Chapter Two

THoMAS - FERMI MODEL

The crude models of the preceding Chapter taught us that it
may be useful to treat the electrons in an atom {(or ion) as if they
were moving independently in an effective potential. We shall now take
this idea very seriously, without, however, making explicit assumptions
about the effective potential, V. It is clear that V possesses the ge-

neral structure1'2
vV = - % + [electron-electron part] , (2-1)

and the challenge consists in finding the electron-electron part in a
consistent way. The fundamental tool for achieving this aim is the elec-

trostatic Poisson equation
- Llwyry -on (2-2)

which relates the electron density, n, to the electrostatic potential,

\ due to the electrons. As soon as we shall have managed to express

es’
both ves and n in terms of V, Eqg.(2) will determine the effective poten-

tial.

General formalism. The dynamics of the electrons is controlled by the

independent-particle Hamilton operator
H = %pz + V(¥) . (2-3)

The electrons fill the eigenstates of H successively in such a way that
all states with binding energy larcer than a certain value, z, are occu-
pied, whereas those with less binding energy are not. The parameter 7 is
thus determined by the requirement that the count of occupied states
equals the number of electrons N. Just as in Eg. (1-27) this is expressed
as

N = tr n(-H-7) , (2-4)

where we remember that the spin mulitplicity of two is included in the
trace.
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The sum of independent-particle energies is, analogously,

EIP = tr Hn(-H-7) . (2-5)
The combination H+g, that appears in the argument of Heaviside's step
function n, invites rewriting EIP as

Erp = tr (H+g)n(-H-z) - gtr n (-H-g) , (2-6)

which, with the aid of (4) and the definition

E, = tr (E+g)n(-H-1) (2-7)

reads
E =R, - ¢N . (2-8)

In this eguation, N is the given number of electrons, and both EIP and

E1 are function(al)s of the effective potential V and the minimum bin-
ding energy .
Let us make contact with Egs. (1-27) and (1-32), in that we

write

- fag' Ny, (2-9)
4

E, (2)
where
N(z') = tr n(-E-¢") (2-10)}

is the count of states with binding energy exceeding ¢'. Egquation (4)

appears now as
N = N(z) . (2-11)

Equation (9) can be equivalently presented as a differential statement.
If r deviates from its correct value {which is determined by Eg.(11)]

by the amount &z, then E1 is off by

BE1

= == 8f = &z = N& . 2-12
6€E1 z C N(z)é¢ 4 ( )

This has the important implication that E of Eg.(8) is stationary un-

Ip
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der variations of ¢ (around its correct value, of course):

6C EIP = 6C E1 - N6z = o . (2-13)

In addition to g, E1 and EIP also depend on V. The local response
of both energies to variations of the potential exhibits the electron

density n:

& =6 = {(@r 7 T 2-14
v Erp = Oy By = f( r')&év(r"') nir') . ( )
Although this is intuitively obvious, let us supply a formal proof. The
first equality follows immediately from (8), because N is the given num-
ber of electrons and ¢ is a parameter that we regard as independent of

V. For the second equality, we need the following identity:
6H tr £(B) = tr 8H £'(H) , (2-15)

which expresses the change in the trace of a function of an operator H
as the trace of the product of the change in the operator, 8H, and the
derivative of that function. [Note that (15) is not true without the
trace operation, unless 5H commutes with H:

SH f(H) = 68 £'(H) only if [8H,H] = o. (2-16)

Under the trace the possible noncommutativity does not matter.] In our

application,
£(®) = (E+g)n(-H-g) ,
(2-17)
£'(H) = n(-H-7)
[compare with Eg. (1-29)], and 8H = &V. Accordingly,
6y By = tr &V n(-H-g)
(2-18)
=2 [(dx") <2 |6V(DIn(-H(B, %) - )| F'>

We use, again, primes to distinguish numbers from operators; the factor

of two is, once more, the spin multiplicity. Now, since

< [eVI(T) = sV(E') <¥'| (2-19)
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and, anticipating that
2<F' [n(=H-7) |F'> = n(¥") (2-20)

Eqg. (18) implies Eg.(14). Indeed, eguation (20) is nothing but the
representation of the density as the sum of squared wavefunctions over
all occupied states. Upon labelling these wavefunctions by their ener-
gies E' and additional quantum numbers, o, the left-hand side of (20)
is

2Z w;‘:a(zl) n(-E'—c)wElrQ(;')

E',a

(2-21)
=20 g JED TR
E',CX. ¥

which is recognized as the usual definition of the density.
For consistency, the integrated density must equal the number
of electrons,

N = [@nEY) . (2-22)

This follows immediately from Eq. (20):

faznE) = 2 [@r)<F n(-E-0) [F'>

(2-23)

il

tr n(-H-z) = N(g) = N .

Another, and more instructive, proof makes use of (i) the definition of

n in Eq. (14); ({(ii) the circumstance that E, does not depend on V and g

1
individually, but only on the sum V+z; (iii) Equation (12). Consider
infinitesimal changes in g and V such that SV(T) = —5;.3 Then 6 (V+g) =0,

implying 5E1=o. In view of Egs. (12) and (14) this means

-)" - -
o = 6C E, + &; B, = N6z + JdE") (-87)n(¥")

. (2-24)
= 8z (N- [(d¥)n(¥)) ,

which is equivalent to (22). This second proof has the advantage of re-
maining valid when the trace in E1 is evaluated approximately. There is
no assurance that the densities derived from (14) and (20) are identical
in a certain approximation. If they are not, Eg.(14) is the preferable
definition. {We shall, indeed, be confronted with this possibility la-
ter, in Chapter Four.)
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Equation (14) relates the density to the effective potential,
so that we have taken care of the right-hand side of Eq.(2). We are left
with the problem of expressing the electrostatic potential of the ele-
trons, V__, in terms of V.

es

We proceed from noting that E is not the energy of the sy-

Iip
stem. Just as in the preceding Chapter [recall the remark after Eq. (1-
65)], the use of the effective potential causes a double counting of

the electron-electron interaction energy, E The interaction potential

ee’
Vee which is the electron-electron part of V in Egqg. (1), is naturally
given as the response of Eee to variations of the density,

8By, = [(dE') 6n(Z') V__(F') . (2-25)
[Please do not miss the analogy to Eg.(14).] Since V and ¢ are the fun-
damental quantities in our "potential-functional formalism," 6n(;) must
be regarded as the change in the density induced by variations of V and
z.

Seme evidence in favor of (25) is supplied by considering the
electrostatic interaction energy

£ =1 [ @ 2EIRE) (2-26)
es 2 1§";"| !
for which
6B, = {(aF")6n(¥') f(dE") T:Ei§i% ) (2-27)
="

Thus, Eq.(25) implies the familiar expression

Voo (1) = fragm 2l (2-28)
Irl_rul

which is egquivalent to the Poisson eguation (2).
The electron-electron interaction energy, as it is incorrect-

ly contained in EIP("double counting of pairs"), is

tr Voo n{=H-7)

2 f(az) Voo (T n(-H-) [F'> (2-29)

frarnv_ EonEn
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the last step uses Egq.(20). Consequently, the correct energy expression
is
-
E=Ep - AV, n+E . (2-30)

The second term removes the incorrect account for the electron-electron
interaction contained in EIP' and the last term adds the correct amount.

The energy of Eq. (30) is endowed with the important property
of being stationary under variations of both V and Ty
6 E =6, E = o. (2~31)

In order to see this, first appreciate

8( - [(ar)v n + E_)

(2-32)

- j(dr)(éveen + Vee6n) + f(dr)&n Vee

fl

~ {(a¥)nsv ,
ee

which is an implication of Egq.{(25). Further, a consequence of Egs. (13)
and (14) is

SEIP = 6;EIP + 6V EIP
N (2-33)
= [(dr)nsv
Then, the change in E is
> g
8E = j(dr)n(&V—SVee) = f(dr)né(v Vee) (2-34)
In view of [Eq. (1)]
vae<Z,y {2-35)
r ee !

the variation 6(V—Vee) vanishes, and Eq. (34) implies Eq. (31), indeed.
It is useful to separate Eee into the classical electrostatic

part, Ees, of Eg. (26), and the remainder Eée, which consists of the ex-

change interaction and possibly other effects. Accordingly, we write

E = E + B! , (2-36)
ee es ee
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and likewise

\Y =V + V! . (2-37)
ee es ee

The electrostatic contribution to the energy (30) can be rewritten,

with the aid of the Poisson equation (2), in terms of the electrostatic

field -V _:

s

- [@hn v +E_ = -5 [(@)n v,
= o [(@F) (VV_)V__ = - o [(aF) (TV__)?2 e
T En o es’'es  Bm es

[The surface term of the partial integration is zero, because Ves = N/r
for large r. ] Further, we combine Egs. (35) and (37) into
Z

V._=V+2-V

es T ée ' (2-39)

thereby expressing Ves in terms of V, as needed in (2). The energy now

reads

E =E -

p g J @) V(v

Kl

~y! 2
vi)]

(2-40)
>

- I(dr)n v' + E! .

ee ee
This expression for the energy is our basis for approximations. Various
models emerge depending upon the accuracy to which the trace in EIP
[Egs. (7) and (8)] is evaluated, and upon the extent to which Eée is
taken into account. Of course, a consistent description requires a ba-

lanced treatment of both.

The TF model. The simplest model based upon Eq. (40) is the TF model. It
neglects Eée entirely [then Vée also disappears from (40)], and evalu-
ates the trace of Eq. (7) in the highly semiclassical approximation of
Eg. (1-43). The TF energy expression is therefore

> >
Egp = 2 I(df; ‘?3’ (39244200 (- 5p?-V=r) - N
s

- g% [ (@%) [V (v+ %)]2 . (2-41)

We recognize the last term as the quantity E2 of Eqg.(1-67), which was
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there introduced to remove the doubly counted (electrostatic) inter-
action energy; the term plays the same role here. The phase-space inte-
gral is the TF version of E1, properly denoted by (E1)TF' We shall,
however, suppress the subscript TF until it will become a necessary
distinction from other models.

The step function cuts off the momentum integral at the (r-

dependent) maximal momentum (the so-called "Fermi momentum")

P = /~2(V+g) , (2-42)
so that
- f(aF an fap p? dp- Le?
g, = f(ar) - 4m [dp p? (zp°~ 3P%)
(2m) o (2-43)
= 7y Lt - Lyps
= [(af) —(5 - gP° .
i
or, square roots of negative arguments being zero,
By = [(@) (- =) -2 1P (2-44)

51

This is the Thomas-Fermi result for E1. The entire energy functional in

the TF model is then

ETF = E1 + E2 - CN

(2-45)

1
15m?2

fad) - 2w 132 < Lpad Fve L7

Is there any reality to it? Yes. Look back to Chapter One, where (45)
has been used unconsciously for the Coulomb potential V=-Z/r. In this
situation, E,y equals zero, and Enp gives the leading term of Eg. (1-22)
[see Egs. (1-26) through (1-37)]. Since V is essentially equal to the

Coulomb potential in a highly ionized atom, we conclude

Epp = - 22607 for W<z . (2-46)
We shall return to highly ionized systems in a while and find the modi-
fication of (46) when accounting for the electron-electron repulsion.
Before doing so, we have to study some implications of Eqg. (45).

The stationary property of ETF with respect to variations of
V and ¢ reads
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SEpp = I(df)év{gi[—z wie)13/2 4 Lyrws By

o
n

+ 8z{ [(a¥) _.LZ[—z(v+;)]3/2 - N}

3n (2-47)

1 > > VA
- g [@ ¥ (sv v+ 2))

The value of the last integral is zero, because the equivalent integra-
tion over a remote surface vanishes in view of &V=o0 for r-w. The varia-
tions of V and r are independent, so that the two curly brackets equal

zero individually. Accordingly,

R T 2y o1 5 3/2 2-48
am Vv Q) 3n2[ (V+z)] { )

and
jlad) 21?2 =, (2-49)

3m?

of which the first is the Poisson equation, and the second the normali-
zation of the density to N. Obviously, Eg.(49) is the TF version of (11},
as we notice that Eqg. (10) is realized as

N(gt) = 2 fARLR) o %Pz-v-c') = J@h-r-2v+g 1772 2-50)
(2m) 3 3n?

This, inserted into Eg. (9), reproduces (44), as it should.
On the right-hand side of (48) as well as under the integral
of (49) we have the TF density

n = p2wip1?? . (2-51)
3mn?

In the classically forbidden domain, characterized by V>-g, this density
vanishes. There is a sharp boundary assigned to atoms in the TF model.
In contrast, in an exact guantum mechanical description the transition
from the classically allowed to the classically forbidden region is
smooth. We have just learned about one of the deficiencies of the TF
model. It is going to be removed later when we shall incorporate quantum
corrections of the sort discussed briefly after Eq. (1-43).

The differential equation (48) for V, known as the TF equation
for V, is supplemented by the constraint (49) and the short distance be-
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havior of v,
rvVv->-2 for r~+o . (2-52)

It signifies the physical requirement that for r+o, the effective poten-
tial is mainly given by the electrostatic potential energy of an elec-
tron with the nucleus; formally, (52) is necessary to ensure the finite~
ness of E2. Consequently, we have the following situation: for small r,
the potential is large negative, and the density is large; as r increa-
ses the potential becomes less and less negative; finally, at the edge
of the classically allowed region, it equals -z, and the argument of the
square root in (51) turns negative; beyond this distance, Iy, the densi-
ty is zero, so that (48) is the homogeneous Poisson equation. Gauss's
law, combined with Egs. (49) and (52), then implies

Z—-N
V=== for rzr, , (2-53)
and the radius r, of the atom is determined by
V(r=ro) =-7 , (2-512)
or,
r = Z-N . (2-55)
To

The electric field -VV is continuous (there are no charged surfaces in

an atom) ; in particular, at the edge we have

d _Z-N _ L -
—d? V(r)| = 5 = 7 . (2 56)
r I o]

@] (o]

Neutral systems, N=Z, have ¢=o, so that both V and dv/dr vanish
at L= . Consequently, the TF equation for V, Eq. (48), requires r, ==,
since for a finite L it cannot have a solution satisfying these bounda-
ry conditions. We have just learned that neutral TF atoms are infinite-
ly large, they do not have an "outside", only an "inside".

It is useful to measure V+{ as as multiple of the potential
of the nucleus by introducing a function £ (x),

vez=-Zrm) (2-57)

the argument of which is related to the physical distance r by

1.3m,2/3

= Z1/3I/a , a = i(fr) = 0.8853... (2-58)
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The constant a is chosen such that the differential equation for f(x),

) 3/2
4% fix) = [f‘X%]Z , (2-59)
dx?

called the TF equation for f(x), is free of numerical factors. The boun-

dary conditions (52), (54), and (56) translate into

- - = 3 =1 -Y=: -
£(0) =1, £(x) =0, -x & f£(x)) =1-3a , (2-60)

which introduces g, the degree of ionization. Of course, X is related

to r, through (58). Equation (53) now appears as

f(x) = q(1—x/xo) for x

v

X . (2~-61)
Please notice that Z and N do not appear individually in Egs. (59) and
(60). Consequently, f(x) is solely determined by the degree of ioniza-
tion, g, so that all ions with the same g possess a common shape of the
potential and of the density. The potential V itself does, of course,
depend on Z; first through the factor Z/r, but then also because of the
7Z dependence of the TF variable x of Eq. (58). The factor Z1/3 there
implies the same shrinking of heavier atoms that we have already ob-
served in Chapter One, when considering Bohr atoms with shielding, see
Eq. (1-93).

For illustration, Fig.1 shows a sketch of f(x) for g = 1/2,
for which X, = 3. The geometrical significance of the third equation in
(60) is indicated.

~N

14

<+
x

—a—
o
w

—
N

-
X
o

Fig. 2-1. Sketch of £(x)for gq= 1/2.

Neutral TF atoms. For the solution of Egs.(59) and (60) that belongs to
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g=o, we write F(x) and call it the TF function. It obeys

RN o 163} bl (2-62)
dx? x
and is subject to
F(o) = 1 P F(e) =0 . (2-63)
Its initial slope B,
F(x) =1 -Bx + ... for x << 1 ’ (2-64)

has an important physical significance. We insert (64) into (57), use
(58), and arrive at

4/3

Vi{r) Z for r >0 . (2-65)

1]

1
KiN
+
[URTee]

The additive constant is the interaction energy of an electron, near
the nucleus, with the main body of electrons. We can use it to immedia-
tely write down the change in energy caused by an infinitesimal change
of the nuclear charge Z to 72 + &Z. It is the analogous electrostatic
energy of that additional charge, where a minus sign is needed to con—
nect with the known energy, which is that of an electron:

4/3

8E = - Z

TF

ot

82 . (2-66)

The simultaneous increase of the number of electrons from N=Z to N=Z+8Z

has no effect on the energy since 3E/3N - ¢ = o for N=Z%Z, see Eq.(55).

Consequently,

7/3

-E = Z for N =12 . (2-67)

TF

~lw

B
a

This is the TF formula for the total binding energy of neutral atoms.

The constant B is Well known numerically. But before guoting
the results of a numerical integration of Egs. (62) and (63), let us use
our insight to find an estimate for B. Indeed, in view of the physical
approximations that led to the TF model, there is no need, at this stage
of the development, of knowing B better than within a few percent. A
first crude estimate is given by the comparison of (67) with (1-51),
the result obtained in the model of Bohr atoms with shielding:



9 .3,1/3 _ 9.1 _ _
733 = 25 1.52 . (2-68)

We have no way of judging, how accurate this number may be, but shall
see later that it deviates by less than 5% from the correct value.

The stationary property of the energy functional (45) provi-
des a tool for obtaining good estimates for B. If we evaluate ETF(v,m
for a trial potential V and ¢ = o (this much we know for sure when N=Z),
the deviation of ETF(V,;=0) from —% g Z7/3 will be of second order in
the error of V. As we shall see in the following section, the energy
functional has a maximum for the correct potential. Consequently, any

trial V gives an upper bound for the constant B:

7 -7/3
B os-2az P E v, , (forn=12 (2-69)
where the equal sign holds only for z=o and V = - (Z2/x)F(x).

Maximum property of the TF potential functional. Let us consider finite

deviations from the correct potential V and the correct value for g,
denoted by AV and Ag, respectively, as distinguished from the infinite-
simal variations &V and &6f. Whereas Ar is quite arbitrary, AV is subject
to

r AV > o for r > o ’

(2-70)
AV » © for r > ® R

which are consequences of (52) and the normalization V(r + «)=o. The de-

viations of the three terms of ETF in (45) are then

1

5n

) ([-2 (v+av+ £ +82)1°72 —[-2(v+ D) 1773, (2-71)

AE, = [(dr) (- -

and

AE, = -

, = - g J@d) (¥ weave L2 T e Zy2)

(2-72)
= - g @ a1t L fahven e d o,

which after a partial integration and the use of Eq. (48) reads
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ME, = - g fi@d) (Fav) 1= [@d) av ;—1—2[—2 w+0) 132, (2-73)
as well as
A(-ZN) = - (AZ)N = - [(d¥)AcC —1;[-2(v+c:)]3/2 , (2-74)
3n

where Eqg. (49) has been employed. Accordingly,

AE

AE, + AE, + A(-ZN)

TF
= [(@®) (- =) {1-2(vep) -2 (av+a) 1772 (-2 (vag) 1772
15m2
+ 5(Av+Ag)[—2(V+c)]3/2}
(2-75)
- 5= [@ v’
The contents of the curly brackets is of the structure
[u+v]5/2 _ u5/2 _ % v u3/2
v (2-76)
= 15 [c’iv'(v-—v')[u+v']1/2 2 0 ,

o

where u = -2(V+z) and v = -2 (AV+Az) . The equal sign in (76) holds only

if v = o, or, if u+v' £ o over the whole rancge of integration (under
which circumstance the square root vanishes). This implies

AETF

IA

o ; =o0 only for AV = o and Az = o . (2-77)

In words: the TF potential functional of Eqg. (45) has an absolute maximum
at the correct V and ¢.

This maximum property might come as a surprise, as one naive-
ly expects the electrons to arrange themselves such that the energy
achieves a minimum. True, but it is not different electron distributions
that we compare; the competition is among different potentials. In the
same sense, in which it is natural for the right density to minimize the
energy, it is common for the right potential to maximize it. Let us illu-
strate this point by the analogous (and closely related) situation in
electrostatics.
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An electrostatic analogy. Consider the problem of finding the electro-

static potential, &, to a given charge density, p, in the vacuum.4 They

are related to each other by the Poisson equation

- Lygz g - -
in Ve b = p . (2-78)
The electrostatic energy can be expressed in various ways:

3 J(@Fy e = 5 [(ah) (o) 2

=
"

Il

f@fipe - -T2 . (2-79)

If we insert the ¢ that obeys (78) into any of these expressions, they
all give the same answer. Suppose, however, that we do not know the cor-
rect ¢ and have to resort to using an approximate one. In this situation,
it is advisable to employ the third version of (79) in calculating the
energy, because, unlike the other ones, this expression is stationary

at the correct ¢:

6 [(dF) [po - g=(V0)2] = [(@F)60[o+ 5-v20) = o . (2-80)

A finite deviation A¢ from the right electrostatic potential results in

the second order error in E that is given by
-1 Y 2 . -
AE = - 2= [(@) [V(a0)]? <O (2-81)

the energy is maximal for the right ¢. The analogy to the TF functional
is, indeed, close, since the same term occurs also in (75).
Here is a little application of the stationary property of

5

the electrostatic "potential functional."” Instead of inserting ¢ (%),

we evaluate the energy for ® (AT) :

1]

E() = [(dF) p0 ) - 5= [(a¥) [Fo(1F)12

(2—-82)

f@d) p20F) - 1= [@H Fed1e

For A=1, it is the correct energy. Consequently,
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d _ = -
a—x E(}\) = 0 for A=1 ’ (2 83)
which implies

o (@) @02 = [@F) oF- (-To) . (2-84)

We have thus found an unusual expression for the electrostatic energy:
the integral of the scalar product of the dipole density p; with the
electric field -Vo. Note, in particular, that there is no factor of 1/2.
Since a translated charge distribution p(§+§) has the same electrosta-

tic energy,
[@F) p(F+R)IT - (-Y0(¥+R)) = [(@F) p(DIE- [V (F)] (2-85)

we find, after substituting 7»¥-R on the left hand side, that the self

force of any charge density vanishes:
f@)o-vVe) = o . (2-86)

(The stresses, of course, do not.)

A different problem is that of finding the correct charge den-
sity on the surface, S, of a conductor carrying a given total charge, Q.
In this situation, the relevant equations are
(r')

N
de' S f = const. for T on S ’ (2-87)
|z-r

and
fas o(¥) =0 , (2-88)

where o denotes the surface charge density. Here the stationary energy

expression is

> >,
E = fasas TEOED g (o-faso () . (2-89)

, B
The last term incorporates the constraint (88). Infinitesimal variations

of both o and @O imply Egs. (87) and (88), thereby identifying @o as
the (constant) electrostatic potential on S. This energy is a minimum
if only o's obeying (88) are allowed in the competition, i.e., if vari-

ous distributions of the same, given, amount of charge are compared.
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We get

AE = %Idsds' Agl_lhé_ifil , (2-90)
|

()
T

=y 1Ry

where Ac is the deviation from the optimal density o. Since this is
the electrostatic energy of some charge distribution, it is, indeed,
positive.

TF density functional. This digression into the realm of electrostatics

raises the question if it is possible to write down a functional of the
density, in addition to the potential functional of (45), thus getting
upper bounds on the energy, lower ones on the constant B. This can be
done, indeed. It requires appropriate rewriting of (45), whereby the
potential is replaced in terms of the density. Both Eq. (51) and the
electrostatic relation

v(r) = - % + [(ar") ﬂ§¥§;% (2-91)
r-r'

can and must be used in this process.
We start by undoing the step from Eq. (43) to Eg. (44), so that

E1 is split into the kinetic energy, Ekin’ and a potential energy part:

= f@h) —(-2ws0) 132 - [(@h) -(-2(ver)1 132
10m? 6n?
= @) —1(3n2n)®/3 + [(@F) v+o)n (2-92)
10m?

B+ [@P) v Hn - [(@F) Zn o+ cf@hn .

E2 is rewritten by first performing a partial integration, then making
use of the Poisson equation, followed by employing Eg. (91):

1 >y Z 1 > 7
E, = - 5= [@) Five D12 = 2rad) ve &) glo vs
- A -+ > > > > (2—93)
- -z f@hws Hnd - - %f(dr)<dr')n(iigf7 |

Combining the two last versions into
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|T-r' |

2 - [@®) (v+g)n (2-94)

makes the potential disappear from the sum of E1 and E2. The resulting

TF density functional is

E=E, +E, - N
> >,
= fuad) —=@nn)®3 - f@d) Lo+ Jfah) ad) 2ERED
10m r-r'|

- LN - f@Dn) . (2-93)

All we know at this stage is that Eqg. (95) gives the correct value of
the energy, provided we insert the correct density. To be useful this

functional has to be stationary about the right density. Not surprising-

ly, it is:
> >\ o1 > 2/3 % >, n(r')
SE = [(dr) 6n(r)[§(3n2n(r)) -2 far") TE:ETT + ]
(2-96)
-6z (N - [(d¥)n) =0 ,
which uses Egs.(51) and (91) in the combination6
-> - +l
vid) = - t0en@?P oo L fan 220 (2-97)
Ir—r‘
and the constraint (49), now reading
[@n =8 . (2-98)

The successive terms in Eg. (95) have the physical significan-
ce of the kinetic energy, the potential eneragy between the nucleus and
the electrons, and the electron-electron potential energy. The last term
incorporates the constraint (98), thereby identifying r as the corres-
ponding Lagrangian multiplier. In contrast, the potential functional of
Eg. (45) consists of the sum of independent particle energies, E1—QN,
plus the removal of the doubly counted electron-electron-interaction
energy, E2. It is important to appreciate this difference in structure.

Let us now check if the density functional does have the ex-
pected property of being minimal for the correct n and z.
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Minimum property of the TF density functional. In analogy to the pre-

vious discussion of the maximum property of the TF potential functional,
we consider finite deviations An and Ag from the correct n and r. Again,
Az is quite arbitrary, whereas An is restricted by the requirement that
the density be non-negative,

n+ An 2 o for all r . (2-99)
The derivation of (95) made use of (51) so that negative densities had

been implicitly excluded.

The various contributions to AE are then

> 2y5/3
AEy, = [(af) _(_3_“,.22“[(}1%11)5/3 o a8/3y (2-100)
10m
and
> >y
- [@d) En v Tfad) @) EL§L§1T_L,
r-r'

—>|
f(a%) an(F) [- % v faF _%%)_]
[t-x" |

i

> >,
+ % {(d?)(d?') An(r) An(r')
|T-2" |

JELDRAPNERYE

= [a¥%) 3 Anl - zf(d¥)An
10m?
(2-101)
+ 5 [a) (aFr) AnlX) An(e?)
|x-x" |
which uses Eq. (97), as well as
A~ g(N = [(d@¥)n)] = (z + A7) [(d@¥)an . (2-102)
Consequently,
5/3
BE = f(aF) B30T negn)5/3 1 573 2n2/3n]

10m2

¢ 1 @) @) oG mED
Eaal
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+ Az f@F)an . (2-103)

The first term here is positive definite, which becomes obvious when

we write it [compare Egq. (76)] in the form

2,573 An N
fap) B2 10 fay (an-v) () 13 (2-104)
2
101 le)
20 ; =0 only if An(f)=o for all ¥

The second term in (103) is the electrostatic energy of the charge den-
sity An(f), thus it is also positive, unless An=0 everywhere. The third
term does not have a definite sign. Therefore we restrict the class of

trial densities n and trial ¢'s such that
Az f(d¥)an = o . (2-105)

Then

AE o : =o only for An(¥)=o for all ¥ ; (2-106)

[\

the TF density functional of Eg. (95) has an absolute minimum at the cor-
rect density, provided Eq. (105) holds.
In general, satisfying (105) will mean to consider only such

trial densities that obey the constraint (98), since then
f@Ham =0 . (2-107)

The main exception are neutral atoms, about which we know that g=o. Con-
sequently, trial values for ¢ need not be chosen, so that Ag=o. Then

Eg. (105) is satisfied without restricting the density according to (107).
This observation will prove useful, when seeking lower bounds on the
constant B.

Upper bounds on B. We pick up the story at Eq.(69). The calculation is

considerably simplified by employing the TF variables x, X and f(x),
which have been introduced in Egs. (57) throuch (60). In these, the TF
potential functional appears as [£f' (x)_dxf(x)]

5/2 ©
_ 7/3 [£(x)] 1 ' 2
= - (2 £ fax = f[ax[f <
E ( /a){ f —————7—*— t 5 é x[£' (x)+ Xo] +
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(1=q) (2-108)
+ 2790, ,
Xo

where, replacing V and &, it is now £f£(x) and X, that have to be found.7
Whereas arbitrary variations of x, may be considered, f(x) is subject
to

f(o) =1 (2-109)
and

£r(x) = - L for xro (2-110)

Xo

The first of these is Eg.(52), the second comes from the inclusion of
Z, in Eq.(57), into the definition of f(x). In (108) it is needed to
ensure the finiteness of the second inteoral. Note, in particular, that
the trial functions do not have to obey

fixg) = 0 , -x,f' (x0) = g (2-111)

[see(60)]. This, and the differential equation

3/2
£ (x) = 1215%%5- (2-112)
X

[see (59)] are implications of the stationary property of (108). Here

is how it works: infinitesimal variations of £(x) cause a change in E,

sl-(a/z’/3)E]

[e]
I

de 5f(x){[f(x)]3/2 - £7(x)} + de Lo x) [£ (x)+L] )
! ETA Al %o

(2-113)

- " (x)} .

o 3/2
[£(x)]
({dx 5F (X) {-*——X.]—7—2-—~

where the first equality is the stationary property and the last one
uses (109) and (110) in finding the null value of the integrated total
differential. Thus (112) is implied. We combine it with (110) to con-

clude that beyond a certain (yet unspecified) ¥, f(x) is negative and
linear:

f(x) = g XX for X

v
wi

(2-114)
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Next, we consider variations of x,. They produce

o = 6[-(a/Z7/3)E]

1 7 ,
a(;;) g { gdx[f (x) + é%] + (1=-q)} , (2=-115)

implying the vanishing of the contents of the curly brackets. In view

of (114), the integration stops at X:

X
o = [ax[f' (x)+ X] + (1-q)
o *o
(2-116)
- £(%) - X - g = gi* - .
= £(X) flo) + qu + 1 q q(Xo 1) ;
the last step makes use of (109) and (114). Now we see that §=xo, so

that (114) becomes (61) and implies (111).
Let us now turn to neutral atoms, g=o. The maximum property
of the functional (108), combined with the known form of the neutral atom

binding energy , Eqg. (67), reads

co 5/2 o
3 2 [£(x)] 1 )12 -
=B st [dx it 3 faxi£' (x)) ' (2-117)
e} b4 o}
where the equal sign holds only for f(x}=F(x). Note that x, disappeared

together with g, so that we do not need to use explicitly our knowledge

of x == for g=o. According to (109) and (110), the competition in (117)

is among trial functions that are subject to
f{o) =1 ’ f'(x » =) = o. (2-118)
For any trial f(x), we can always change the scale,
f(x) » £(ux) , (u>0) (2-119)

and obtain another trial function. The optimal choice for pu minimizes
the right hand side of

o 5/2 =
3 5 2 Tqp LEG)] 1 T 1l -
7B 55 fax =gy v g Jaxlgf st
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w0 5/2 o
-1/2 2 £ 1 G e

= w2 2 fax i_iz%%i_* + w5 fax[£ (x)12 (2-120)

o] X o]

It is given by
3 5/2 b
3/2 _ 2 [f(x)] 1 2 -

M = £ édx = idx(f (x)] . (2-121)

We insert it into (210) and arrive at the scale invariant version of
(117):

2
N YRV /3¢, 1/3
B <<t Jax 73 fax[£' (x)1? , (2-122)
o] X o}

where now the equal sign holds for f(x)=F(px) with arbitrary u>o.

We are now ready to invent trial functions and produce upper
bounds on B. Before doing so, let us make a little observation. If £
equals F, the optimal pu in (120) is unity, since the equal sign in (117)
holds only for £ (x)=F(x). Consequently, the numerator and denominator
in (121) are equal for f=F. In this situation the related sum in (117)
is (3/7)B. We conclude

o 5/2
2 (F(x)] -2 -
sl =m— =58 . (2-123)
and
1.7 . 2 _ 1
5 [ax[F'(x)]1* = =B . (2-124)
O

An independent (and rather clumsy)} derivation of these equations uses
the differential equation obeyed by F(x) [Eg.(62)], combined with some
partial integrations. Equations (123) and (124) can be employed for an
immediate check of the equality in (122) for f£(x)=F(px):

B=Z w2223 (2513 | (2-125)

2 7 7

More about relations like (123) and (124) will be said in the section
on the scaling properties of the TF model.

A very simple trial function is

1

f(x) = Tix% r (2-126)
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for which

o 5/2 o
2 [£(x)] _2 -1/2 -5/2 _ 8 _
z fax iy T % fax x (1+%) = Tz (2-127)
o] X o]
[the integral, in terms of Euler's Beta function, is B(%,Z) = %], and
Jaxier 12 = [ —22_ -1 (2-128)
o o (1+x)*"
Accordingly,
B < 1; 572/3 _ 1596 . (2-129)
A better value is obtained for
- 1.,4/3 -
f(x) = (1+x) ' {2-130)
when
B < 271%/9 (JIL)1/3 (n€) 123 0 173 < 15009 (2-131)

This number is, as we shall see, very close to the actual one; so there

is no point in considering more complicated trial functions.

Lower bounds on B. In order to express the density functional of Eg. (95)

in terms of TF variables, we write

2
an

7
)

n(7) V2 (V+

~§§(zf(x)) (2-132)

dr

&l
T

2% £ )
it 4 X
a

or, more conveniently here,
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n(F) - g g (2-133)

s}
w

The function g(x), thus introduced, differs from f'(x), at most, by a

constant. We choose this constant to be g/x,

g(x) = £'4x) + &, . (2-134)
(o)

which in view of. (110) is equivalent to requiring
gi{x +«) = o . (2-135)

With (133) and (135) we have for the interaction energy bet-

ween the nucleus and the electrons

7/3 = 7/3
-f@h Ens-— jax gt = = g0, (2-136)
o]

whereas the electron-electron energy is

57/3
a

N —

3 fad) (@ry 2Enll) faxtgi1z . (2-137)
- fe)

[This quantity equals —E2, so that Eq. (134), used in the second integral
of (108), gives this result.] The remaining contributions to the densi-

ty functional can be expressed in terms of g(x) immediately. We arrive
at

7/3 o oo
E = Ej;*{% idx x1/3[g'(x)]5/3 + g(o) + % (J;dx[g(x)]2

(2-138)

- g l1-q- fax x g' (x)])
o o

Again arbitrary variations of X, Mmay be considered, whereas ¢ is restric-
ted by the requirement of non-negative densities,

g'({x) 2z o P (2-139)

and by Eg.(135). Together, they imply
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g{x)s o (2-140)

According to the discussion of Eg.(103), Eg.(138) supplies
upper bounds on the energy. provided that Eq.(105) is obeyed. Expressed

in terms of x, and g, it reads

A<) fdx x Bg'(x) = o . (2-141)
X5

We did notice already [see the remark followina Eqg.(107)], that in the
situation of neutral atoms, our knowledoe of x, =« results in A(—w)—o,
so that (141) is satisfied without further ado. In particular, g?x)
need not be subject to

f ax x Ag' (%) = o (2-142)
)

or [this is Eg.(98)], more precisely,

Jdx x g'(x) = 1=q ; =1 for g=o . (2-143)
o}

The minimum property of the functional (138), tocether with
the known form of the neutral atom (g=o) bindinco enerogy, Eq.(67), im—

plies
22~ 3 fax x' 21 0173 + gl0) + T [axig12) L (2-144)
o o
where the equal sion holds only for ¢(x) = F'(x). For this c(x), the

value of the two inteorals is %B and %B, respectively, as follows from
Egs. (123) and (124), and the differential equation (62) obeyed by F(x).

Consequently,

F!' (o) = -B r {2—-145)
which is nothinc more than the oricinal definition of B in (64).

As in the preceding section, we can consider chances of the

scale. Here the possible scalings are even more ceneral,

g(x) - B9 (pyx) ¢ ligrn, > 0) , (2-146)
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because there is no analog to the restriction f(o)=1, that we had to

watch before. The optimal choices for By and ”2 maximize the richt hand

side of
%—B z - {-g- (};dx x1/3[u1%g(u2X)]5/3 + 1,9(0) + -;— (j;dx{u1g(u2X)]2}
= - {u?/3 u;/3 % fax [cr' (x)1 5/3 + niglo)
o]
2 [+e]
P 211 Jaxtg 012
o 2
(o]
(2-147)
They are
_ 4/3 o -
p, = (43 1mg)] & faxigx)12)71/3 (2-148)
v 1% 1/3 5/3 2o
glax x /7 lg" x)]
o]
and
) 4/3 o
b, = 43 [-gle)] & faxig(x)12)%/3 (2-149)
27 1% 173 5/3 2
gfax x 7l (x)] ©
(o) 4

Inserted into (147) they produce the scale invariant version of (144):

7/3
B 2 (%)4/3 - ) [-g(o)] , (2-150)

(gfax x1/3[g'(x>]5/3)(zjdx[gtx)l y1/3

where the equal sign holds only for g(x)=u1F'(u2x) with arbitrary

Hyrk,>0. Indeed, for such a g(x), we get

7/3
[n,B]
B = (3 1 , . (2-151)
(ui/313/3 1B)( _B)1/3

The main contribution to the energy of an atom comes from the
vicinity of the nucleus. Now, Egs.(62) and (63) imply,
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P (x) = -}; for x + o . (2-152)

Consequently, a good trial g(x) has to be such that

g'(x) ~ 71-}? for x -+ o . (2-153)
An example is
gix) = - (1+/&°% aro . (2-154)

It turns out, that the right hand side of (150) increases with a, so
that we may immediately consider the limit o»w. The scaling invariance
helps in this limit, since it allows to evaluate g(x/a?) for a+w, in-
stead of g(x) for a»x. The limiting trial function is a simple exponen-
tial:

ay -vX

g(x) = lim[- (1+ %&)' = - ) (2-155)

oo

For this g(x), we have in (150)

7/3

773 = 3

)4/3 [-(=11

1
SRR TR TN

(2-156)

= 1.5682

Binding energy of neutral TF atoms. We have found an upper bound on B

in {131) and a lower one in (156). Now we combine the two and state

1.5682 < B < 1.5909 r (2-157)

ox
B = 1.580 + 0.012 . (2-158)

The margin in (158) is about 1.5% of the average value, so that we
know B with a precision of 0.75%. Please appreciate how little numeri-
cal effort was needed in obtaining this result. In view of the crude
physical picture that we are still using, the value for B in (158) is
entirely sufficient. A higher precision is not called for at this stage
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of the development.
Inserted into (67), this B value produces

- 7/3 -
Epp = 0.765 2 , (2-159)

which is the TF prediction for the total binding energy of neutral

1
0 25 50 75 100 125
z

Fig.2-2. Comparison of the TF prediction (160) with HF binding energies [crosses).
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atoms. In Fig.2 the quantity

-E
L = 153 51/3 (2-160)

2%’
is compared to the corresponding HF predictions8 for integer values
of Z. This plot shows that (160) does reproduce the general trend of the
atomic binding energies. Altough the need for refinements is clear, it
is nevertheless remarkable how well the TF model works despite the
crudeness of the physical approximation that it represents. In Fig.2
the continuous TF curve is closer to the integer-Z HF crosses at small
Z values than at large ones. This is, however, a deception since it is
the fractional difference that counts. The amount of this relative de-
viation is 29, 24, 21, 17, 15, and 13 percent for Z=10, 20, 30, 60, 90,
and 120, respectively. It decreases with increasing Z.

Why do we compare with HF predictions, and not with experimen-
tal binding energies? The reasons are the ones mentioned in the Intro-
duction. Total binding energies are known experimentally only up to
2220 (in Fig.2 they are indistinguishable from the HF crosses). Even if
they were available for large values of Z, the TF result should still
be measured against different predictions based upon, e.g., the many-
particle Hamilton operator of (1-7); this way we are sure to not be
misled by relativistic effects, which are the more significant the lar-

ger Z.

TF function F(x). We have learned a lot about the initial slope B of

the TF function. Naturally, there is much more to say about F(x). We
shall do so in this section.

Let us proceed from recalling the defining properties of Egs.
(62) and (63). F(x) obeys the differential equation

2 3/2
= Flx) = P (x) = LEEH T (2-161)
x
and the boundary conditions
F{o) = 1 ;, F(»®) =0 . {2-162)

Upon using /X as the main variable, the differential equation (161)

appears as
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E%E F(x) = 2V F'(x) ,

a_ (2-163)

3/2
F'(x) = 2[F(x
W (x) [F(x)]
Whereas (161) is singular at x=o , this 'system of differential equations
is well behaved at vX=o . We conclude that around x=o
panded in powers of VX :

, F(x) can be ex-

Fx) = 5 s, /%, (2-164)
k=0
which has become known as Baker's series The comparison with
F(x) = 1 - Bx + 0(x3/?) (2-165)
[this is Eq. (64)] shows

s =1 + sy =0 , s, =-B . (2-166)

For the successive calculation of the sk's for k>2, we need a recurrence

relation. We gain it by inserting (164) into the differential equation
(161) . The left hand side is simple:

F" (x) 'E:: Sy %(% - 1)xk/2_2
k=0

5] (2—167)
- % s V2, S X(3—1)/2 (£+1L(£+3)s

14
= 2+3
where 5150 has been used, and the summation index shifted (k=£+3). The
right hand side of Eg.(161) is nonlinear in F(x), so that the power se-
ries becomes more complicated. We have

[F(x)]3/2/x1/2 - }(-1/2[1 £ S - xk/2]3/2
k=2

. . ' (2-168)
=x "2 s> GBS 5, <K/2y3y
=1 3 k=2
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where the binomial theorem is employed. Next, we make the j-th power

of the sum over k explicit by writing it as the product of j sums over

k1 ’ k2 b kj ;. then the Kronecker Delta symbol ,
1 for k =14
6E,k = o for k z £ ! (2-169)
is used to collect all terms of order x“']/2 xz/2 = x(jz—”/2 :

[F(x)13/2/x1/2 - [1+§Z:(3/2)$ § E %, Sk,

—2 k 2
x..sk x(k1+k2+"'+kj)/2]
]
I VA (z 1)/2 Z(3/2)Z Z 5y
=1 j
x &
K,k1+k2+...+kj
(2-170)
Since each k is at least two, we have
L =%k, +k, + ... +k, 22] 22 ’ (2-171)

so that the summation over £ starts really at £=2 , and the larcgest j
does not exceed £/2 : j £ [£/2] , which makes use of the Caussian nota-
tion for the largest integer contained in £/2. The individual k-summa-
tions stop, at the latest, at £-2(j-1) , since, again, the other k's,
which are j-1 in number, are not less than two each. Accordingly,

' w [£/2] £-24+2
(F(x)13/2/x1/2 - x~1/2 (2-1) /2 3/2

+ x > ( 3 ) R

=2 3=1 k=2
£-29+2
Xeuep s

kj=2 k, k. £,k ,+...+k

(2-172)

This must equal (167), implying
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§y = 4/3 ’ Sy =0 ' (2-173)
and
4 [£/2] 3/2 £~29+2 £=29+2
s = e > ( ) D> Y Sp«.-S, &
£+3 (£+1) (£+3) 557 k=2 kj=2 L kj ﬂ,k1+._+kj
(2-174)
for £ =2,3,....
The s, with the largest index occurs on the right hand side for j=1;

k
it is Sp- Thus Sp+3 is here expressed in terms of sk's with k2£, so

that this is a recurrence relation, indeed. For illustration, consi-
der £=2,3,4, and 5. There is only the j=1 term for £=2 and £=3:

4 3/2 4 3, .. _ 2
s = 7571 )8y = g5 z(°B) = - 5B
(2-175)
_1,3/2 _134_1
S¢ (183 =533 73

For £=4 and £=5 , there are both the j=1 and the j=2 contribution:

) 3/2 (a1 = Aido + 3 _ 3., _
s, = 3E [( ys, + ( 2] _ﬁ[70+§(B)2] = ogB* + (2-176)
sg = 15015, + (P4 (s,5,45,5,)]

I S P 30¢-md) = - 2

= ql3(- 5B+ g2(=BI3l = - 438 .

It is not difficult (only boring) to compute more s, 's. Let us be con-

. k
tent with what we have so far:

- _ hew 4 3/2 _2,.5/2 1.3, 3.2.7/2 _ 2 4
F(x) =1 Bx + 37 X ng + 5xH 70B X 15Bx
(2-177)
+ 0(x?)

The B dependence of the coefficients and their complicated recurrence
relation (174) prohibit asking for the range of convergence of the ex-
pansion (164). We can, however, test the quality of the approximation
to F(x) obtained by terminating the summation at, say, k=8. This is

done by inserting the truncated series into the differential eguation
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obeyed by F(x), and comparing both sides:

8 8
E::k(z—Z)skx(k-4)/2 LS 232002 (2-178)
k=3 f=s k

For B=1.580 , our estimate in (158}, the comparison is made in Table 1.
It shows us,. that this approximation to F(x) solves the differential
equation with an accuracy of 1% for vx < 0.4 ; of ;L% for vx < 0.25 ;

10
of s for vx pS 0.20 . This kind of analysis can be repeated for sums

trugggted at a value of k much larger. One observes that a highly accu-

rate solution to the differential equation (161) is given by these sums

for vx < 0.4 only. This is, therefore, the (numerical) range of conver-
gence of the series in Eq.(164); as a consequence, this expansion in

powers of vX is utterly useless. *

Table 2-1. Left hand side (LHS) and right hand side (RHS) of
Eq. (178), and their relative deviation (DEV) for vx = 0.05,
«esy 0.50 . For B the value of Eq.(158) is used.

VX LHS RHS DEV
0.05 19.8866012 19.8866017 2.3 x 1078
0.10 9.783683 9.783698 1.5 x 107°
0.15 6.35805 6.35816 1.7 x 107>
0.20 4.60944 4.60991 1.0 x 107%
0.25 3.5373 3.5387 4.0 x 1074
0.30 2.8071 ' 2.8106 1.2 x 1073
0.35 2.275 2.282 3.3 x 107°
0.40 1.867 1.882 7.8 x 107°
0.45 1.542 1.568 1.7 x 1072
0.50 1.27 1.32 3.4 x 1072

For a precise knowledge of F(x), we cannot rely upon (164) be-
cause of its small range of convergence. The differential equation (161)
itself has to be integrated numerically. It is not advisable to attempt
doing this by starting from x=o with F(o)=1 and F'(o)=-B , using
a suitable guess for B [as in Eqg.(158)]. If the chosen value for B is
too large, the numerical F(x) will turn negative eventually; if B is
too small, it will start growing instead of decreasing steadily. One
could imagine pinning down the correct value of B by an iteration ba-
sed on this distinction between trial B's that are too large or too
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small. This is not going to work, unfortunately, because rounding-off
errors cause a wrong large-x behaviour of the numerical F(x), even if
one would start with the correct value of B. This difficulty can be
circumvented, however, by integrating inwards from x=« towards x=0 in-
stead of outwards. Let us, therefore, turn our attention to the large-x
properties of F(x).

We start by noting that 144/x® is a particular solution of the
differential equation (161).11 Of the two boundary conditions in (162)
it satisfies the one at x=«, whereas it is infinite at x=o. It is clear,

that F(x) approaches 144/x’® for x+«= from “"below":

F(x) £ 3 for X * . (2-179)

This invites the ansatz

144

F(x) = S G(y(x)) (2-180)
X
with
y(x) ~ o for X * o (2-181)
and
Gly) = 1 for y =0 . (2-182)

The best choice for the function y(x) must be found from insertina (180)
into the differential equation obeyed by F(x), Eg.(161). This leads to

%itxy'(x)]zG“(y(X)))+ T%Ixzy"(X) - 6xy' (x)]1G' (v (x))+C(y(x))

= ey =m>? (2-183)

which takes on a scale invariant form if we choose xy' (x) to be pro-

portional to y(x):
xy'(x) = - yy(x) . (2-184)

The optimal value for y>o has to be determined. Equation (184) and its
immediate consequence

x%y"(x) = (x é% -1) xy'(x) = vy{y+1)y(x) , (2-185)
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used in (183), produce

2

Loyrey) + W yary) 4 ey = (612 . (2-186)
The aforementioned scale invariance is obvious here: with G(y) also
G(uy) is a solution to (186), for arbitrary u. A unique value for v is

now implied by the requirement that G(y) be regular at y=o,
Gly) =1 - v + 0(y?) for y *+ 0 . . (2-187)

Note that because of the scale invariance of (186), the coefficient in
front of the term linear in y can be chosen to be minus one [it has to
be negative to not be in conflict with Eq. (179)]. with (187), Eq. (186)

reads

1o e g5 YNy + 0y =1 -3y + 0y, (2-188)
whence

Y(y+7) = 6 ' (2-189)
or,

Y = 2(-7+/T3) = 0.77200... . (2-190)
The second solution to (189) is -(y+7) = =7.772... and of no use to us

in the present context.
The differential equation (186) is simplified a little bit by
making use of (189):

3/2 (2-191)

2
1 y%em(y) + Fye'(y) + Gly) = [G(y)]
G(y) is thereby subject to (187), which determines the solution to (191)
entirely. This does not mean that we know F(x) after finding G(y), sin-
ce the implication of Eg. (184)

yix) = B x ¥ (2-192)

contains an undetermined constant, B. Its value is fixed by the require-
ment F(x=0)=1. This is, of course, analogous to the previous situation
when F'{0)=-B was determined by F (x»=)=0.

Since G(y) is, by construction, regular at y=o, we can expand

it in powers of y:12
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©o
Gly) = > Cx yk ' (2-193)
k=0
where
c, = 1 , cq = -1 . (2-194)

The steps that led us to (174) can be repeated here for (191)
and (193) with the appropriate changes. Comparing powers of yﬁ on both

sides of Eqg. (191) gives

X2 p(e=1) + 1 &+ 11c
12 2 )

Z j+1 £-9+1 (2-195)

3/2
= E ( S C, ...Cy B
1=1 kj=1 k, kj I.,k1+k2+...+kj

for £21. The j=1 term equals %CZ and has to be brought over to the left

hand side. We then arrive at the recurrence relation

-5+
¢ * 2::(3/2)§:f:: EZE:: . k K k +. ..+kj

(YZK+6)(£ 1)

(2-196)
for £ =2, 3, ... .
For example,
12 3/2)c2 - 9 - 201+21/73
27 Syeee 20V 4yraq2 608
= 0.625697... ,
(2-197)
cy = 12 {( 3/2)(c c,y*Cy )+(3/2)c§}
(3y2%+6)2
- 3-v2/8 _ _ 15377+1813/73

(¥2+2) (Y2+3) 98496

-0.313386...

As we did before, in Eg. (178) and Table 1, we can again insert trunca-
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ted versions of (193) into the differential equation (191) in order to
find the numerical range of convergence of this series. The outcome is:
the expansion (193) represents a highly accurate solution to (191) for

1/Y. Anticipating that the actual value of B is about 13,

¥l » or, x2B
this is xi30]3 Does this mean that the expahsion (193) is as useless as
the one of Eg. (164)?

No. The power series of G(y), for some o<y<1, is needed to get
away from x=~, i.e., y=o, when integrating the differential equation for
F(x), Eq.(161), inwards. Here is a brief description of the essential
ingredients of a computer program calculating F(x) for the whole range
of x, osx<e ;(i) find G(y) and G'(y) for a suitably chosen y1(zO.3 is
a good choice) by employing (193), truncated at a sufficiently large k
(depends on the chosen ¥4 and the accuracy of the machine); (ii) inte-
grate numerically the differential equation (191) up to a certain ¥y
(25 is a good choice), so that we now know G(yz) and G'(yz) within the
accuracy of the computer (the standard Runge-Kutta scheme is well sui-
ted for the numerical integration); (iii) choose a trial value, %(213),
for B, and use Egs.(192) and (180) to find §2=(§/y2)1/Y together with
%(gz) and %'(22); (iv) now integrate the differential equation for F(x),
in the form (163) with vX as the relevant argument, down to x=o. At
this stage, we have a solution to (167), the one corresponding to s:%.
This %(x) obeys ¥ (x=w) =0 , but not %(x=o)=1. Fortunately, one does not
have to vary B until ?(x=o)=1 in order to find F(x). Instead, the ob-
servation that, if %(x) obeys (161), so does u3§(ux) for arbitrary u>o,
enables us to simply rescale ?(x). The last step in the procedure is

therefore: (v) set
F(x) = F(X)/Flo) , (2-198)

where
¥ = x/(¥1"3 . (2-199)

Accordingly, we have B given by

B = -F'(0) = -¥ (0)/[F(0)1%/3 (2-200)
and, as a conseqguence of
v, =B x,0 =8%, (2-201)

B is related to % through
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B = Blx,/%y)Y = BIF1"/3 | (2-202)

The sensitivity of the numerical results for B, B, and F(x), to the
rounding-off errors of the computer can be tested by varying the para-
meters Yyr You and %. Ideally, the outcome should be independent of
them, numerically it is not. The little dependence that one cobserves
shows how many decimals of the results can be trusted. For example,

the realization of the procedure just described gave

[oe)
"

1.58807102261 (2-203)

and

w
u

13.270973848 (2-204)

on a computer with a 15-decimal arithmetic?4 For illustration, in Fig.3

we give a plot of F(x) for o<x<10.

1.0 T T T T

F (x)

164/%3
—

10

Fig.2-3. The TF function F(x).

Now that we know the actual value of B, let us look back at

the bounds that we found earlier, Eq.(157). The upper bound is extreme-
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ly good: it is too large by less than 0.18%. On the other hand, the
lower bound is significantly worse: it is too small by 1.25%. This is
a first sign of the superiority of the potential functional over the
density functional.

With (203) we can give more significant decimals in the TF

binding energy formula. Inserting B into Eg. (67) gives
- E._ = 0.768745 z'/3 (2-205)
TF . .

There is no point in displaying more than six decimals.

Scaling properties of the TF model. In step (v) of our "computer pro-

gram" for F(x) we made, in Egs. (198) and (199), use of the invariance
of the TF equation for f(x),

3/2
£ (x) = lfif%%i——- (2-206)
X

[this is Eqg. (59)], under the transformation
£(x) » p¥f(ux) ' (p>o) . {2-207)

The TF model itself is not invariant under such a scaling, because the
boundary condition £ (o)=1 fixes the scale. Therefore, we have to be
somewhat more careful when investigating the scaling properties of the
TF model.

When we were looking for bounds on B, we found it advantageous
to exploit certain scaling properties of the respective functionals. The

scaling transformations that we considered then, were, Eqg.(119):
£(x) - £(px) (2-208)
and, Eq.(146) with g(x)=f'(x)+q/x_=£'(x) for g=o:

"
1
fo) - E; f(uzx) ’ (2~209)

where y, Wy and kL, were arbitrary (positive) numbers. Let us now exa-
mine the implications of transformations as general as (209) applied
to the TF potential functional.

We return to Eq. (45),



67

_ T 1 _ 5/2 1 > > T
ETF = I(dr)( 2)[ 2(v+g) ] 8T£f(dr)[V(V+r)] TN
150
(2-210)
=E, + B, - N
and consider
vir) > p’ vipr) , (p>0) . (2-211)
Since, for the existence of Ez, we need [Eg. (52)]
rv(r) »~ - % for r->o , : (2-212)

such a scaling transformation of V has to be accompanied by a scaling
of z,

Z > 7z . (2-213)

[ I (2-214)

so that the structure V+r is conserved.
In terms of £(x), (211) and (214), without (213), read

£(x) > p¥7!

fpx) (2-215)
which identifies (207) and (208) as the special situations v=4 and v=1,
whereas (209) is realized by Hoy=H and u1=uv. However, with (213), we
just have (208), as we should have, since (212) is equivalent to requi-
ring f£(o)=1; and only (208) is consistent with this constraint.

Under (211), (213), and (214) the various contributions to E
scale according to '

TF

1
1512

E, > B () = [ (@) (——) [-2p" (V(ur) +2) 17/

1
(2-216)
- IJ.5\)/2-3

By

and v
B, » By(u) = - ge/ (@) (T vier) + 512 -



68

{2-217)
- u‘2\)—1 E2 ,
as well as
S AT S \ (2-218)
Consequently
Epp > Epp (1) = pov/2-3 E, + p2v-1 E, - uCN . o (2-219)

For u=1, this is just E for u=1+5u, we have E,.+5 E._.. Now, since

TF’ TF ©u TF
the energy is stationary under infinitesimal variations of Vv and gz, all

first order changes must originate in the scaling of Z. That is

&, Fpp EE%E 5u(u“'1 z) = (v—1)ZE§%E B . (2-220)
On the other hand, from (219) we get
&, Epp = [(Gv-3)E, + (2v-1)E, - viNl&p (2-221)
so that we conclude
(2v-3)E, + (2v-1)E, - vgN = (v=1)2-2E, . . (2-222)
2 1 2 3ZUTF

This is a linear equation in v. It has to hold for any v. So we obtain
two independent relations among the different energy quantities - two

"virial theorems." Besides v=1, when
E, + E, - CN =0 ’ (2-223)

the other natural choice is the TF scaling v=4 [see the commenf to Eq.
(215)]1, for which

- 4N = 3%-5% ) (2-224)

T1E AR

+ 7B

1 2

The latter combines with ETF=E1+E2—QN and

= B = -z (2-225)
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to give

= IR -
7ETF(Z,N) = 3(ZBZ+N3N)ETF(Z'N) . (2-226)
We have made explicit here, that the energy of an atom is a function
of 2 and N.
For N=Z, Eq.(226) has the simple implication
d

7ETF(Z'Z) = 3ZEEETF(Z’Z) ’ (2-227)

or

B} 7/3 _
Epp(Z,2) = - C 2 , (2-228)

where the constant C is yet undetermined. It is found by combining our
knowledge of ;=—3ETF/3N=0 for N=Z with

_ 5 0 ____1 22 Z-Z
Trtre = Py = T g/ @D T W

> Z, 1 Z
f(dr) (V+E) 4—HV2;
(2-229)

"
'
[
<
n
1r
)
1
I
th
[e]
R
=
"
N

The third step here is a partial integration; the fourth one recogni-
zes —ZS(;) as the source of the Coulomb potential %z/r; the last one,
valid for N=Z only, uses Eq. (65). [The comment to that egquation says
that (229) identifies the interaction energy between the nuclear charge
and the electrons:

9
ENe = ZEEETF ’ (2-230)

which, according to (1-96), is a general statement, not limited to the
TF model in its validity.] Now,

= 32 = 370
Epp(2,2) = 7(ZBZ+N3N).ETF(Z'N)I[\I=Z“ 7ZazETF(Z'N)l[q=Z

7/3

Z ’ (2-231)

[
|
~Jw
W

which identifies the constant C. This is, of course, the result that
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we had found earlier in Eq. (67).

The first of our "virial" theorems, Eq.(223), has the conse-

quence
E, = 2(E;=¢N) = 2(EBy, -E) (2-232)
or,
2
By =3 Bpp v (2-233)
and
E, - LN = % Epp - (2-234)

For a Coulomb system, like the one we are considering, one expects the

usual theorems about the kinetic and the potential energy:

E . =-E ’ Epot = 2ETF . (2-235)
Indeed, they emerge from the relations that we have found so far. It is

and E = E

essential to remember how E1 and E2 are composed of Ekin pot Ne

+ E
ee

(2-236)
By =~ Bee
Note in particular the double counting of the electron-electron energy

in E1. With (230) we have

N = g0 -
Epot = Ene * Fee T Zaztrr T By
(2-237)
= (2% + NY)E._ - (E,-ZN)
9% 3N’ TTF 2 ’

which makes use of (225). Now Egs. (226) and (234) can be employed fo
produce the second statement of (235), which then implies the first one
immediately.

The relative sizes are

&
e}

T P e (= 1 .
ce * Prin ¢ (“Byg) = (= 3Epp=iN): (-Egp): (= 3Epp+LN)

=1 : 3 :7 for N = Z, when ¢ = ©
(2-238)



71

Tn words: the electron-electron energy of a neutral TF atom is one third
of the kinetic energy and one seventh of the (negative of the) nucleus-
electron energy.

For ions, there is less specific information in Eq. (226). It
merely implies that ETF(Z,N) can be written in the form

7/3

_ : N -
ETF(Z,N) =7 x [function of Z] . (2-239)

This invites introducing a reduced binding energy, e(g), that is a func-

tion of g=1-N/Z, the degree of ionization:

7/3

- .- Z -
ETF(Z,N) = elq) . (2-240)

We know e(q) for g=o, i.e., N=Z

~Jw
o
~

e(o) = (2-241)

which is simply Eq. (231). The factor multiplying e(qg) in (240) is the

same as the one in Egs. (108) and (138). The maximum (minimum) property
of the TF potential (density) functional is, therefore, here expressed
as

1 Ta(e q q(1-q)
7z 7 JaxIET G MR e SR

(o]
: elq) 2 (2-242)

- {% fax x1/3[g'(X)]5/3 + glo) + % faxlg(x)1?}
o o

The competing g(x)'s are hereby restricted by [Eqg. (98)]

fax xg'(x) = 1-q , (2-243)
o

whereas
f(x=0) = 1 . (2-244)

The egual signs in (242) hold only for g(x)=f'(x)+q/x,, when f(x) obeys
Egs. (59) and (60), which also determine xg.

We can relate e(g) to x5(q) by recognizing that Eq.(225) says
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7/3 4/3
—5%—(- —Z——a—— el(q)) = E‘E_E% elq)
(2-245)
= - C = - Z4/3 _..q—
a  x5(q) !
thus,
a = - 9 -
a9 e(q) X5 (@) . (2~246)
Conseguently,
3 q
= = — 1 q' -
e(q) = 5B idq @ (2-247)
and
1 '
el(q) = édq E;TETT ' (2-248)

of which the first one should be applied to weakly ionized systems
(N$Z, gzo), whereas the second one is designed for highly ionized atoms
(N<<Z, q§1). In Eqg. (248) the obvious statement

e{g=1) = o (2-249)

has been used; it says: no electrons - no binding energy.

For ions, Eg. (229) gives

5 _ z
ZygBpp = - Z(ViTE )|+ cz
r=o
z7/3 (2~250)
= So—lfy o) + 21,
=) o
‘so that Eq. (226) translates into
3[-£" g9’ (2-251)
7e(q) = 3[- q(O) - ESTET] .

By writing a subscript g we emphasize the g dependence of fq(x) and its

initial slope fé(o). The comparison of (251) with (247) results in



2 gq 1
_f! = - v _9g
fq(o) B + %o (@) 3 édq %ol
g (2-252)
=B + qu' q' 773 d [—~—7———————] .
o x, (g’ )

The latter equality is verified by performing a partial integration.

Since -fé(o) increases with increasing g, we learn here that

d

[q'/3

x5(@)] <o . (2-253)

&1

We observe in these relations, that in studying ions the cen-
tral quantity is x5(g). It is basically available from solving numeri-
cally the differential equation for fq(x), Eq. (59):

3/2
- -[-f—q‘—’;}lz— (2-254)

f“
q(x)
with the boundary conditions (60):

£q00) = 1, fq(xo(q)) =0 , —xo(q)fé(xo(q)) =g . (2-255)
Nevertheless, in the two limiting situations ggl1 and qz0 it is possi-
ble to make precise statements about the analytic dependence of x,(q)

on 1-q(=N/Z), or, g, respectively. Let us first concentrate on highly

ionized atoms, agi.

Highly ionized TF atoms. In the limit of extremely high ionization,

N/z+o, the interelectronic interaction becomes insignificant as com-
pared to the nucleus-electron interaction. In this situation V is sim-
ply the Coulomb potential -Z/r, and we are dealing with Bohr atoms,
which have been studied in the first Chapter. We concluded already, in
Eg. (46), that then

1/3

E F(z;N) = —ZZ(%N) for N/Z + o . (2-256)

As a statement about e(g) this reads

2/3

et@ = ad-1"3 = 382319 1/3
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for g » 1 . (2-257)
After employing Eqg. (246) we find

/3

xola) = (20-01%3  for g1, (2-258)

which is recognized to be Eq. (1-35) when ;=(Z4‘/3

/a) (a/x,), etc., is in-
serted there.

If N/Z is not that small, Eq.(257) and (258) acquire correc-
tions that account for the repulsion among the electrons. A systematic
treatment proceeds from noting that f£(x) is not the best suited para-
metrization of the potential for the present purpose. It is advantage-

ous to introduce another function ¢(t) by means of 13

Z-N

Vir) + ¢ = - — ¢(r/ry) , (2-259)
or, recalling ¢ = (Z-N)/r, [Eg.(55)] ,
V+r=-7¢ .(E..(ti)_ , t:r/ro = X/XO . (2-260)

Because of the great similarity between the definition of f(x) in (57)
and the one of ¢(t) in (259), the two functions are simply related to
each other:

f(x) = q ¢(x/x5) , ¢(t) = fltxy) . (2~261)

Qim

Consequently, ¢(t) obeys the differential equation

" (£) = A liif%};ii : (2-262)
and is subject to

6 10) =l s smso ey =1, (2-263)
where A=A(q) is given by

v = a P @1¥? . (2-264)

As a consequence of (258), A is small for gg1 :
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6

A= w o . (2-265)

N2

(1-q) =12

Why is it fitting to switch from f(x) to ¢ (t)? The reason is that the
appearance of )\ in (262) offers the possibility of expanding ¢ (t) in
powers of A, whereby the smallness of )\ promises a good convergence of
the expansion.

The differential equation (262) and the boundary conditions

at t>1 in (263) can be combined into the integral equation

[0, (£1)13/2
o, (E) =1 =t + 2 jdt (£'-t) ——7— . (2-266)
tl

where we wrote ¢A(t) in order to emphasize the A dependence of ¢. After
solving this equation for a chosen A, the corresponding value of g emer-
ges from

1
2= 0000 =1+ Jar £ 2, 0137 (2-267)
o

In the first place, one obtains 1/g as a function of ), from which A(g)
is to be found in an additional step. Then Eqg. (248), here in the form

1 1 7/3
elq) = qu'IKTg—;;§7§ , (2-268)
q q'

supplies the desired e(g). The evaluation of this integral is eased
by writing it as an integration over ) instead of g, since then g(})

enters, not X(g). The rewriting begins with

o 4/3
-  da(x) [g(a")]
elq) = [ ax -
M) dx A,2/3
(2-269)
Ma)
-3 e T Fomwon ™)

in view of this implication of Eq. (265) :

2B a3y = 73 a-n- f%x+...17/3) -
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) ; = o for i=0 ’ (2-270)

a partial integration can be performed with the outcome

7/3

A
_3_1d? L2
ST T !

@ q_qn1?/3

q)
dx ——TS-F— . (2-271)

An alternative expression makes use of (251); here it reads

4/3
e(q) = % —qT-j (—¢;\(o)—q) ' (2-272)
[x{a)]
where
, 1 10,0132
-¢3(0) =1 + A édt 172 (2-273)

is the initial slope of ¢A(t)' Note that the equivalence of (271) and
(272) allows to relate ¢i(o) to ¢,(0) = 1/q(}) [this is Eq. (267}]1:
1-164(0)177/3

A
Y30 4 % 223 Jax 573
)

o

=3 (0) = [, (0)] b, (2-274)

which is a useful equation for checking against algebraic mistakes.

Let us now, indeed, expand ¢, (t) in powers of 3,
by

M

¢k(t) =1 -t + Ak ¢k(t) . (2-275)

k=1

This, inserted into (266), implies

3/2

oo 1 ©
%::A£¢£(t) = fatr ety £ T/ 20oed K o (091372, (2-276)
=1 t k=1

The technique that produced the recurrence relation for the Sp in Eq.
(174) can be applied here, too. We find

;
6, (t) = fatr (er-tyer "2 (e 32 (2-277)
t
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and
! 172 &1 370 3/2-3
9, (t) = fat' (t'-t)t’ > (L) (1-t) J

(2-278)

-3 £-3
x > _ . &y (€' )eeety (€98, 4 ¢ .. .4k,
k=1 k=T 3 1 J

for 4£=2, 3, ... .

The first few ¢£(t) can be expressed in terms of elementary
functions; unfortunately, the degree of algebraic complexity increases
rapidly. Let us, therefore, confine ourselves to explicitly stating on-

ly ¢1(t) as it emerges from (277)

¢1(t) = (% - %t)arccos(t1/2) + (% + %t - %tz)t1/2(1_t)1/2.
(2~279)
In particular, we have
1. .1/2 3/2 _ n
¢,(0) = fat £/ 7 (1-t) =36 (2-280)
o]
1
-3 (o) = fat 210372 %;
o]
Equation (279) is utilized in
. 1 2
by0) = 3 far 202y ) < 2 23T (2-281)
o]
and
1 _ 2
~4300) = 3 fat 72 (1-1) /2 o (0) = 5 - 3L . (2-282)

o}

We are now prepared to employ Eg. (267) in order to
find the leading corrections to (265), (257), and (258). From

1 _ 1 _
a —m =1+ (1-q) + (1_q)2 t ..

(2-283)

9,(0) =1 + ¢, (o)1 + ¢2(o)x2+ e ,
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we get
1 cbz(o)
Alg) = 7T (1-g) [1+(1- ——) (1=q) + ... ]
1 [¢1(o)]2 (2-284)
= Bagnre- 220 ¢ L1,
15m?
or
M = BN - 212 Xy oo dy2)) for w/ze<r
15n?
(2-285)
Then, using either one of the Egs. (268), (269), or (271), we find
el@ = 2@ - 31-01- 28 (1-q) + ...
4512
(2-286)
_3.m2/3 N, 1/3., .. 256, N N, >
=19 Pn-a- 20 Feoph
Also, from (264) or (246),
xo (@) = (-0 12314 a- 224 (1-q) + L.
45n (2-287)
16 N,2/3 1024, N N, 2
(— %) [1+(3-———) = + 0({z)*)] .
n 2z 4512 Z Z
The numerical versions thereof are
A = 5.093 %(1+o.5416 g .,
(2-288)
e = 1.0135(%)1/3(1~0.4236 Yo,
xo = 2.9600 2 3 (1v0. 6040 B L) .

Here then is the modification of Eg. (46) that we promised
at that time:

- o233 1/3 ., 256N
ETF(Z,N) = -Z (2N) [1-01 — .1

= + ..
T (2-289)

for N<<Z ;
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it is obtained by inserting (287) into (240).
A simple check of consistency is provided by (253). This

states
L @ <o (2-290)
dg !
or,
d__ \(g=1-N/Z) > o (2-291)
d(N/z) :

A quick look at (285) shows that this is true, indeed.
We close this section on highly ionized TF atoms with a dis-
cussion of the relative sizes of E

kin’ Eee
able to apply Eq.(238), we need gN. It is given by

, and ENe' In order to be

LN = —NJL E..(Z 6N)

3N TTF
(2-292)
- Lt VP 124 v,y
45712
so that Egs. (236) and (234) produce
E = - 4E._ - CN
ee 3°TF
(2-293)
= 223w V3 238, N
451?

The interaction energy of the electrons with the nucleus is given by
[see Eg. (230)]

_ 5 0
ENe = ZEE ETF(Z,N)
(2-294)
=222 3m Pn-g - 228 Ny
451°

whereas the kinetic energy is simply the negative of ETF’ as is ex-
pressed in Eqg. (235). Consequently,

E
ee 1 128 N N

—_ = (3 - ) &+ 0062, (2-295)
Eve 2 45n2 z

which states that Eee is negligible in the limit of extremely high ioni-

zation. [We have already made use of this (physically obvious) fact re-



80

peatedly; see, for example, Eq. (256).] Together with the neutral-atom
statement of (238), we have, therefore,

1/7 for N = Z
ee =
“E ) (2-296)
Ne 0.2118§ for N<<z

Likewise, one obtains

3/7 for N =12

E .
_E;n = ) (2-297)
e %(1-0.21185) for N<<Z
Z
and
E 1/3 for N =12

#

- . (2-298)
ino 0.4236) for me<z

Weakly ionized TF atoms. As ) increases, ¢A(t) grows larger for all

t<1, as is evident from Eg. (262), or Eg.(266). Thus q=1/¢A(o) decreases,
finally reaching g=o for the critical value

A = alqg) . (2-299)
q»o
Consequently,
x,(q) = q_1/3[>\(q)]2/3
(2-300)
=z A2/3 q—1/3 for g0 ,

so that Eqg. (247) implies

3.472/3 /3 ¢

elg) = %13 -3 or g o . (2-301)

Accordingly, we have in the limit of very weak ionization

7/3
e - 32 70 _ 42/3 /3,
Epp (2,N) = = 5 =——[B - A g ’"1=
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B z'/3 - 4723 g /3 (2-302)

If we insert Eqg. (301) into the inequalities of (242), suitably chosen

trial functions f(x) and g(x) supply bounds on A_2/3. Details are given
in Problem 10, from where we cite
0.0946 < A72/3 < 0.1008 (2-303)
or,
A72/3 = 0.0977+0.0031 (2-304)
2/3

which tells us that A~
TF atom has, therefore, practically the same binding energy that has

is about six percent of B. A weakly ionized

the neutral atom. In other words: the outermost electrons contribute
very little to the total binding energy of the atom.

In the limit g+o, the relation between f(x) and ¢(t) becomes
singular. We cannot give sense to the right hand side of

f£(x)] =F(x) =qg¢ (x/x_(q)) | (2-305)
T g0 Ala) o g+0

[Eqg. (261)], because xo(q+w) = « sgueezes t=x/xo(q)into an infinitesimal
vicinity of t=o. There is, nevertheless, a sensible limit to ¢X‘t) as
A approaches A . We write o(t) for this ¢A (t). It obeys the differen-

tial equation

3/2
o (t) = o L2 , (2-306)
t
and is subject to
®(1) = o , o' (1) = -1 , (2-307)
and
d(t) » e as t » o . (2-308)

Although &(t) is somehow corresponding to the situation of neutral TF
atoms, the trouble of Eg. (305) signifies that it cannot be used as a
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parametrization of the potential V(r). Fortunately, there is still a
use for Egs. (306) through (308), in as much as they offer a simple and
highly precise method for calculating A . Here is how it goes: ¢ (t)
possesses an expansion in powers of at®, with a yet undetermined con-

stant o and
o =74+ =2(7+/T3) (2-309)

of the form

144/ A% 9 o
d(t) = —[1-0tC + —F—(at™) 2 + ...]1 , (2-310)
t? 12+402

which is, of course, an immediate analog to Egs. (180), (193), (192),
and (190). The coefficients of the powers of at® obey the recurrence
relation (196) after replacing v by o. The (numerical) range of conver-
gence of this series is atcéo.G, or, anticipating that o is close to
unity, t50.94. On the other hand, ¢ (t) can also be expanded in powers
of (1-t) /2,

4l 4\ . . T/2 . 2A . .. 9/2
o(t) = (1-t) + 5-(1-£) /% &+ S (1)
(2-311)

2
11/2 +

6
175(1—t) + ... R

s
+ —6—6—(1_t)

this series being convergent for (1—t)1/2 £ 0.35, or, t % 0.88, when
A is within the bounds of (303). There is a range of t around t=0.9
where both expansions are converging. This allows to determine A and a
numerically by forcing the two expansions to agree within the accuracy
to which they represent solutions to Eg. (306). Such a calculation16

resulted in
A = 32.729416116173 (2-312)

and

a = 1.0401806573862 . v (2-313)

Naturally, physics does not need this many decimals; they are reported
only in order to demonstrate the marvelous precision of this simple
method. Please note that one cannot compute B and 8 in a similar way,
because the expansions (164) and (193) converge for x£0.15 and x%30,
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respectively. There is no overlap.
The A of (312) yields

A"2/3 _ g.0977330 (2-314)

so that we obtain, from Eg. (302),

7/3

~Ey (2, ) 20.768745 z - 0.047310 (z-x) /73

for N Z . (2-315)

X
The correction to the neutral atom binding energy is rather small; even
for N=2z/2 it is only about one percent.

Since A is large, the series of Eg. (275) does not converge
rapidly (if at all) for weakly ionized atoms, and the switching from
f(x) to ¢{t) is pointless in this situation. Here we make use of the
fact that the difference between F(x) and £ (x) is small, when gzo and
x<xo(q). In particular, fq'(o) does not differ significantly from -B,
so that fq'(o)+B is a possibly useful expansion parameter. We use it
in making the ansatz

f (x) = F(x) + }::[f'(o)-+B]k £ (x) R (2-316)
! x=1 ¢ k
where the fk(x) are subject to

fk(o)

[l
[o]
th
[o]
b

k=1,2,... (2-317)
and
f%(o) =1 ’ fi(o) = 0 for k=2,3,... . (2-318)

To first order in fq'(o)+B, the differential equation obeyed by fq(x)

requires17

2
(42 _ 3E(x),1/2

o P f1(x) =0 . (2-319)
One solution is

£ (x) = F(x) + +xF' (x) = —— S (x%F(x)) (2-320)

o 3 2 ax '

3x
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because
2
daz _ %[F(XX)]'I/Z 1 di 23| F(x)
dx? 3x2 X
2
=L | o B2 ey o (2-321)
3x? dx?
However, inasmuch as
£f (1) =1 £1(1) = --éB (2-322)
o ! o 3 !

fo(x) is not proportional to f1(x). The Wronskian of the differential
equation (319) relates the two functions to each other:

fo(x) f;(x) - fé(x) f1(x) =1 . (2-323)

This is equivalent to

£, (x)
d ~1 _ -2
a} fo(x) = [fo(x)] 7 (2-324)
which has the consequence
X 1
£,(x) = £_(x) . S (2-325)

<3[fu(X')]2

This does, indeed, satisfy the requirements f1(o)=o and f%(o)=1 , SO
that we need not add a multiple of fo(x) on the right hand side.

For large x, we have

_ 1 ad 22 d ..
folx) = —— gEl1446 (Y6 = =5 G-y (o) + ...
(2-326)
2 2 _
- 12)% w0 L (2)7 g (143)
X

which uses Eqgs. (180), (187), (184), and (192). This inserted into (323)
or, equivalently, (326) produces

1 o-3

1
— 2-32
I86 Y(y+0) X for large x (2-327)

_f1(x) =
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[oc = 7+y, Eq.(309)].
In deriving Eq. (319) the first order approximation (1+€)3

/2

= 1+%-e has been used for e=[fé(o)+B]f1(X)/F(X)- Consequently,

fq(x) = Fx) + [fé(o)+B]f1(x) (2-328)

must not be applied to XEX where e=~1. We can, however, supplement
(328) with

2

X
£ %) = al1- ) (2-329)

o
which is valid for X=X . [This is obviously no more than the first term
of Eq.(311) as it analogously appears in ¢x(t)]. Let us now join the two
1° The

three unknown quantities xo(q), x1(q), and fé(o)+B are determined from

approximations for fq(x), Egs. (328) and (329), at a certain x=x

the requirement that fq(x) and its two first derivatives are continu-
ous at X=X, . This can be done explicitly in the limiting situation of
very small ¢, since then both xo(q) and x1(q) are large, which allows
to employ the large-x forms of F(x) and f1(x). Thus, we have the three

algebraic equations

xc—3 <
. 144 . 1 _ _ 1
fq. s + [fq(o)+B] BT Yo © a1 XO) ,
1
: 432 (o-3)x7"*
. - ] — . = e -
£q y + [£5(0)+B] paviveo) a’x, (2-330)
1
£, (12)3 + [f'(o)+B] ._‘lf_ilo:i = 0 .
a q 488y (y+0) !
the last one uses (o-3) (0-4)=18. These three equations imply
X
1 _ o+3/2 _ y+17/2 _ 37+Y73 _
i; = 5z T i T 15— = 0.9488 ' (2-331)
and
_ o2 1/3 -1/3 _ -1/3
X, = g3z [96(0+2)1 77 g = 10.32 g , (2-332)
as well as
~£200) = B+ 2096)7 /3 gy (yi0) (042)73 73 -
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(2-333)

=B+ 8.05x107° g>°°?

whereby identities like o=y+7 and yvo=6 have been used. Of course, since
these results are based upon the simple approximations (328) and (329)
we should not take them too seriously. Nevertheless, their structure
is certainly right. For instance, Eq.{332) says that the combination
q1/3x (g) approaches a constant as g+o. This much we know already - the
constant is A2/3~10.2320. The estimate for A2/3 obtained in (332) dif-
fers from the actual value by less than one percent.

Something new is to be learned from Eq. (333). As a prepara-

tion, we differentiate Eq. (252) with respect to q:

e - _ /3 d -2/3 .,
ggl-fg)1 [—173—7—71 =q g (@] ; (2-334)

the latter equality is a consequence of the definition of A(g) in Eq.
(264). Now Eq. (333) implies that

@ £ @173 0 gD g3 (2-335)

We infer that

Aq) = A[1+(powers of q'/3)] ' (2-336)
for values of g not too large. Then, of course,

2/ Y/3)]

3 q_1/3[1+(powers of g . (2~337)

and

+ e +

A~2/3 q7/3 ,a

Y/3 2Y/3 ...] , (2-338)

ﬂq)=%B—% H+%q

which is an implication of (337) when it is inserted into Eq. (247). The
challenge consists in calculating the coefficients €4 €yr e which
determine the corresponding coefficients in (336) and (337). In parti-
cular, Eg. (246) supplies

2/3 —1/3 o Y/3 oty 2y/3 -1

x (q) = A [1+ ze,q'' 7+ ~e,q + ... =

(2-339)
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= /\2/3 q_1/3[1— %e1qY/3+((%e1)2— g;—Y<=.2)qu/3+ eell
Then
y@ = a3 @13/ (2-340)
= a0 e @3 4 35 Ge - Fle 2w 1,
and from combining (251) and (246) with (338)
—-f1 = _7_ q2 = l - —g'—
fq(o) sela) + X (@) (3 qdq)e(q)
(2-341)
_ _.10/3 &, -7/3
= dq[q e(q)]
10/3 4 3, -7/3 3 ,-2/3 Y/3 2Y/3
aa( Bg + 5 A [1+e1q te,q +...1)
or,
-2/3 3 3
-£5(0) =B+ 1 4 343, + 20, 24 L1 L (2-342)

The comparison with (333) yields a first estimate for e,

e, = 0.75 (2-343)
which, in view of the crudeness of the approximation used in arriving
at (333), cannot be expected to have more significance than stating

the order of magnitude. (We shall see below that the actual value is
about ten percent larger.)

A Eystematic computation of e,r € starts from the ex-

2’
pansion (316). Comparing powers of fé(o)+B in the differential equation

obeyed by fq(x) produces

3/2-3 £-3+1 £-3+1

£ (x) = i(”.z)[“x” £ (x)
DI e D B N
j:

Kp=T k=

xoofy (K)8p o ik, . (2-344)
J 1 J
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The j=1 term on the richt hand side is brought over to the left, so
that '

2
- - 2FETR X1E, (x)
dx?

B £ 3/2 [F(x)]3/2_j £=9+1 L=3+1 )
—Z( j ) ‘—;WZ— g vee E fk1(x, e
j=2 k1=1 kj=1

(2~345)

x...f (x)6
kj }i,k1+...+k:.I .

This right hand side contains f1(x), ey f£_1(x) but not fz(x). The
solutions to the corresponding homogeneous differential equation are
fo(x) and f1(x), given in Egs. (320) and (325). With their aid we can

construct Green's function G(x,x') which satisfies

[—gg - %/lei?x] G(x,x'") = &(x-x') ,
dx

(2-346)
G{x,x') = o and g%G(x,x') = o for x=o0
It is given by
Gix,x') = [fo(X')f1(x) - fo(x)f1(x')]n(x—x') . (2-347)

Thus %
fz(X) = gdx'[fo(x')f1(x)-fo(X)f1(x‘)]

2
xS -3FEVR) £,(x)] , (2-348)
ax’

where we refrained from explicitly inserting the right hand side of
(345).

The use of Eg. (348) does not lie primarily in explicitly
calculating fz(x), f3(x), etc. but in studying their structure. Recall
that F(x) can be written as

Flx) = 22 gy = 14 ch[y(x)kljl (2-349)

-

x* xaij+k=1
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which is repeating Egs. (180) and (123). As a consedquence, fo(x) has the

form

£, (x) = 144 %vvy(x)[1+(powers of v(x))] . (2-350)

X

@

Inserted into (325) this implies

'S

1 3 1 )
= —= —_ + ’ 2-351
f,l (x) s 0 )u BY( ) x- [1 (Powers of y(X))] ( )

of which we have seen the leading term in (327). Now we employ the re-

currence formula (348) to conclude that

_ 144, 3 1 <14
fFolw) = 18- 2 %7174, [1+ (powers of y(x))1 ,
x (12)
(2=-352)
where the constants dﬁ obey
a. = -1 (2-353)

1

and

L 3/2 £=3+1  £=3+1
dﬂ = ZO+Y)(Z—1 ; ( ) E "'E dk1 dk 62 k +...+k.
3=2 k=T k=T J

(2-354)

This we recognize to be the recursion for the Cx of Eq.(196), after ¥
and o are interchanged. Consequently, the d,s are the coefficients that
appear in the expansion of Eg. (310). That is

144/>\2
o(t) = ——2 [ 1+ zz:d @tH¥y . (2-355)

This connection between the fz(x)'s and ¢ (t), which is, of course, not
accidental, is the clue to computing €1r 85y .- of Eq. (338). We reveal

its significance by inserting Egs. (349) and (352) into the ansatz (316},

[xg(a)1°
= E_é‘_ t 3 X
fq(x) T [1+ E 1( [£ (0)+B](12)‘+ BY(Y+0) x (q)) k]+
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+... (2-356)

where the ellipsis indicates the terms containing "powers of y(x)."

After introducing hq by
e = 1 4 o -
fq(o) = B + =(12) GBY(Y+G)[hq/XO(q)] ’ (2-357)

Eq. (355) is employed:

_ 144 > x 1ok
£qlx) = =01 > & lalhy 5195

k=1 -
(2-358)

+..

A 2.3 X
i d e tee
Axtq?! Pg *Og xo(q)) ’
where [)\(q)]2=q[xo(q)]3 is used. What is exhibited in (358) is the part
of £ (x) that goes with the zeroth power of y(x). Likewise, an arbitra-

ry power of y(x), say [y(x)]m contributes

[y(x)]m 13% [c. + (powers of a(hqx/xo(q))o)]

m
X
(2-359)
= A 42 m X
g q[x(q)] hq c,ly (x)] wm(hq Xo(q))
to fq(x). The functions wm(t) thus defined are such that
144/72 s
Y_(t) = ——— [ 1 + (powers of at )] . (2-360)
m t3

We can now make explicit what supplements Eqg. {(358):
= A 42 13 X = m X
£q0) = alygy]® RO (g =gy + > cply 1Ty m (@]
m=1
(2-361).
Whereas (316) is an expansion that is expected to converge rapidly for

X not too close to xo(q), the series of (361) is the faster convergent

the smaller y(x) is. This identifies large values of x (i.e., xgx,) as
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the domain of application.
It is instructive to make contact with the original defini-

tion of 9 (t),

B(E) = 8y () (O] = 2 £ (ex (@) (2-362)

g->o q g+ro
[see the comment to Eg. (305)]. Since

y(ex (@) | =8lex @)™ =o , (2-363)
q—}o q—)-o

the combination of Egs. (361) and (362) reads

(t) = h® o(h t)| , (2-364)
q 4 3o

from which we learn that

h | =1. {2~365)
9 gro

This tells us what e, is. Equations (342) and (357) together say

3 , 7 ,2/3 -0/3
e + 2e, qY/ +... = —[fq(o)+B] Y A / g o/
(2-366)
2/3
= ={(12) "aB (y+o) A [ﬁ——-—] '
! 3x (q)
or, after making use of q1/3xo(q)=[>\(q)]2/3
'* -
e v 2e, a2 v = TEh B (veo) 1723 (0150127300
(2-367)
Now the limit g+o identifies
e, = 22 B (yro) A72V/3 (2-368)

With a, B, and A from (313), (204), and (312), respectively, the nume-

rical value of e, is roughly 10% larger than the estimate of (343):
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e, = 0.825908 . (2-369)
Note that Eq. (368) reveals the physical significance of a and $; that
of B and A has been clear since Egs. (67) and (301).

The requirement fq(x=xo(q))=o relates hq to yo(q), given by

vy (@ = y(x_(q) = Blx_(@)]1"
© ° ° (2-370)
- ap=2Y/3 Y/3, A ,2Y/3
= BA q [XTET] '
inasmuch as x = xo(q) in Eq. (361) yields
°(n) +Zcm[yo(q)]m i (b)) = o. (2-371)

m=1

With the aid of ¢'(1)= -1 [which is Eq. (307)], we find to first order

in y (q), or, qY/3, respectively:

ho =1+ ¢y (@ ¢ (1) + O(YO(q))z)

q
(2-372)
=1 -8 A-2v/3 ¢1(1)qy/3 . O(qzy/3) )
where c,= -1 has been used. In conjunction with Eqg. (340) this has the
consequence
A 2/3,0 _ O _aa—2Y/3 v/3 c
(hq[_f\(q) ) = (1*‘(761 BA 11)1 (1))q +o..)
(2-373)
=1+ o@e -en 2y ang? v,
so that the order qY/3 in Eg. (367) is
- o _gp2Y/3 -
2e2 = ce1(-—7-e1 BA ¢1(1)) . (2-374)

To proceed further, we need to know ¢1(1).
The insertion of Eg. (361) into the differential ecuation

obeyed by fq(x) produces

2
== - 3 AATETEIEY g (8) = o, (2-375)
dt?



93

when terms linear in y(x) are identified. This is gquite analogous to
Eg. (319), so that

1

Yo (£) = tY[®(t)+-§t 3 (t)] (2-376)

is one solution of (375), the one corresponding to fo(x) of (320). The
Wronskian of w1(t) with wo(t) is

b ()9, E) =y @y, (8) = TEE) fao(ort?Y (2-377)

which makes use of Eg. (360) and the small t form of wo(t),

v () =t iz L (e (t)
= 2@ (2y2 8 116t%a, (@) 2+, L) (2-378)
= - %(%é)ZQAJtG+Y_3[1—2d2Cltc+..]
Equation (377) now implies
vy (E) = v (e) [, (1) /oy (1) - $(22) ao(ow)fdt (w AT

(2-379)

where w1(1) is determined by the t-o form of ¢1(t), statet in Eq. (360).
In connection with (378) this requires that the square brackets in (379)
possess the form

3 ~(o+y) )
th [1+ (powers ofat™)]

I

1 Y
3 vl 112 t!
v (/4 (1) - ~—w<o+w£dt [- 3(5)*ao _‘—_wC,(t')]z

(2-380)
t—2(c—3)

H

1
by (/9 (1) - %(ow){dt' (1+4d,0 €)

Y
1
12)20L0 t 2

1
-3 vppe 1,12 kYT sa_  ~2(0-3) o
aO(O+Y)1J_:dt (- 505 wo(t')] t (1+4d,a t7) }.
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In the latter version, the second integral is no longer singular at

t=o, since the integrand has the structure

{ ...} = a2t'®[const. +(powers of at?)] , (2-381)

which integrates to

1 1 .
farr { ...} = fat' { ...} + a*t‘[const.+ (vowers of at®)]
t o

1
= fat' {...} + t-(O+Y)(ato)z[const.+(powers of at9)]

° (2-382)
The first integral in (380) is
7-20 7-0
3 1-t -t
" o O Iy ¢ 4dye 5]
(2-383)
3 o+Y 3 _—lo+y) oty _.O
a0(1+ud2 7 a) G t (1+4d2 Y at™) .
The conseguence of (380) is therefore
3 oy
v /0, (1) + o5 (14dd, —=0)
(2-384)
1 ¥ 1+4d,at®
3 1,12, t 2 2
- = (o+y) [dt{[- 5 (-2 %00 1% - }=o0
ao 5 3YVA wo(t) to+Y+1
With the aid of wo(1) = -1/3 and, from (310) or (354),
9 9/2 3 ¥
= = = = 2-385
d2 12+ 402 o(20+Y) 4 20+Y ! ( )
this says
=1 oty
w1(1) = ao(1+3 257y a)
(2-386)

o+Y ., O
1 1+3 at Y
P DY fap {20ty 112y, t g2
ao o+y-1 3'x Y (t)
o t [¢} [}

This expression does not lend itself to further algebraic simplifica-
tions.

The numerical value of w1(1), obtained by a method analo-
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gous to the one that produced A and o in Egs.(312) and (313), is
w1(1) = 0.3216868353717 , (2-387)

which illustrates once more the high precision of the algorithm. The

Wronskian (377), at t=1, is employed in finding

i

o = @) - 21 as (o) (2-388)

0.2869164052321 ,

whereas the differential equation (375) supplies

Y= 2y ) = Y () ()

(2-389)
= 0,002936027410
The algebraic statements of (388) and (389) can be combined into
0o = 233 alory) + & vr(1) (2-390)
1 A 6 "1 !

where, because of the smallness of ¢{11), the latter part is only about
0.15% of the sum. In conjunction with Eg. (368), this implies

A—ZY/3 1 -2v/3 "

_6 n —
B Y, (1) == e + ¢ B A (DI (2-391)
which we insert into (374) to find

w."1)
c+6 2, 1 "1

e, =28 oy L 1 g, (2-392)

2 14 1 o-6 2(11\2)qa(0+Y)

here, the wf11) term represents a 0.5% correction to

o+6 2

ey, = 37 e = 0.671015 , (2-393)
resulting in
e, = 0.667554 . (2-394)

Naturally, the subsequent coefficients in (338) can be computed the
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same way.

The results of this section are summarized in

~Epp (2,N) = 0.768745 z7/3
~0.047310 (z-N) /3 [1+0.825908 (1-n/37) 0+ 257334
+0.667554 (1-N/z) 0+ 214668
el (2-395)

which is the weak-ionization analog to the high-ionization result of
Eg. (289) [and its supplement of Problem 7].

One last remark is in order. How could we cget around without
making explicit use of the reqguirement —xo(q)fé(xo(q)) = g ? As applied
to (361) it reads

[l = m 1 -
thD (hq) + §1cm[yo(q)] [hqwm(hq) Ym wm(hq)]
m:
(2-396)
Alg) -3
( ’T\(L 1 hq

Indeed, this together with (371) gives A{g) as a function of yo(q),
which can be converted into X (g) as a function of g, whereafter Eg. (340)
identifies e1, €5 etc. Fortunately, we came to know the relation bet-
ween fd(o) and hq in Eq. (356), so that we could avoid the more tedious

(though, of course, equivalent) procedure based upon Eq. {396).

Arbitrarily ionized TF atoms. We have spent some time on studying the

analytic form of such quantities like elq), xo(q), and —fd(o) as func-
tions of g - both for gg1 and for go, which are the situations of hi-
ghly and weakly ionized atoms, respectively. These considerations, how-
ever, did not tell us how good are few-terms approximations as in Egs.
(289) and (395). Let us, therefore, make the comparison with the re-
sults of numerical integrations of the differential equation obeyed by
fq(x) for various values of g.

We present in Table 2 the outcome of such calculations for
the nineteen g values 0.95,0.90,...,0.05 , supplemented by what we know
for g=1 and g=o. The fractional binding energy
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e(g)/e(o) = ETF(Z,N)/ETF(Z,Z) (2-397)

is additionally plotted, as a function of g, in Fig.4. We observe that

10

08 |-

06F
o
[ /)
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q

Fig.2-4. The fractional binding enengy e(q)/e(o) as a function of q.

removing 30% of the electrons from the neutral atom, reduces the binding
energy only by 1%; a reduction by 10% requires the removal of 65% of the
electrons. Even when only 5% of the electrons are left, the binding ener-
gy is still more than 50% of the neutral-atom one. Here is the quanti-
tative version of the qualitative remark that the innermost electrons
contribute most to the binding energy, the outermost least.

From Eq. {286), (241) and Problem 7 we find that, for N<<Z,

% =1-0.4236 3 + 0.0909(§)2+ ee. . (2-398)
1.489(N/2) .

The successive approximations that this represents are compared to the
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Table 2-2, TF quantities xo(q), ~f€(o), and elq)/e(o) for N/iZ=
1-q = 0, 0.05, ..., 1.

N_/Z X (a) -fq'(o) el(q)/e(o)
0 0 © 0
0.05 0.416269 3.020996 0.537084
0.10 0.685790 2.233243 0.662517
0.15 0.934348 1.952470 0.742539
0.20 1.179253 1.813524 0.800221
0.25 1.428919 1.734116 0.844082
0.30 1.689292 1.684993 0.878380
0.35 1.965691 1.653119 0.905616
0.40 2.263681 1.631819 0.927406
0.45 2.589715 1.617337 0.944875
0.50 2.951825 1.607410 0.958847
0.55 3.360561 1.600602 0.969946
0.60 3.830452 1.595965 0.978668
0.65 4.382486 1.592853 0.985410
0.70 5.048683 1.590815 0.990503
0.75 5.881272 1.589530 0.994227
0.80 6.973385 1.588763 0.996824
0.85 8.513784 1.588345 0.998508
0.90 10.92728 1.588149 0.999475
0.95 16.10273 1.588081 0.999908

1 [ B=1.588071 1

actual values in Fig.2-5. We see that the guadratic
duces the actual data almost perfectly even for NgZ.
inclusion of the next term, 0.0024369(N/Z)3,18would
unrecognizable in Fig.5.]

In contrast, the performance of the

pansion [Eqs;(338), (369), and (394)1,

approximation repro-
[Incidentally, the

make the deviation

weak ionization ex-

1-elgl/elo) . 4 4 o.8259 73 + 0.6676 g2¥/3 + ... ,(2-399)
0.06154q

is significantly worse; see Fig.6. Obviously, the coefficients in this

expansions do not get small as rapidly as the ones in (398). One needs

a few more terms in (399) for a high guality approximation over a large
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Fig.2-5. Comparison of the Linear and quadratic approximations

of Eq.(398) with the actual numbens (crosses).
Y/3. At this time, only the numerical value of e, =0.550086

has been calculated19, whereas €yr g1 ... are not known as yet. This

range of g

value for e, leads to the dashed curve in Fig.6.

3

Validity of the TF model. The detailed discussion of the TF model,

which touched upon all its important aspects, has made us familiar with
the properties of TF atoms. In order to improve the description we must
now find out what the deficiencies of the model are.

The approximations that define the model are those which
brought us from Eqg. (40) to Eg. (41). They are: (i) the (highly) semi-
classical evaluation of the trace in Eip according to the recipy of Eg.
(1~43); and (ii) the disregard of electron~electron interactions ex-
cept for the (direct) electrostatic one (in particular, we did not care
for the exchange energy). Of the two, the first one is the more serious

one, because it leads to an incorrect treatment of the most stronaly
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Fig.2-6. Comparison of the Linear and quadratic approximations o4
Eq.(399) with the actual numbers (crosses). The dashed curve £is

the cornnesponding cublc approximation.

bound electrons, the ones close to the nucleus that contribute most to
the energy. To make this point, let us recall that the application of
Eg. (1-43) {i.e., the evaluation of traces of unordered operators by phase
space integrals) is justified when commutator terms, as they appear in
the ordering process, are negligible. In the present context this re-
quires that the commutator of the momentum and the potential, which
equals i times the gradient of the potential, be "small." Small com-
pared to what? Physically, this oradient is small if the potential does
not change significantly over the range important for an electron. Sin-
ce the quantum standard of length, associated with an individual elec-
tron,is its deBroglie wave length, X, a small gradient means

(A Vv << |v (2-400)

Substantial changes in V occur on a scale set by the distance r, so
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that criterion (400) reguires that
A << r . (2-401)

On the other hand, ) is the inverse momentum (we ignore factors of two
and pi for this kind of reasoning), which in turn is given by the square
root of the potential, see Eg.(42). In short, we have, as criterion

for the validity of the TF model, the relation

r Ve[ >> 1 . (2-402)
Upon introducing TF variables, this reads

Z1/3 1/2

| x fq(x)l >> 1, {2-403)
First, we learn here that, for a given x, the TF model is reliable only
if Z is large enough. Second, there is information about the regions
where the approximation cannot be trusted.

At short distances, fq(x) practically equals unity, and the

_2/3, or r v

left-hand side of (403) is of the order of one, when x Vv %
1/Z. Consequently, there is an inner region of strong binding where the
TF approximation fails. Indeed, the innermost electrons are described
incorrectly in the TF model.

4 Then, near the edage of the atom at X=X, f (x) has the line-
ar form of Eq.(329). Now the left-hand side of (403) is of the order of

one, when [x-xo[mZ_2/3

/q%, or lr—r0|m1/(Zq2). Thus we find the outer
region of weak binding to be also treated inadequately in the TF model.
The situation is, of course not basically different for neutral atoms,
although the'argument has to be modified. For g=o, the TF function F(x)
appears in (403). Its large-x form F(x)n1/x® implies that the criterion
is not satisfied, once x is of the order Z1/3, or rnvil.

In Figs.7 and 8 plots of the radial densities
D(r) = 4nr’n(r) {2-404)

are used to illustrate these observations concerning the validity of
the TF model. Please note that the regions of failure shrink with in-

creasing Z. We conlcude that (in some sense) the TF approximation be-

comes exact for Z->°°.20

Nice, but in the real world Z isn't that larce, the more so
1/3

2 , which obviously is the relevant parameter. It ranges merely from
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Fig.2-7. Regions of nelability and faillure of the TF model in
an Lonized atom {g=1/2), ilLustrated by the radial density as
a function of the TF vardiable x.

one to roughly five over the whole Periodic Table. Clearly, modifica-
tions aimed at improving the TF model are called for. All following
Chapters are devoted to their discussion. The TF atom is thereby the
leading approximation, and the supplements to the TF model will all be
regarded as small corrections. For this reason it was necessary to
spend so much time with a detailed study of the TF model.

It is important to appreciate that the density, which was
used in Figs.7 and 8, is the right quantity to plot for this purpose.
The TF prediction (51)

_ 1 3/2
nTF(r) = ;[—2 (V+z) 1] (2-405)

= —l—(ZZ/r)B/2 for r+o
312

is c¢learly very much in error at small distances. Also, for an ion of
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degree of ionization ¢, we obtain

1 3/2
—I[22q(1-r/x )] for rgr,

2
3n (2-406)

n

g (1)

n
o

nTF(r) for r>r g

for the density around the edge of the atom. This is a sharp boundary
instead of the quantum-mechanically correct smooth transition into the
classically forbidden domain, where the real density decreases exponen-
tially. In the situation of neutral atoms, the large-r behavior of the
density is

.1 .2 144.3/2 _ 243 _ 1 _
nTF(r) = [2 s ] =g n— (2-407)

3n? X r

where the 1arge-x‘form of F(x) is employed. Again, this is not the cor-
rect exponential dependence on the distance.
The principal lesson consists in stating that the real den-
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sity is not of the form
n = n + ( a small correction) . (2-408)

TF

As a consequence,'the TF density functional of Eq. (95) cannot be used

as the starting point when looking for corrections. In contrast, the

TF potential is very much like the real effective potential, inasmuch
as it behaveé like -Z/r for r+»o and like -(%Z-N)/r for r+«, being struc-
tureless in between. The structure is in the second derivative of the
potential (related to the density), not in the potential itself. There-
fore, we must find modifications of the TF potential functional of Eq.

(45) in order to overcome the insufficiencies of the TF model. If this
is so, why does the vast majority of people working on TF theory use
the language of density functionals? As far as I can see, the reasons
21

the

principal variable was the density, whereas the effective potential

are historical ones. In the original work by Thomas and Fermi

played the role of an auxiliary quantity. This remained so over the
years in basically all presentations of the subject, of which Gombas'
textbook22

henberg-Xohn theorem23 (of which we shall sketch a proof in the next

is the most prominent one. Then, in 1964, the socalled Ho~

section) triggered the development of a density functional formalism.
Because of this theorem, density functionals appear to be well foun-
ded theoretically, in contrast to formulations based upon the concept
of the effective potential, which is widely regarded as an intuitive
approach (our introduction certainly is in this spirit) lacking a "ri-
gorous" theoretical foundation. In the following section, which conti-
nues the "general formalism" that we left after Eq. (40), we shall see
that this preconception is wrong. The potential functional is as well
defined as the density functional, and for the reasons given above it

is the preferable formulation in atomic physics.

Density and potential functionals. For a proof of the aforementioned

Hohénberg-Kohn theorem (we shall state it below), we return to the ma-
ny particle Hamilton operator of Eq. (1-7), where we replace the nucleus-
electron potential -Z/r py an arbitrary external potential Vext(z),

and split Hmp into the kinetic energy operator Hkin’ and the interac~
tion energy operators He and He :

xt e

N N N
1 2 1 1

H = = p: ot v (r.) + % § —_— =

mp gDy 2 Y] Goy oext Y 287 gy
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(2-409)

Different ground states |¢o> will correspond to differing choices of
Vext® In order to simplify the argument, we shall assume that, except
for the irrelevant possibility of a reorientation of all spins, the
ground states are unique (a slight, and otherwise innocuous, change of
the external potential would destroy any degeneracy anyhow). Thus, the

density in the ground state,

n(rn = [(@E,) (@2 ... (@5 [<TITL Y, .. (v > (2
+ [(dF1) (@F)) ... (dEY) [<F3EIEL, . T v >
. (2-410)
+ J‘(d;.'l)- (drli] 1) |<;%I;él _]?I:]'_‘II IU) >|2

Nf(@FY) ... (dFY) [<EiEY, .., E v >

(the latter equality makes use of the antisymmetry of the wave function,
and a trace affecting the spin indices only is understood implicitly),
is a functional of the external potential V

ext®

. . N .
Two different external potentials, Vext and vext’ will lead

to two different ground states |w0> and |$o>, since the respective
ext ° Vext + const.
is not interesting, since we consider only potentials that are physi-

Schrddinger equations are different. (The situation ¥

cally different). The expectation values of H p and ﬁmp are minimized
by lwo> and lw >, respectively, so that

—_ <$ w > < <a{ |;})‘ > (2—411)

<lpo| mp mp mp

and

<y bo> - <$oiﬁmp]$o> > <wOIH -N [wo> ’ (2-412)

olepl mp mp

which are combined into

<y -X lv,> < <V ?5> . (2-413)

o I Hmp mp O mp mp

Now we insert
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N
Hmp_ ﬁmp = Hext - iEjext = zz:(vext(rj)_ &ext(rj)) (2-414)
J=1

and obtain .

N
g¢o|Hmp-ﬁmp1¢o> =:§Z:](dri)...(dr&)(Vext(ré)— %ext(ré))
3=1

> >
X ]<r%,...,rﬁ[wo>|2

flaEn v, (E0- Y ENnE) ,  (2-415)

ext

and likewise for ]$o>. The implication of (413) is therefore

-V __ @NhE)- 5(EF)] <o (2-416)

f(dr')[v ext

ext

from which we conclude that n # n. Different external potentials not
only produce different ground states but also different ground-state

densities. Consequently, a given n corresponds to a certain Vext which

is uniquely determined by n. In other words: Vext is a functional of n.

And since the ground state [wo> is a functional of Vv it can be re-

ext’
garded as a functional of n as well. Then the expectation values of
Hey
Here then is the Hohenberg-Kohn theorem: there exist universal (i.e.,

n and Hee in the ground states are also functionals of the density.

independent of vext) functionals of the density E n(n) and Eee(n),

. ki
so that the ground-state energy equals

E(n) = B,y (n) + [(@Z)V_ (E)n(E') + E () (2-417)

where n is the ground-state density. The minimum property of <w[Hmp|w>
implies that the energy E{(n) is minimized by the correct ground-state

density; trial densities ﬁﬂ which must be subject to the normalization
j@EnsEy) =N, (2-418)

yield larger energies E(g) than the ground-state energy E(n). It is
useful to include the constraint (418) into the energy functional by
means of

E(n,z) = B, (n) + [(@&F)V__ (Z')n(E") + B (n)-

ext
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~z(N - [@)n) (2-419)

since this E(n,z) is stationary under arbitrary variations of both the
density n and the Lagrangian multiplier z.

Before proceeding to construct the related potential functi-
onal, a few remarks are in order. The Hohenberg-Kohn theorem is a very

general one; in particular, the specific forms of E and Hee never

enter. The price for the generality is paid in formké? a total lack of
knowledge concerning the structure of the density functionals Ekin(n)
and Eee(n). The theorem states no more than their existence. Obvious-
ly, the detailed form of these functionals must depend upon the speci-
fic Hkin and Hee that are investigated [one could, for instance, con-
sider relativistic corrections to the kinetic energy, or, in applica-
tions to nuclear physics, reflect upon fermion-fermion interactions
different from the Coulomb form of (409)]. Also, no technical proce-
dure is known that would enable us to perform the step from Hmp to E(n).
One must rely upon some physical insight, when constructing functionals
that approximate the actual E(n).

The kinetic energy in the ground state of Hmp of (409) is

the expectation value

N
- _ 1. .2
Brin = VolHinl¥o™ = Vol > 3pllv> (2-420)
3=1
which, in configuration space, appears as
1 > >
Epin = 7N /(@) [(dry) .. @@ Tz (215, )
PRvAl L 1 -
v N E3EIPRESR (2-421)

1]

I(d;') (di.)'n)%a (—fl_r") %l._v)'ll n(1)(_£|;r||)

Here, once more, the antisymmetrv of the wave function has been used,

and we have introduced the one-particle density matrix

(1) +|,+|| = a . % (Tu 7y T '*( ot _)-l
n (rt;r") = Nf(dr2)...(dr1§1)wo(r PTh e TRV (E T, D))

(2-422)

which is an immediate generalization of (410), so that the density
itself is the diagonal part of J1)(f';;"),
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n@) = V@ Ey . (2-423)

Let us now attempt to interpret n“)(}';;") as the matrix element of an

effective density operator,
(1)+ —}Il - +I 1 2 s +Il
nirt;rt) = 2<et n(-5p -VI(E) - ) ["> . (2-424)

(A more careful discussion hereof will be presented in Chapter Four.)
The effective potential V(f) that appears here is unspecified at this
stage, except for remarking that it is a functional of the density,
n(;), because the density matrix on the left~hand side is such a func-
tional. The factor of two is the spin multiplicity which we now choose
to make explicit instead of further assuming that a trace on spin indi-
ces is left implicit. Note that V is determined without the option of
adding a constant, since Eg. (423) has to hold for the given density.

The diagonal version of Eqg.(424) showed up earlier, in Eq.
(20). We are clearly back to the picture of particles moving indepen-
dently in an effective potential V. The notation established then is
useful here, too. In particular, we introduce the independent particle
Hamilton operator

H(Z,B) = gp° + V(D) (2-425)

just as in Eq. (3). The kinetic energv of (421) is then rewritten as

=
]

rin J’(di‘)') (d;") [_12_$| .'v*n 5(;‘-;")]1’1(1)(;' ;'f")

[(aF") (@F") <F"|p? |F'> 2 <E'[n(-E-0) ">

tr %pz n(-H-z) ’ (2-426)

where we remember that the trace operation includes multiplying by the

spin factor. The quantity E, of Eq. (7),

1

E, = tr(H+g)n(-H-7) (2-427)

is a functional of v+g, thus a functional of n, as V=V (n). The kinetic
energy (426) is contained in (427),

kin = Bq " tr(v+g) n(-H-¢)

=
1]

(2-428)

B, = [(@NVED+nE) .
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This we insert into (419) and arrive at

_ _ ~>' —>' - —)-' —),
E(n,z) = E (V+z) = [(dE*) (V(") Vgt (T (x")
(2-429)
+ Eee(n) - zN
In the present context, V is still regarded as a functional of n. There-
fore, (429) is the same functional as in (419), we have done no more
than reorganize the right-hand side. Consequently, the functional (429)
is stationary under variations of n and r around their correct values,
just as (419) is stationary. An infinitesimal variation of ¢ induces

a change in E(n,z) given by

= a — = - -
SCE(n,C) = (—EBT;'E1(V+C) N)&z = o ; (2-430)

it is, indeed, zero for the same reasons thaf implied Eqg. (13). Now con-

sider a variation of the density:

6. E(n,c) = [(aZ")6 V(E)n(') - [(dF')6 V(' )n(F")
- @ ED -V, ENen(E")
(2-431)
+ [@nen(z) v _(F")
= J@EN) [V(ED+ Vo B) +V (D ]8n(E)

where Egs. (14) and (25) have been employed. The stationary property of
E(n,z) thus implies

V=yV + Vv . (2-432)

In words: the effective potential equals the sum of the external poten-

tial and the effective interaction potential, Vee' defined by Eqgq. (25),
= ‘*l e +| ’ -
8 Eee(m) = J(@r)én(r)v (') . (2-433)

Note in particular, that V is always a local (i.e., momentum indepen-
dent) potential.

So far, V has been regarded as a functional of the density.
Because of the circumstance that the contributions in (431), that ori=-
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ginate in variations of V, take care of themselves, we can equally well
treat V as an independent variable. The energy functional

E(V,n,2) = B (V+g) = [(dZ') (V-V_  )n + BE__(n) - o (2-434)

is obviously stationary under independent infinitesimal variations of
V,n, and ¢. If we do not want to have both V and n as independent gquan-
tities, we have the option of eliminating one of the two. The step from
(434) back to (419) is done bv first solving Eq. (20) for Vv, thereby
expressing the potential in terms of the density, and then using this
V(n) in (434). Likewise, to obtain a functional of the potential alone,
one has to use Eqg. (432), in which Vee is a functional of the density,
to express n as a functional of V. This n(V) then eliminates the den-
sity from (434) leaving us with a potential functional E(V,z).

Let us illustrate these ideas with the respective TF func-
tionals. Starting from

Egp (V,m,) = [(@2) (- =) [-2(v+0) 172 - [(a®) (v+ D)n
2 r
151t
(2-435)
> >
1]
v 3 faf) @ 2RERED oy
r-r'|
where Vext is now the potential energv of an electron with the nucleus,

-Z/r, we get the density funcitonal of Eq. (95), after first inverting
[Eq. (51)1

o2 qver) 1372 (2-436)
3n?

=
i

to

V= - %(3n2n)2/3 -z , (2-437)

1l

which then allows to rewrite the first and second term in (435) accor-
dingly. On the other hand, if
n(;')

EE

Vo= - % + [@dr) (2-438)

is solved for n,

= - oyzqys 2 -
n o= - = VAU D) (2-439)



111

(this is, of course, Poisson's equation), we can eliminate n from the
second and third term in (435) and are led to the TF potential functio-
nal of Eq.}45). Of course, within the framework of the TF model, the
three functionals E{V,n,z), E(n,g), and E(V,7) are perfectly equiva-
lent, but I repeat: as a basis for improvements over the TF approxima-
tion, the potential functional is the preferable one.

We have investigated earlier the scaling properties of the
TF model. Let us now see, what one can state about the behavior of
the exact density functionals By (n) and Eee(n) under scale transfor-

in
mations of the density,

n(?')+nu(?') = n(urt) . (2-440)

The TF approximations to E and Eee scale in the manner that one would

kin
intuitively expect:

1
10m?

[ (3n?n(F'))%/3

(Figin () I

1 (3nfuln(uz)) /3

> 173 Jrand)
10m? (2-441)

- .2 ;
Ly (Ekin(n))TF ’
and likewise

(Eee(n))TF = %. f(d;r) (d;") n(r')n(r")

—fl_;"]
(2-442)
M u(Eee(n))TF
For the exact functionals, the equations
- 2
Ekin(nu) = Ekin(n) (2-443)
and
Eee(nu) = Eee(n) (2-444)

do not hold, however; even their combination

Ekin(nu) + Eee(nu) = p? Epinfn) + p E_(n) (2~445)
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is only true if p=1+e with an infinitesimal ¢. This surprising obser-

24 Please note

vation has been made only recently, bv Levy and Perdew.
that the statement (445) is, indeed, only needed for such p=t1, in or-
der to derive the virial theorem

2 B () = - E () + [(dE)na@E)T U v () (2-446)

ext
from the minimum property of the density functional (417).

As a first step towards proving these remarks about Egs. (443)
through (445), we recall that to any given density there correspond
uniquely a certain external potential and a certain ground state. Let

us keep the notation Ve and |wo> for the ones related to the actual

xt

ground-state density n, and write Veit

with the scaled density nu. Thus |wgk> obeys

and |w$5> for the ones that go

(

B b, _ M 1 N
Hein * Hexe * Hee)|¢o > = EJ [vS> (2-447)

where EJL is the ground-state energy for nu. Clearly, if we transform
|w0> according to

3N/2 ST SUTE SN [ (2-448)

> >
<r! ! >
r1,...,rN|1pO n o

then the density is scaled as in Eq. (440). Inasmuch as

V2T, L uEy ] = < L Elvw (2-449)

where the unitary operator U(u) is given by

N -
Up) = exp{i %-z 1(;j'§j+5j'rj) logu} (2-450)
J:

we can read (448) as

[wo> - U(u)[wo> . (2-451)

The point is that this scaled |wo> is not equal to |w$%>. This emerges
from considering the Schrédinger equation obeyed by U(u)]wo>, which is
immediately obtained from the one satisfied by |¢O>. We have

U(u) (H + H + By

in * Hoyr ) U ) U [v> = B LU (¥, > . (2-452)

e
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> > . .
The action of U upon rj and pj is simply

vw E U = E
- (2-453)
- -1 1 =
U . U = — p. ’
() P (1) 5 P
so that
U{p) H vt =L x
kin , kin !
K (2-454)
-1 _ 1
Ulp) H U (u) = m 0 ,
and
-1 N >
U(p) Hext U (p) = E Vext(urj) . (2-455)
j=1
Consequently,

2 -1 _ 2
(B, + BUWH LU (W) + pH UMW) [ > = EOU(u)Ing> ,
(2-456)
which, in view of the factor p multiplying Hee' is not of the form re-
quired for lwg5> in Eq. (447). Thus, indeed
K . -
vl fu > = [vg> (2-457)

for u#1. Nevertheless, IWJ%’ and U(u)|wo> are not unrelated. In parti-
cular, they give rise to the same density, nu(;), when inserted into
(410). This implies the equality

< lubye Lud> =< | vhw vl vwivy> (2-458)

and for the same reason

= H -1 W -45
Vo | Hgy 10> = <ot Lot B 0T vl (2-459)
We are now prepared to employ the minimum property of the expectation

value of the Hamilton operator of Eq. (447) in the form

u _ B )
<1po [(Hkin * Hext * Hee)lwo > =
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IA

<wo’ U—1(u)(Hkin+Hé;t+Hee)U(u) l1Uo> o (2-460)

which, as a consequence of Egs. (454) and (458), says

Epin () * Bggfn)) s p? B, (0) ¢+ p E () . (2-461)
The equal sign holds only for p=1, in the first place. Since the right
hand side always exceeds the left hand one for p#1, however, the two
sides must agree up to first order in e=p~1, at least, so that the
egual sign actually applies to p=1+e¢ with an infinitesimal ¢. This is
the statement we made at Eqg. (445). Another way of expressing the same
fact is

d = -
aﬁ[Ekin(nu) + Eee(nu)]| =2 Ekin(n) + Eee(n) . (2-462)

n=1

We can also exploit the minimum property of the expectation value of
the Hamilton operator of Eg. (456). Here we have

<ty | 0T ) (B v ou? U E U () o+ k)0 [y >

kin
(2-463)
B 2 -1 b
< <y [(Hkin+ LU(WHE__, U (u)+uHee)|¢o >
or with (454) and (459),
2 2 < _
u Ekin(n) + U Eee(n) £ Ekin(nu) + 0 Eee(nu) ’ (2-464)

where, again, the equal sion is true for all p's that differ from uni-
ty at most infinitesimally.
Equations (461} and (464) can be combined into two state-

ments about Ek and Eee individually, namely

in
(u-1)[Eee(nu) - U Eee(n)] z 0 (2-465)
and
(1=1) [By () - p? By ()] S0 (2-466)

It seems natural to assume that the left-hand sides in (465) and (466)
are of second order in e=p-1 for small €. If this were true, these equa-
tions would mean that
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d _ -

M Eee(nu)L=1 E(m >o (2-467)
and

———d -

o Ekin(nu)l -2 Ekin(n) <o . (2-468)

p=1

As a matter of fact, we shall see below that equal signs have to be
written in (467) and (468) instead of ">" and "<". Consequently, the
left-hand sides in (465) and (466) are, at least, of order ¢, the re-
spective square brackets of order e°. Therefore, also in Eq.{(461) the
equality sign holds up to order e°, at least. These remarks go beyond
the results of Ref.24, where Levy and Perdew stopped at stating (465)
and (466).

For a proof of what has just been said, we have to turn to
the potential functional E1(V+C). In Eg.(216) we found that the TF ap-

proximation to E1 responds like
5v/2~3
(B v+ D) e > 0 (B, (V40 g (2-469)

when V and { are scaled according to Egs.(211) and (214),

> v > v
v{r) > u Vv(ur) , CT->yp © . (2~470)

Although the exact E1(V+E) does not behave like (469) for arbitrary v,
it does so for v=2:

B, (V+2) =+ u® E, (V+7) (2~471)
for

VE) v @) =t v,

(2~472)
z > wtioo.

We demonstrate this by first observing that

n(- 3 p? - VGE - u? o)

= (- 2(B/W? - VD) - 1) (2-473)

1

U n(- 5 pf -vE -0 v,
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where U(u) now denotes the one-particle version of (450),
(k) = exp (i 3B + B+¥) log u} . (2-474)

This-is used in

E1(V+c) = tr(% p?+ v(§)+c)n(— % p2- V(?)—;)
e (3 p?+ w2V (WF) +n20)n (= 3 D2 w2V (uF)-pL)
= wltr U (G p2+ VB +Din (- $p2=v (B -0)U ()
= p? E, (V+2) | (2-475)
or
By (V) + w’0) = u® Ej(VeD) (2-476)

indeed. [The invariance of the trace under cyclic permutations has been
employed in the last step of (475).]

Before proceeding, it is instructive to show where the at-
tempt of repeating the argument for v#2 fails. The analog of (473) would

require an operator (not necessarily a unitary one), Uv(”)' such that

v Ul o= ur (2-477)
> -1 _ —\)/2 >
Uv(u) P Uv (u) = o p

Unfortunately, there is no such operator, except for v=2, as emerges

from considering the commutator of the transformed guantities:

v/2

1 <>

W'TV2 pl = U [£,p1U] =17 . (2-478)

> -
i1 = [ur,u

This is a contradiction, unless v=2.

In the section about the scaling properties of the TF model
we remarked that a scaling transformation of the effective potential
V(;) must be accompanied by a corresponding transformation of the ex-

>
ternal potential Ve t(r). In that earlier context, this was achieved

X
by changing Z appropriately [Eqg.(213)], because the only VeXt conside-
red then was the Coulomb potential -Z/r. In the more general present

discussion, we preserve the structure V-—Ve

Eq. (473),

by scaling Ve like Vv in

xt xt

v (7

> _ 2 Ee _
ext (r) = p Vext(ur) . (2-479)

M Vext,u

The density is, of course, scaled as in (440). Under these simultane-
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ous transformations of V,n,z, and Vext’ the potential~density functio-

nal of (434) behaves as described by
\ = 2
E(V,n,z) ~» Eu(v,n,g, E(Vu,nu,u z)

= p{E, (v+2) - [(dZ) (V(E) -V (F))In(E)-on}

(2-480)

* Eee (I’lu)

Since E(V,n,z) is stationary under infinitesimal variations of V,n, and

r, all first order changes must originate in the scaling of Vext' [The
same argument was also applied to ETF(u) of Eg.(219).] Thus,
d - ) = _a_ > -
e Eu(v,n,c)l_ = [(dr')n(x") 55 Vext,u® )[_ , (2-481)
u=1 p=1
or with (479),
_d_ = T Z T ~>l.—>| )
o Eu(V,n,c)L=1 flar'in(z') (2 Vet (TETVIV L (2]
(2-482)
On the other hand, Eq. (480) implies
d - - —’l +| - T
e E“(V'n'c)i=1 =2 {B (v+D)- [@r") (VIx) -V, (x"))
>, _ _q__
X n(r')-rN}+ m Eee(nu)l_ .
p=1
(2-483)

The equivalence of these two right-hand sides, combined with the virial
theorem (446), yields

a - 2 yvn-
a Eee(nu)L=1 =~ E () =2 B, (n)-2{E (v+£)-[(ar')vn-TN} .

(2-484)
The last step consists of recognizing that for the actual V,n, and z,
the contents of the curly brackets equals the kinetic energy. This emer=-
ges from Eq.(428). Conseguently, the right-hand side is zero. We arrive
at

d -
a E e(nu)[ =E__(n) , (2-485)

e =1
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and .as a consequence of (462),

| =28, (n . (2-486)

E . {(n)
kin p =1

£le

kin
Indeed, the statements following Eg. (468) are justified.

Please be aware of the following mental trap. If the density
is eliminated from E(V,n,Z), so that we are left with the potential
functional E(V,g), one could think that the resulting kinetic energy,

Byin (V/) = By (veg) = [(@E)VE)(E) - N (2-487)
scales according to

2 - 2 -
inasmuch as [Eq. (14)]

6y B, (v+z) = [(@E)6V(z')n(z') (2-489)
together with (471), implies

n(r') + u® n(ur) (2-490)
if V and 7 are scaled as in (472). This is not so, however, because the
potential functional that is to be inserted into Eq. (487) for n(;') is
not the one obtained from (489), but the one that emerges from

8y B () = f@@men(x) V(') - v ()] (2-491)

[Egs. (432) and (433)]. In the TF approximation, for instance, this is

the Poisson equation

-> - _ i Y2 —). _ —>' _
n(r') = In vrEwv(z") Vext(r M (2-492)
in which the scaling of V and Vext [Egs. (472) and (479)] produces
n{¥') > u* n(r') (2-493)

different from the desired form of (490). Therefore, Eq.(488) is not
true, not even for u's that differ from unity by an infinitesimal amount.
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The kinetic energy by itself is not a central quantity in the potential

functional formalism. What we have just seen is an illustration of this

remark.

Relation between the TF approximation and Hartree's method. Somewhere

at the beginning of Chapter One there is the promise to discuss the con-
nection between TF theory and HF theory "to some extent in Chapter Two."
This time has finally come.

Hartree's2? basic idea consists in approximating the ground-
state wave-function by a product in which each factor refers to just
one of the electrons:

> T o

> >
N lvo> = w1(r1)w2(r2)...wN(fN) . (2-494)
The wj's are supposed to be orthonormal,

fdz") wj*(?') Py (B1) = ik v (2-495)
so that the wave function (494) is properly normalized to unity. The
requirement of antisymmetry is not satisfied by (494). Consequently,
exchange effects are not treated correctly. In the present context,
where we want to make contact with the original TF model, neglecting ex-
change is consistent. We are actually talking about Hartree's approxi-
mation, not about the Hartree-Fock model, which does include exchange.
This restriction is not essential for the discussion. The argument can
be repeated for a comparison of HF theory with the proper extension of
the TF model that includes the exchange interaction, which will be de-
rived in Chapter Four. At this moment we are content with the simple
TF model and Hartree's ansatz (494).

With Eqg. (494) we obtain approximations to the expectation
values of the three parts of the many-particle Hamilton operator (409).
These are given by

Byin = <Y Byin [¥>

N > 1 > -> > >
EE ftar") 5 v'wj*(r')-v'wj(r') ,
j=1

(2-496)

and

Boxt = UolHogel vo> =
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N N . . (2-497)
s > [ g Vo @) g (E)

3=1

as well as
Eee = <11)O lHee | 1PO>
Z 7/ (@E) g * (& >[Zf(df")w +")T———|¢k(+")]
3=1
kxj
x wj(?') . (2-498)

Since the description does not pay attention to the exchange energy, we
do not have to be pedantic either when it comes to excluding the self-
energy. In other words: it is perfectly consistent to include the k=]
term in Eq. (498). The approximation to the ground-state energy is then

E = <lPolﬂmplwo> * EByartree

f

Z[(dr){% *(ED Ty E)apx EDV L E gy E)

N
+ %wj* (_fl) [ ZJ’ (d;n)wk* (}*u)_l__f_'__i?"__l lpk (;u)]wj (r! )}

(2-499)

s [ i -
The as yet undetermined wj s are now chosen such that EHartree is sta

tionary under infinitesimal variations of them. Thus

N N -+ >
S THEENGu* (E) (- JT 2RV )+ S @ pHE ) e
1 k=1 Ea

j:
x P (EI I, (F) = o . (2-500)
J
The variations 6¢j* are not arbitrary but subject to

f(dE')awj*(?') W E) =0 (2-501)
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which is a consequence of the orthonormalization (495). Therefore, Eq.
(500) implies
- 1 12 Ly (+|) +§N (d')") *("‘u)____l__ (?ll)} (_fl)
{ Ev ext o I r 11)k * |i."|_'r’u [wk w]
k=1 (2-502)

N

=ZE:: €3¢ wz(;l) '

£=1

where the constants €j£ are the Lagrange mulitpliers of the constraints
(495). The single-particle wave~functions wj and the gjz are to be de-
termined simultaneously from Egs. (502) and (495).

The hermitian property of the differential operator {...} in

(502) is employed in demonstrating that the matrix (Ejz) is hermitian:

€52 f(ar") wz*(?'){...} ¢j(f')
(2-503)

f(@az) wj(‘r"){...} %*(i") = ety -

Another observation is the nonuniqueness of the solution to (502) and
(495). If wj and gjK are one solution, then

N

n,

wj = E uj[ 17 (2-504)
£=1

and

n _ N *

Ejz = E ujk €em Yim (2-505)
k,m=1

is another one, whereby (ujl) is any unitary matrix,

N

u* (2-506)

ni “mk = O3k
m=1
It is essential here that the density, that appears in (502), is in-

variant under such a unitary transformation:

> N -> >
REFY) = EE PHED G ED =
%=1
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N R R R
=5 W ED Y () = nE) . (2-507)
k=1

[The approximate wave-~function (494) is obviously not invariant under
(504). This is nothing to worry about, because as soon as (494) is anti-
symmetrized, the effect of (504) reduces to the mulitplication by a

phase-factor.]
Since (Ejﬂ) is hermitian, we can choose (ujﬂ) such that

" . .
(Ejﬂ) is diagonal,

g g 6. . (2-508)

Then Eq. (502) is Schrédinger's equation in appearance,

N = Moy oo v Vv -
=gV P+ vE ) = ey wj(r ) (2-509)

whére the effective single-particle potential V is

N . 1
vV(z') = vext(%') + zz:j(d%")wk (E) s gy ("), (2-510)
k=1 |£'-x" |
which is equivalent to
N > > 1 > >
g wk*(r')wk(r') i v'z(v(r')—vext(r')) . (2-511)
k=1

Let us now look at the Hartree energy. It is

N
= ;'j (@F ) g ¥ (E) (= 7724V ()

EHartree
1 >, ) w1
+ (Ve = Ve (1)) g (")
N N . N >
= Ez:f(dr Jyg* ) :E:: €50 Volr") (2-512)
3=1 £=1

.
-3 E@ED WED -V EDS urEDYED
3=1

where both (502) and (510) have been used. With the aid of the ortho-
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normality of the wj's and with Eg. (511) we obtain

N

1 >, T Ty _ ) —
=Z1 €. —%f(dr)ﬁ V(") Vext(r))]2 . (2-513)

EHartree 3= 33

This will look even more like the TF potential functional after we use

N

N v N n
€.. = E.. = €. (2-514)
} 33 - 93 Z 3
= j:

3=1 3

: " )
in conjunction with the fact that the gj are the N smallest eigenvalues

of the single-particle Hamilton operator

B=1pi+ V() (2-515)
to write

N

§ Sjj = tr H n{-H~-z} , (2-516)

3=1

where, of course, ¢ is such that the count of occupied states equals

the number of electrons:
N = tr n(-H-z7) . (2-517)

If we cdmbine (516) and (517) in the now familiar way,

N
€]:I = tr(H+g)n(-H-r) - N
3=1
= E, (V+z) - N ' (2-518)
then
_ _L >, N ey >, 2
Epartree = B (V¥0) 8nf(dr Y v (vi(z") Vgt (1)) 15— TN,

(2-519)

It becomes clear now what the fundamental difference is bet-
ween the TF approach and Hartree's method. The latter asks: what are

the optimal single-particle wave functions to. be used in (494)°?
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The answer is given bv the Hartree equations (502.).26 But suppose we

do not care that much for the wj's. Then we can equally well put the
question: what is the best effective potential in (519)? We reply imme-
diately: the TF potential, if E1(V+g) is evaluated in the semiclassi-
cal limit. Does this mean that the TF model is an approximation to
Hartree's description? No, it is rather the other way round: the Har-
tree picture contains more detail than it should. In view of all the
approximations made before arriving at (519), there is absolutely no
point in being extremely precise when evaluating E1(V+g).

Summing up: the TF model and Hartree's method are really
two independent, though related, approaches. None is a priori the bet-
ter or worse one. Whereas I do not want to go as far as Lieb does ["...
TF theory is well defined.(...) - a state of affairs in marked con-
trast to that of HF theory."27

ing TF methods one is more conscious about the physical approximations

1, I do have the impression that in apply-

that enter the development.

In one respect the Hartree detour over the single-particle
wave functions is superior to the TF phase-space integral: the Schr&din-
ger equation (509) treats the strongly bound electrons correctly with-
out any further ado. We shall see in the next Chapter how the TF model
can be modified, in a simple way, in order to handle these innermost
electrons properly. With this improvement the TF description is in no
way inferior to Hartree's.

Please do not miss how naturally we have been led to a poten-
tial functional, Eg.(519), not to a density functional. Here is, once
more, support for our view that TF theory is best thought of as formu-
lated in terms of the effective potential. Then the density is not a
fundamental but a derived quantity.

Problems

2-1. For the generalization of the independent-particle Hamilton ope-
rator of Eq.(3) to

H=+(p-ak(®)P + v ,

N =

2

where a = %E 1/137.036... is Sommerfeld's fine structure constant

fl

and K is an effective vector potential (in atomic units), show that the
analogs of (14) and (20) are
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_ =; > Xz ST
8% Erp = 83 E, af (@r*)8A(x") (") ,

and
J @ =2<E" |21 B-ak) n(-H-0) +n (-H-0) (B-ok) 1 |Z'>

Then generalize Eq. (25) to read

JA 1 .

BE,, = [(@F')[6n(F )V (F') - a8F-E

Next conclude that, instead of (30), the stationary energy expression

is now
- _ —)-' —)l —>' —>' > —>' .—g- ->|
E = Epp [(ar Voo (r')n(r )+af (dr VA (X')+3(xr') + E
since
> > >
A=A +

ext Aee !

with a given external vector potential Kex How does the TF version

of E1 depend on A?

e

2-2. Another application of the stationary property of the electrosta-
tic potential functional of Egq. (78). Instead of @(;), insert @(;'),
where r' is related to r through an infinitesimal translation by &%

3 . » . . >
and an infinitesimal rotation around Sw,
> > > > >
r =r' + &g + Spxr'

Use (dF) = (d7') and (Vo(r'))? = (V'6(¥'))? to write the primed
energy as

El

[(&2") [p (' +62+60xE") 0 (1) - g=(V'a (£1)) 2]

A

E= [@)p@ed) -g=To@n

where the equal sign holds to first order in &¢ and 6. Conclude, that
the self force vanishes [Eq.(86)], and also the self torque,

[(@D)p(B) Tx(-Vo (X)) = o .

2-3., Write a computer program for the TF function F(X) as outlined
around Eq. (200). Use it to confirm
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fdx F(x) = 1.80006394 ,
o]

Jax[F(x)1% = 0.61543464 ,
(o]

Jax[-F' (x)]°
o]

0.35333456

Tax/FTR7E = 3.915933
o
2-4. With the computer program of Problem 3 check that the maximum of
xF(x) occurs at x=2.104025280, where F(x)=0.2311514708.
2-5. This maximum of xF(x) is relatively broad, so that
B () /[F(x)1% = [xFx)]17 /% = constant
An approkimation to F(x) is therefore represented by the solution of
Brio = Z¥x012 , X = const. ,
X

subject to %(o)=1 . %(w)=o , and (to fix the value of %)

fax ="/ 2% 01372 = 1
o

Find this %(x).28 How good is this approximation when it is employed

in calculating the numbers of Problems 3 and 4?

2-6. Insert ¢A(°) of Eq.(283) into Eg.(274) to find ¢1'(o) and ¢2'(o)

as the coefficients in
L - - ' 2
$,'(0) 1+ ¢1'(o) Ao, (0) AT+ L
Compare with Egs. (280) and (281).

2-7. Find ¢2(t) from Eqg.(278); then evaluate ¢3(o). Use it to show that
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(i) in Eg. (285):

21067 524288

N
W+_2_5__5F¢) (E)z"' 0((M/2)3) H

0(IN/2Z)2) = (12 -

(ii) in Eqgs. (286) and (289):

223 262144
30m2 2025wk

otm/z)?) = G+ Y2+ 0(m/D) )

(iii) in Eq. (287):

0((N/2)%) = (ZE__19019_¥2883584

T - T5ons * TsozeRy ()7 O(0V/2)?)

2-8. Use the recurrence relation (278) to show that

) (5£+2) /2

¢£(t) vo(1-t for tg1 .

Look back at Eg. (311) and notice that, indeed, the first occurence of
A is in the (1-t)7/2—term, and of A% in the (1-t)°®-term.

2-9. Show that, for A>A , cb)\(t) has a pole, at t=t. >0, of the form

A

t
¢ (t) = 200 A for t=t

2 _ 2
(t t}\)

/2 for t.<t <1. Use this to de-

As Ao, t 3

1, so that o7 (£)=Ale(0)]>
monstrate that

d¢

- (81.9)2/5
/1 + ék¢5/2

Tt = =

14
0O~ 8

for A>>A .,

2/3

2-10. Upper and lower bounds to 4 can be obtained from Eq.(301) when

it is combined with the inequalities of (242). A suitable trial function
f(x) is given by
F (%) for ogxs<x
filx) =
9 (x. -
X5 (x2 x) for x

where g is fixed, X, is arbitrary, and Xy and X, are such that f(x) and
its derivative are continuous. For g>o, xq1 is sufficiently large to jus-
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tify the use of the asymptotic form (179) for F(x;x1). Show that this
implies

- 432

Then derive

s 5/2 5
2 [£(x)] _ 2. 2 (12)5 . 2,q.,5/2,4 5-9/3
5 édx /7 T 7B 3 w7 + 26D xS
and
1 Tanre Qq2_1z_ 3 U2)° g ,5.9,
3 édX[f (x) +317 =78~ 55 TR A T

1

Putting everything together you should have

5 b4
%B_ (12) [¥_ 8n+%xo]
x( 3/3 1
> %JB— % A—2/3 017/3 ’ for gro .

It is then useful to switch from X, to a new independent parameter, A,

. -4 2/3 -1/3 ' _ /4 ,1/6 ~1/3
by setting xo_l q . Check that then x1—(432) A a ’
that, for all x>0,

SO

A—2/3 N %-f2/3 8 /56m

-7/6
———7—(———-30)A
3774 33

-2/3 ¢ (303). Show that, for

this optimal A, the ratio x2/xo does not equal unity. Consequently, the

Optimize X and find the lower bound on A

trial £(x) does not change its sign at X=Xo’ as the actual f(x) does.
Impose Xy=X and demonstrate that a lower bound on A_Z/3 emerges, which
is worse than the previous one.

For an upper bound on A_z/3 use the trial function

F'(x) + g/%g for osxsx,
gi(x) =4 -a/x5(1-x/%,) for xqsxsx, .
o for xpsx

Make sure that g is continuous and obeys Eqg. (243). Then evaluate the g-
functional of (242). You should get
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6t

o 1/3.1,35
%0 L e -5y

-2/3
A [§(7?

f/3(1—%t) - 16 + 191t - 74t?2)

AT TR UANCRE AR

where the range of t=x1/x2 is %-<t £1. Find (numerically) the optimal
value for t and thus the upper bound on A_z/3 of (303).
2-11. Insert Eg. (316) into

2(t) = g £.(t x,(q))

1
q o

and derive (352).

2-12. Derive Eq. (462) directly from Eqgs. (433),(432), and (428).

2-13. Because of the homogeneity and isotropy of the physical three-
dimensional space, the density functionals Ekin(n) and Eee(n), which
appear in Eq. (417), have the same numerical value for n(*') and the in-
finitesimally translated and rotated ﬁ(;') =n(?'-+aZ-+55x§'). Combine
this with the stationary property of (417) to show that there is no net
force,

faEnnE) v ) =0
and no net torque,
> > > ->
flar @) x (-V'v_ , (x')) =0

exerted on the system by the external potential. Are you reminded of
Problem 2?

2-14. Show that the density functional of the kinetic energy is given
by
1

i, () = [(dT) g (n)2/n

if there is only one_electron. This does scale like (443). Why is there

no contradiction to the general statement that Ein does not obey (443)?



