 (V+~) - 8~ f (d~') [~' (V(~') -Vex t(~'))]2- ~N. 

(2-519) 

It becomes clear now what the fundamental difference is bet- 

ween the TF approach and Hartree's method. The latter asks: what are 

the optimal single-particle wave functions to be used in (494)? 
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26 
The answer is given by the Hartree equations (502). But suppose we 

do not care that much for the ~i's. Then we can equally well put the 

question: what is the best effective potential in (519)? We reply imme- 

diately: the TF potential, if EI(V+~) is evaluated in the semiclassi- 

cal limit. Does this mean that the TF model is an approximation to 

Hartree's description? No, it is rather the other way round: the Har- 

tree picture contains more detail than it should. In view of all the 

approximations made before arriving at (519), there is absolutely no 

point in being extremely precise when evaluating EI(V+~). 

Summing up: the TF model and Hartree's method are really 

two independent, though related, approaches. None is a priori the bet- 

ter or worse one. Whereas I do not want to go as far as Lieb does ["... 

TF theory is well defined.(...) - a state of affairs in marked con- 

trast to that of HF theory."27], I do have the impression that in apply- 

ing TF methods one is more conscious about the physical approximations 

that enter the development. 

In one respect the Hartree detour over the single-particle 

wave functions is superior to the TF phase-space integral: the Schr~din- 

ger equation (509) treats the strongly bound electrons correctly with- 

out any further ado. We shall see in the next Chapter how the TF model 

can be modified, in a simple way, in order to handle these innermost 

electrons properly. With this improvement the TF description is in no 

way inferior to Hartree's. 

Please do not miss how naturally we have been led to a poten- 

tial functional, Eq. (519), not to a density functional. Here is, once 

more, support for our view that TF theory is best thought of as formu- 

lated in terms of the effective potential. Then the density is not a 

fundamental but a derived quantity. 

Problems 

2-I. For the generalization of the independent-particle Hamilton ope- 

rator of Eq. (3) to 

I )2 v(~) , H =:(~- ~(~) + 

e 2 
where ~ = ~-~ = 1/137.036... is Sommerfeld's fine structure constant 

and A is an effective vector potential (in atomic units), show that the 

analogs of (14) and (20) are 
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~I EIP = ~I El 
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5(~')=2<r'] [(p-~A)~(-H-E)+~(-H-E) (p-~A)] I~'> . 

Then generalize Eq. (25) to read 

6Eee = f (d~') [6n(~')Vee(~') - 0.63.Aee] 

Next conclude that, instead of 

is now 

since 

E = Eip - S (d~')Vee 

= Aext + Aee ' 

(30), the stationary energy expression 

(~')n(~')+~S ÷ ) ee(r' ee ' (dr' A ÷ ).j(r') + E 

with a given external vector potential Aex t. 

of E I depend on A? 

How does the TF version 

< E = S ( d S ) [ p ( 5 ) ¢ ( 5 ) -  1 ÷ + = ~-~ (V¢ (r)) 21 , 

where the equal sign holds to first order in 6~ and 6~. Conclude, that 

the self force vanishes [Eq. (86)], and also the self torque, 

f CdS) ~ (5) 5 × (-~ (5)) = o 

2-3. Write a computer program for the TF function F(x) as outlined 

around Eq.(200). Use it to confirm 

Use (dS) = (dS') and (~(5,))2 = (~,~(~,))2 to write the primed 

energy as 

E' fCd~'l[pG' ÷ ÷ ÷' I ÷ = +6e+6exr )~(~')_~(?,~(~,))2] 

5 = 5' + 6~ + 6~×r' 

2-2. Another application of the stationary property of the electrosta- 

tic potential functional of Eq. (78). Instead of ~(~), insert ~(~'), 

w h e r e  r '  i s  r e l a t e d  t o  r t h r o u g h  a n  i n f i n i t e s i m a l  t r a n s l a t i o n  b y  6~ 

and an infinitesimal rotation around 6~, 
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~dx F(x) = 1.80006394 
O 

co 

fdx[F(x)] 2 = 0.61543464 , 
O 

fdx[-F ' (x)] 3 = 0.35333456 , 
O 

co 

~dx/~ ' -~ - / -x  = 3 .915933  
O 

2-4. With the computer program of Problem 3 check that the maximum of 

xF(x) occurs at x=2.104025280, where F(x)=0.2311514708. 

2-5. This maximum of xF(x) is relatively broad, so that 

F" (x)/[F(x)] z = [x F(x)]-I/2 ~ constant 

An approximation to F (x) is therefore represented by the solution of 

~"(x) = =~6[~(x)]2 , x = const. , ~2 

subject to F(o)=1 , ~(~)=o , and (to fix the value of ~) 

fdx x 1/2[~(x)]3/2 = I 

O 

F i n d  t h i s  ~ ( x ) .  28 How good i s  t h i s  a p p r o x i m a t i o n  when i t  i s  emp loyed  

in calculating the numbers of Problems 3 and 4? 

2-6. Insert %1(o) of Eq. (283) into Eq. (274) to find ~i'(o) and ~2' (o) 

as the coefficients in 

~l'(o) = - I + #i'(o) I + ~2'(o) 12 + ... 

Compare with Eqs. (280) and (281). 

2-7. Find ~2(t) from Eq. (278); then evaluate ~3(o). Use it to show that 



127 

(i) in Eq. (285) : 

0((N/Z) z) = (12--- 
21067 
60~2 

524288) (;)2+ 0 ((N/Z) 3) + ~ 

(ii) in Eqs. (286) and (289): 

2 223 262144, N z 3) 
0((N/Z)2) = (~+ 30~2 ~ J  ( ) +0((N/Z) 

(iii) in Eq. (287) : 

22 2883584) N 2 ~) 0((N/Z)2 ) = ( 19019+ ( ) + 0((N/Z) 
90~ 2 2025~ 4 

2-8. Use the recurrence relation (278) to show that 

el(t) ~ (l-t) (51+2)/2 for t ~ I 

Look back at Eq. (311) and notice that, indeed, the first occurence of 

A is in the (1-t) 7/2-term, and of A 2 in the (1-t) 6-term. 

2-9. Show that, for I>A , el(t) has a pole, at t=tl>o, of the form 

400 tl 
~(t) ~ 12 (t-tl) 2 for t ~ t I 

AS I+%ti÷I , SO that ¢~(t)~l[~(t)] 3/2 for t1<t ~ I. Use this to de- 

monstrate that 

1-tl-~ 7 d~ _ (~u9) 2/5 

o /I 4 .5/2 

for I>> A 

2-10. Upper and lower bounds to A -2"3 ! can be obtained from Eq. (301) when 

it is combined with the inequalities of (242). A suitable trial function 

f(x) is given by 

iF(x) for o< x=1< x I 
f (x) 

I 

X~oo (x2-x) for x I < x , 

where q is fixed, x ° is arbitrary, and x I and x 2 are such that f(x) and 

its derivative are continuous. For q~>o, x I is sufficiently large to jus- 
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tify the use of the asymptotic form (179) 

implies 

4 432 
X 2 = ~X I and x14 = q-7~ O 

Then derive 

co 

2 ~dx If(x)]5/2 
5 I/2 

O x 

2 2 (12) 5 
= B 

7 35 7 
x I 

and 

1 ~dx[f' (x) + ]2 = B 56 
20 x17 

Putting everything together you should have 

for F(X~Xl). Show that this 

+ 2(X_~o)5/2 (4)3.~13,5~-9/3,~; 

Xo +7 ( )2 xl 

(12) s 30 8~ + 3 Xo 
- [7 4x~I ] x17 3/3 

3 3 A-2/3 q7/3 
> 7B- 7 , for q÷o . 

It is then useful to switch from x ° to a new independent parameter, I, 

by setting XoE12/3q -I/3. Check that then xi=(432)I/4 1 I/6 q-I/3, so 

that, for all I>o, 

A-2/3 7 f2/3 8 (56~_ i-7/6 
> ~ ~ 3/3 30) 

Optimize I and find the lower bound on A -2/3 of (303). Show that, for 

this optimal I, the ratio x2/x ° does not equal unity. Consequently, the 

trial f(x) does not change its sign at X=Xo, as the actual f(x) does. 

Impose x2=x ° and demonstrate that a lower bound on A -2/3 emerges, which 

is worse than the previous one. 

For an upper bound on A -2/3 use the trial function 

~F ' (x) + q/x O 

g(x) = ~-q/Xo~1-x/x 2) 

for o~x~x I 

for Xl~X~X 2 

for x2~x 

Make sure that g is continuous and obeys Eq. (243). Then evaluate the g- 

functional of (242). You should get 
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6t ]7/3 I )I/3[ I(~ 
A-2/3 < I[ (5t'1)(3-t) (I - ~ t ~ --- 16 + 191t - 74t 2 ) 

+ _74tl/3(1 _ 1  t ) 1 / 3  (1 - t  4/3 )] , 

I 
where the range of t=xl/x 2 is ~ < t ~ 1. Find (numerically) 

value for t and thus the upper bound on A -2/3 of (303). 

into 

(t) = ~ f (t x o(q)) I 
q q q÷o 

2-11. Insert Eq. (316) 

and derive (352). 

the optimal 

2-12. Derive Eq. (462) directly from Eqs. (433), (432), and (428). 

2-13. Because of the homogeneity and isotropy of the physical three- 

dimensional space, the density functionals Ekin(n) and Eee(n), which 

appear in Eq. (417), have the same numerical value for n(~') and the in- 

finitesimally translated and rotated n(r') = n(~' + 6g + 6~×r'). Combine 

this with the stationary property of (417) to show that there is no net 

force, 

(dr' (r') (-V Vex t [ )n IF')) --o 

and no net torque, 

f (d~')n(~')~' × (-~'V (~')) =o ext 

exerted on the system by the external potential. Are you reminded of 

Problem 2? 

2-14. Show that the density functional of the kinetic energy is given 

by 

1 (~n)Z/n , Eki n(n) = f (d~) 

if there is only one electron. This does scale like (443). Why is there 

no contradiction to the general statement that Eki n does not obey (443)? 


