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PREFACE

This book grew out of a set of notes that I supplied to the audience
of a series of lectures on "The Thomas-Fermi Method in Atomic Physics
and Its Refinements" delivered at the University of Munich in 1985.
Standard textbook material played a minor role during these lectures:
the emphasis was on the novel approach developed by Professor Julian
Schwinger and myself, beginning about eight years ago. As a con-
sequence, this book is the first complete, detailed step-by-step
presentation of our ideas and their implications.

Naturally, the work of other researchers is not ignored. In par-
ticular, I have tried to collect and organize the many pieces of
knowledge about the Thomas-Fermi model that are scattered over as
many original publications. On the other hand, my intention was not
to supply a complete list of every paper on the subject, as this
would have been of little value. Thus referencing is selective and I
cite only the most relevant papers. On a few occasions honesty de-
manded critical remarks about someone else's work; I hope that these
comments will not be misunderstood as put-downs.

The reader is not expected to have any previous knowledge about
the subject. In addition to an open mind, the only prerequisite is a
thorough understanding of elementary quantum mechanics, and some
familiarity with the phenomenology of atoms is certainly helpful.
The text consists of a mixture of general concepts and technical
detail. Both need to be absorbed, although some of the latter can be
skipped during a first reading. I trust that readers can perform a
reasonable selection themselves.

I am grateful for the many insights gained in discussions with a
large number of people. Being afraid of forgetting somebody, I shall
not even try to list them.

It is a pleasure to thank Mrs. E. Figge, who typed the manuscript

with enviable skill.

Garching, February 1988 B.-G. Englert
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Chapter One

INTRODUCTION

Atoms that contain many electrons possess a degree of comple-
xity so high that it is impossible to give an exact answer even when
we are asking simple questions. We are therefore compelled to resort to
approximate descriptions. Two main approaches have been pursued in the-
oretical atomic physics. One is the Hartree-Fock (HF) method and its re-
finements; it can be viewed as a generalization of Schrddinger's des-
cription of the hydrogen atom to many-electron systems; it is, by con-
struction, the more reliable the smaller the number of electrons. The
other one is the Thomas-Fermi (TF) treatment and its improvements; this
one uses the picture of an electronic atmosphere surrounding the nucleus;
it is the better the larger the number of electrons. For this reason,
the TF method is frequently called the "statistical theory of the atoms."

Throughout these lectures we shall be concerned with the TF
approach, thereby concentrating on more recent developments. The repe-
tition of material that has been presented in textbooks | already will be
limited to the minimal amount necessary to make the lectures self-con-
tained. The derivation of known results will, wherever feasible, be done
differently, and - I believe - more elegantly, than in standard texts on
the subject.

Tt should be realized that the methods of the TF approach are
in no way limited to atomic physics. Besides the immediate modifications
for applying the formalism to molecules or solids, there exists the pos-
sibility of employing the technics in astrophysics and in nuclear phy-
sics. The latter application naturally requires appropriate changes re-
flecting the transition from the Coulomb interaction of the electrons
to the much more complicated nucleon-nucleon forces.

In these lectures we shall confine the discussion to atoms,
however. This has the advantage of keeping the complexity of most cal-
culations at a rather low level, so that we can fully focus on the pro-
perties of the TF method without being distracted by the technical com-
plications that arise from the considerations of molecular structure
or from our incomplete knowledge of the nuclear forces, for instance.
Restricting ourselves to atoms is further advantageous because it en-
ables us to compare predictions of TF theory with those of other methods,

like HF calculations. The ultimate test of a theoretical description is,



of course, the comparison of its implications with experimental data.
Whenever possible, we shall therefore measure the accuracy of the TF
predictions by confronting it with experimental results.

Lack of experimental data sometimes forces us into relying
upon HF results for comparison. The same situation occurs when quanti-
ties of a more theoretical nature are discussed (as, e.g., the nonrela-
tivistic binding energy, which is not available from experiments). Such
a procedure must not be misunderstood as an attempt of reproducing HF
predictions by TF theory. The TF method is not an approximation to the
HF description, but an independent approach to theeoretical atomic phy-
sics. [Incidentally, it is the historically older one: TF theory origi-
nated in the years 1926 (Thomas) and 1927 (Fermi), whereas the HF model
did not exist prior to 1928 (Hartree) and 1930 (Fock).]2 The two appro-
aches should not be regarded as competing with each other, but as sup-
plementing one another. Each of the two methods is well suited for stu-
dying certain properties of atoms. For example, if one is interested in
the ionization energy of oxygen, a HF calculation will produce a reli-
able result; but if you want to know how the total binding energy varies
over the entire Periodic Table, the TF model will tell you. Tersely: the
HF method for specific information about a particular atom, the TF me-
thod for the systematics of all atoms. There is, of course, a certain
overlap of the two approaches, and they are not completely unrelated.
We shall discuss their connection to some extent in Chapter Two.

Atomic units. All future algebraic manipulations are eased significant-
ly when atomic units are used for measuring distances, energies, etc.

Let us briefly consider the many-particle Hamilton operator

0]

N
SDIE- D (1-1)

3=1 =1 %3 3k=1 T3k

of an atom with nuclear charge Ze and N electrons, each of mass m and
carrying charge -e. The third sum is primed to denote the omission of
the term with j = k. Obviously, rj gstands for the distance between the
nucleus and the j-th electron, whereas rjk is the distance from the j-th
to the k-th electron, and Ej the momentum of the j-th electron. This

Hmp is accompanied by the commutation relations

> . €
{r.,p, 1 =1 A 1 5jk (1-2)



and the injunctions

(1)

caused by the Fermi statistics that the electrons

obey. Equations and (2) contain three dimensional parameters: m, e,
A. But none of them can possibly be used as expansion variable of a
perturbation series because together they do no more than set the ato-
mic scale. To see this in detail, let us rewrite (1) and (2) with the
aid of the Bohr radius
2

a, = ﬁ/-ﬁe—f = 0.5292 & (1-3)

and twice the Rydberg energy
2 y
= &_ - e _ -

E, = a: 5 27.21eV. (1-4)

Equations (1) and (2) now appear as
7
1 N E 4 1 1
H /E, =j€jw(p./« ) - . + = — (1-5)
— 2 - . 2 =< r. Ja

e 3 L IR 2,) ik ( jk o)

and
2 S

[(F5/a0) + (B/P] =1 T 65y (1-6)

, . . , > >+ A
If we then introduce the dimensionless gquantities rj/ao, pj/E , and

[+]
Hmp/E° as relevant objects, all reference to m, e, and A disappears.
Using the same letters as for the dimensional quantities, we now have
1 z 12 7
- 12 4 = — -
Hmp - z 7 Py ; Ly 3 g (1-7)
B ] ik

and

> > ., &

[rj,pk] = i 6jk . (1-8)
Equations (7) and (8) are identical with Egs. (1) and (2} except that

instead of the macroscopics units (cm, etc.) atomic untis are used.
(2) to (7) and (8) can be done by

m = 1," but the meaning of this colloguial procedure

erqg,
Formally, the transition from (1) and
"setting e = A =
is made precise by the argument presented above.



Besides simplifying the algebra, the use of atomic units also
prevents us from trying such foolish things like "expanding the energy
in powers of 4f," a phrase that one meets surprisingly frequently in the
literature. The energy is nothing but E, times a dimensionless func-
tion of Z and N, it depends on A only through E,n1/42%2. We shall see la-
ter, what is really meant when the foregoing phrase is used.

The many particle problem defined by Egs. (7) and (8) cannot
be solved exactly. It is much too complicated. This is true even when
the number of electrons is only two, the situation of helium-like atoms.
There is a branch of research3 in which rigorous theorems about the sy-
stem (7) and (8) are proved, such as (disappointingly rough) limits on
the total binding energy. One can show for example, that for N=Z-+» the
many particle problem reduces to the original TF model, which we shall
describe in the next Chapter. In these lectures, we shall not follow
those highly mathematized lines. I prefer rather simple physical argu-
ments instead of employing the machinery of functional analysis. Also,
it is my impression that those "rigorous" methods are of little help
when it comes to improving the description by going beyond the original
TF model. Finally, let us not forget that mathematical theorems about
(7) and (8) are not absolute knowledge about real atoms, because in put-
ting down the Hamilton operator (7) we have already made physical ap-
proximations: the finite size and mass of the nucleus is disregarded;
so are all relativistic effects including magnetic interactions and
quantum electrodynamical corrections; other than electric interactions
are neglected - no reference is made to gravitational and weak forces.
Of course, both attitudes, the highly mathematical one and the more
physical one, are valuable, but there is dancer in judging one by the
standards of the other.

Bohr atoms. We continue the introductory remarks by studying a very
simple model in order to illustrate a few basic concepts. This primi-
tive theoretical model neglects the inter—electronic interaction, thus
treating the electrons as independently bound by the nucleus. But even
if fermions do not interact they are aware of each other through the
Pauli principle. Therefore, such noninteracting electrons (NIE) will
£fill the successive Bohr shells of the Coulomb potential with two elec-
trons in each occupied orbital state.

For the present purpose it would be sufficient to consider
the situation of m full Bohr shells. But with an eye on a later dis-

cussion of shell effects, in Chapter Five, let us additionally suppose



that the (m+1)th shell is filled by a fraction p, ofp<l. Since the mul-
tiplicity of the shell with principal quantum number m' is 2m'Z2-fold,

the total number, N, of electrons then is (see Problem 1)

m
N =§ 2m'2 4+ p2 (m+1)?2 (1-9)
m'=1

win

(meg)® = Z(mg) + 2u(mel)?

The total binding energy for a nucleus of charge Z is even simpler,

m
- 2 2
-E = E 2m' 2 E?%F"T + ou2 (m+1) 2 2—(—31:7)7 (1-10)

m'=1

H

Zz(m+U) '

which uses the single particle binding energy 22%/(2m'?). If we under-
stand Eg. (9) as defining m and p as functions of N, then Eg.(10) dis-
plays -E(Z,N). Towards the objective of makina this functional depen-
dence explicit we proceed from noting that

3

(m+)® = med) £ N < () - Tmed) . (1-11)

Consequently, if y solves the equation

s 1,23 -
Y 4y_2N ’ (112)
then m is the integer part of y - % . (For N>0, there is just one solu-

tion larger than 1/2.) We use the standard Gaussian notation,

m= [y - 1/2] . (1-13)
For the sequel the introduction of <y>, defined by

<y> =y - [y+1/21 , (1-14)
that is

y = <y>= integer,



$<y> <3, (1-15)
will prove useful. We employ it in writing

m=y-1=-<y-1> =y - 1 - <y> . (1-16)
Tﬁe latter equality is based upon the obvious periodicity of <y>,

<y + 1> = <y> . (1-17)

We can now insert both Eg. (12) and Eg. (15) into Eg. (9),

2,31 - 2., 0 3 _ 1,1
sy -gy) = F(y—5—<y>) g (¥-5-<y>)
(1-18)
+ 2p(y-<y>)?
and solve for p. The result is

2
y—5<y> -
L= % + <y> + (<y>? —%) 37 . (1-19)
(y=<y>)?

As a consequence of y>l, the denominator here is nonzero. Also, one
easily checks that, as y increases from m+% to m+%, L grows monotoni-
cally from zero to one, as it should.

The combination of Egs. (10),(16),and (19) now produces

2
Y §<y>

-E = z2{y - % + (<y>2—%) Y, (1-20)

(y-<y>)?
with y(N) from Eg.(12). Let us first observe that this binding energy

is a continuous function of y - and therefore of N - although <y> occa-

sionally jumps from L to —l. Next, we note that for large N, Eg.(12) is

2 2
solved by
_ 3y 1/3 .1 3..-1/3 _

y(N) = (fN) + TE(ZN) Foia. , (1-21)
so that the oscillatory contribution in (20) is of order N_1/3. Conse-
quently, the binding energy of NIE is

E=22 (Gm"/3 -1 Y, (1-22)
where the ellipsis indicates oscillatory terms of order N—”3 and smal-



ler. The physical origin of these terms is the process of the filling
of shells. We shall disregard them here with the promise of returning
later when we shall engage in a more detailed discussion of shell effects.

Expansion {21) 1s expected to be good for large N. However,
just the two terms displayed explicitly form a practically perfect for-
mula even for small N. An impressive way of demonstrating the high qua-
lity of this two-term approximation is to look at the values predicted
for N, at which c¢losed shells occur. For y=%,%,%,... , the exact ans-
wer of Eq.(12) is N=2,10,28, ..., whereas Eq.(21) produces N=1.99987,
9.999974, 27.999991, ... ; even for the first shell the agreement is bet-
ter than one hundredth of a percent.

We have just learned an important lesson: a few terms of an
asymptotic expansion like Eqg.(21) may be, and frequently are, a highly
accurate approximation even for very moderate values of N. Such consi-
derations based upon large numbers are the origin of the label "statisti-
cal™ that is attached to TF theory. The fundamental physical approxima=-
tion is, however, rather a semiclassical one.

This will become clearer when we now answer the question how
one can find the leading term in (22) somewhat more directly, without
utilizing our detailed knowledge of the energy and degeneracy of bound
states in the Coulomb potential.

The count of electrons is evaluated in Eg. (9) as the sum of
the multiplicities of all occupied shells.Equivalently, we could have
summed over all occupied states,

{1 if the state is occupied }
S otarocl0 if the state is not occupied (1-23)

Since a given state is occupied (or not) if its binding eneray, _Estate’
is larger than a certain amount, ¢ , (or less), we can employ Heaviside's

unit step function,

1 for x > o
nix) = o for x < o ‘ (1-24)

in writing

M@ =2 ntx

- ) . (1-25)

Such a sum over all eigenstates of an operator, here the single-parti-
cle Hamilton operator for NIE,



= 1s2 - 2 -
H = 5P T ’ (1-26)
is more concisely expressed as a trace. We then have
N(Z)= tr nl-Hgp - o) . (1-27)

[Po not worry about the possibility of partly filled shells. Then ¢
equals the binding energy of the respective shell, and the freedom of
assigning any value between 0 and 1 to n(x=0) enables us to describe
the situation of a fractionally filled shell. More about this in Chap-
ter Five.] Analogously, we can express the energy of Eq.(10) as the sum

over the single-particle energies of all occupied states,

E(T) = tr Hyp n(—HNIE - t) . (1-28)
The identity

Lx nx)) = nix (1-29

dx n = ’ )
used in the form

- fax' n(-x') = x n(-x) , (1-30)

X

can be used to relate E(z) to N(z):

E(g) = tr (HNIE +7)n (—HNIE - ¢) -z tr n(-Hyp - 0)

o (1-31)
= - tr gdc' n(-Hyg = ') - T N(@)

or,

E(z) = - ¢ N(z) - fdg' N(z") . (1-32)

4

We see that E(g) is immediately available as soon as we know N(z). This
is no surprise. Recall that N(z) signifies the number of states with
binding energy larger than 7. Consequently, N(z) is discontinuous at all

values of ¢ equal to the binding energy of a (Bohr) shell, and the size



of the jump of N(z) at such a discontinuity is the multiplicity of the
respective shell. So N(z), regarded as a function of z, tells us both
the energ§ and the multiplicity of all shells.

The problem is now reduced to evaluating the trace in Eq. (27)
in an appropriate, approximate way. [Remember, it is the leading term
of Eqg. (22) only, that we want to derive simply.] First an intuitive ar-
gument. The count of states is the spin multiplicity of two, times the

count of orbital states. There is roughly one orbital state per phase-

space volume (2mh)® [=(2m)}? in atomic units], so that
> >,
Ny =2 (AAELERYD) dpae By gy (1-33)
(2m)

where primes have been used to distinguish numbers from operators. The
step function equals unity in the classically allowed domain of the
phase-space and vanishes outside. Therefore, Eq. (33) represents the ex-
treme semiclassical (or should we say: semiquantal?) limit, in which
the possibility of finding the guantum-mechanical system outside the
classical allowed region is ignored.

Some support for the approximation (33) is supplied by its
implications. After performing the momentum integration, we have

N(D) = [(@F) w205 - 0132, (1-34)

where the sqguare root is understood to vanish for negative arguments.
Then the r' integration produces, with x = ¢x'/Z ,

1
(o) = (222702 & fax 112 (10032
e}
= 3(51)3/2 (1-35)
3°2¢ .

(the integral has the value n/16.) Insertion into Eqg. (32) results in

z2.1/2
22(33) , (1-36)

i

-E(Z)

which combined with (35) is

B = z2(§N)1/3 ) (1-37)
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Indeed, here is the leading term of Eq.(22), now very simply reproduced
by the semiclassical counting of states. Please note that the steps from
Eg. (32) to Eq.(37) did not require any knowledge about the energy and
multiplicity of bound states in the Coulomb potential.

Traces and phase~space integrals. One does not have to rely upon intui-

tion alone when writing down Eqg. (33). A general way of evaluating the
trace of a function of position operator T and the conjugate momentum
operator E is

tr F(r,p) ftary <r' | F(r,p) | T'>

(1-38)

il

frarty @y <¥' | F(E,B)] B> Bt | B>

We have left out the factor of two for the spin multiplicity here, be-
cause it is irrelevant for the present discussion. If now F(?,g)is or—
dered such that all r's stand to the left of all E's, then

<& F(E,D) | B> = F(E,PY) <F' | B> . (1-39)

This, combined with the position-momentum transformation functions

+ —>l _>l
ixr'.p
<r' | p'> = L e ,
(2n)372
o (1-40)
<p" | AR R E— e TR ’
(2n)3/2
and inserted into (38) produces
—)I _)l
tr F(%,E) = fléE_liQE_l F(;',g') (1-41)

(2m) ?

>
Equation (41) is an exact statement for an ordered operator F(?,p). If
the operator, of which the trace is desired, is not ordered, one can

sometimes do the ordering explicitly. An example is (see Problem 3)

-1 Bt
e =
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—_

PPt -i4(B+ L F )2 ~iF%3/24
= e e e ' (1-42)

N
N

where f is a constant vector. With the aid of (42), all other functions
of %52 - F-T can be ordered if expressed as the appropriate Fourier
integral. We shall have a use for Eqg.(42) later, in Chapter Four.

With the exception of a few relatively simple instances, the
ordering of an operator F(?,E) is practically impossible. However, even
then Eg. (41) is not useless. Inasmuch as the ordering process involves
the evaluation of commutators of functions of T with functions of E,
<?'|F(§,E)| p'> differs from F(r',p')<¥'|p'> by commutator terms. Under

circumstances when these commutators are small,

tr F(}:"E) - )’(dr')(da') F(—EIIEI) (1-43)
(2m)

can be used as the basis for approximations. Since the noncommutativity
of ¥ and E becomes insignificant in the semiclassical limit, Eqg. (43)
manifests a highly semiclassical approximation.

All refinements of (43) are due to the noncommutativity of
position and momentum. This is at the heart of guantum mechanics, and
we shall therefore call these improvements "quantum corrections," not-
withstanding the fact that (41) is already a quantum mechanical result.
The starting point is clearly the semiclassical (or, semiquantal) pic-
ture, not the classical theory of the atom, which does not exist in the
first place.

For the trace of Eq.(27) all this means that the semiclassi-
cal evaluation of Eqg.(33) will be a reliable approximation, if the de-
Broglie wavelength of an individual electron is small compared to the
typical distance over which the Coulomb potential varies significantly.
This condition is satisfied if both the number of electrons and the nu-
clear charge are large, because in this situation the electronic cloud
is very dense. In this sense the semiclassical approximation is egui-
valent to a large-N, a statistical one.

Bohr atoms with shielding. The primitive model of NIE constitutes a sen-

sible approximation for highly ionized atoms only, in which the dynamics
is governed by the Coulomb potential of the nucleus, and the electron-
electron interaction is negligible. Consequently, the results obtained
above should not be taken seriously, unless N << Z. For instance, the
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binding energy of a neutral atom is expected to differ significantly
from the prediction of Eg. (37),

3,1/3 ,7/3 _

7/3
5)

-E =z {( 1.145 Z ’ (1-44)

because of the screening of the nuclear Coulomb potential by the inner
shells. Let us, therefore, try to get a feeling for the importance of
the electron-electron interactions by refining the NIE picture.

Without inner-shell screening, each full Bohr shell contri-
butes the amount of Z2 to the binding energy [see Eg. (10)]. We now sup-
pose that this remains true for the first shell, whereas the effective
Z-value for the second shell is Z-2, since the total charge of the nu-
cleus together with the first shell is (-Z+2)e. Similarily, the third
shell sees 7Z-2-8=7Z-10, and so on. In this picture,4 the screening of
the inner shells is so effective that the m'-th shell is exposed to a

Coulomb potential —Zm,/r with

m'-1
Zo. =2 - > 2m" 2 . {1-45)
mu=1

Its contribution to the binding energy is Z;. , so that we have

m
-E = ) zé, + p 22 . (1-46)

m'=1 1

We are interested in the leading term only and can, therefore, evalu-

ate the various sums over m' by means of

m v+1

v . 1 -
: m' VV:Tm (1-47)

m'=
We can then also disregard all effects of the filling of shells, since
the terms proportional to p are of a lower order, both in N [Eq.(9)]

and in E. To leading order, we have

N = % md (1-48)

N
n

z-3m-n°

as well as



m'=1 m'=1
(1-49)
;zzm--}Zm“+6—43—m7 ,
or,
B - ZZ(%N)1/3 132(_23_1\”4/3 6_43(%1\”7/3
=228 30 - 1L I8y (1-50)

For neutral atoms, N = Z, the prediction for the total binding energy

is now

Ex(1-1+d 2@n!/3
(1~51)
9 .3.1/3 _7/3 _ 7/3
= TZ(E) Z = 0.736 Z

The comparison with (44) shows that the inner-shell screening reduces
the total binding energy by roughly one third. It certainly is a sub-
stantial effect in a neutral atom.

Incidentally, it is remarkable that the numerical coefficient
in (51) differs from the correct answer (see the next Chapter) by less
than 5%. In view of the crude way, in which the electron-electron in-
teraction has been taken into account, this is much better than one

could possibly expect.

The effective potential. The model that we just studied possesses one

particularly unsatisfactory feature: the inner shells influence the ou-
ter ones, but not vice versa. There is action but no reaction - hardly
a good way of describing interaction.

In our present, preliminary attempt of resolving this insuf-
ficiency, in the framework of a modified Bohr model, we shall continue
to assume that the various Bohr shells are geometrically separated. The
m'-th shell is supposed to be spherical of a certain radius, Rove Then
the potential energy of an electron with this shell is

{Zm'z/gm, for r<Rr_,

U ,(r) =
m 2
2m'“/xr for >R !

(1-52)
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if the electron is situated at a distance r from the nucleus. The pic-
ture is no longer asymmetric now, since the energy of the m"-th shell
in the electrostatic field of the m'-th shell,

n?2 " 12 -
2m Um,(Rm") = (2m"?2) (2m )/Max (R /R ) (1-53)

remains unaltered if m' and m" are interchanged; action and reaction
are equal.

The total potential energy of the electrons in the m'-th Bohr
shell is the sum of the potential energy with the nucleus and with all
other shells,

m
4
Erot,mr = 207 [= 2w D> U LR L)+ UL (R D] (1-54)
m' m"=1 L

In this sum, the prime is a reminder to delete the term with m"=m'. In-
cluding this term would mean to include the self energy of the m'-th
shell. This is not undesirable, though, because the self energy of the
shell consists mostly of the interaction energy of the individual elec-
trons in the shell. The unphysical electron self-energy can be expected
to be a relatively small fraction of the shell self-energy. Thus we feel

justified in dropping the prime on the sum in (54), implying

Epot . 2m' 2 V(R ) . (1-55)
14

which introduces the effective potential

m
vie) = -2+ 3 U (5 ¢ G ) (1-56)
m'=

It is the same for all shells, i.e. for all electrons.
Before going on, let us supply additional evidence in favor
of the introduction of the effective potential. It comes from evaluating

the total self energy of all shells. This is

m
= -l 12 l 2
Esse 2 ml=12m Um'(Rm') * 2u(2(m+1) Yu Um+1(Rm+1)
Joast— em)? 1 p2@men?)? (1-57)
m'=1 Rm' 2 Rm+1
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the subscript sse stands for same-shell electrons. It now becomes nece-
ssary to specify the radii of the shells, Rm" An electron of the m'-th
shell moves in a potential of the form -Zm./r + const. This is, besides
the here irrelevant additive constant, a Coulomb potential. Consequent-
ly, the expectation values of the kinetic and potential energy of this
electron are Z;,/(Zm'z) and -Z;,/m'2+ const, respectively. It is natu-
ral to define Rm‘ by equating this potential-energy expectation-value

to _Zm‘/Rm' + const. This means

zrfl, Zon
-omt (1-58)
mv2 le '
or
' m|2 m'-1
=— =7, =17 -y 2m" 2 7 (1-59)
R 1 m ]
m m" =1
the latter equality is Eq. (45). (Of course, no claims are made that this

represents the one and only way of defining Rm" The electrons of a Bohr
shell are not geometrically confined to a small range of r, so that
there cannot be a unique, physical value ascribed to Rm,.)

Upon inserting (59) into (57), we have

m
= 12 2 2
Esse é _ 2m Zml + pc 2{m+1) Zm+1

(1-60)
m
2 1 1 1
= 2m'? [72 - S(m'- 5) %+ z(m'- )]
m'=1 3 2 6 2
+u® 2(m+1)? [z~ %(m+ %)3+ %(m+ %)] ,
of which the leading terms are [Egs.(47) and (48)]
. 2 3 _ 2 s
Esse -3 Zm g "
(1-61)
z 2 E—ly.Z
= 77 7 2(Z) 1
For a neutral atom (N/Z = 1), this is
E - 1 7.2 (1-62)
sse 2 !



16

and does not contribute to the leading term of the binding energy, which
is n Z7/3 .

Since the self energy of the m'~-th shell is proportional to
(2m*'2)2%, i.e., to the square of the number of electrons it contains,
whereas the sum of all electron self-energies is proportional to their
number (2m*'2? for those of the m'-th shell, N for the whole atom), the
error made in the total binding energy by the inclusion of the electron
self-energy is very small on the scale set by the leading term (propor-

7/3). Moreover, as soon as we shall have included the ex-

tional to 2
change interaction into the description, the electronic self energy will
be exactly cancelled by the equally unphysical self-exchange energy. In
other words: there is no-reason at all to worry about the self energy;
at the present stage is does not contribute significantly, and later it
is going to be taken care of automatically.

In the effective potential, the use of which now being justi-
fied, the electrons move independently. As the main consequence, the com-
plicated many-particle problem is reduced to an effective sinagle-particle

one. In our present model the total kinetic energy is

m
E, . => z;, +p 2

kin (1-63)
m’=1

2
m+1
[recall, once more, that the kinetic energy of an electron in a Coulomb
potential —Zm,/r + const , as is the situation in the m'-th shell, is
given by Zél/(2m'2)]. Further, the independent-particle (IP) potential
energy cah be expressed with the aid of the effective potential V,

m

= st 2 5 2
Erp, pot -gm' VIR )+ B2(me1) VR ) (1-64)

Together they constitute an approximation to the independent-particle

enerqgy EIP

Erp ® Brin * Brp,pot (1-65)

m m
E 2 E 2 2 2
m-—1zm' * mu—12mI V(Rm') * u[Zm+1+2(m+1) V(Rm+1)] .

This is, however, not the energy of the system. Because of the use of
the effective potential, the electron-electron interaction is counted
twice in (65). In addition to the energy of the m'-th shell in the elec-
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trostatic field of the m"-th shell, 2m'? Um"(Rm,), EIP also contains
2nm"? Um'(Rm")’ for any pair m',m"; and the two are equal, as we have
seen earlier, in Eg. (53). Consequently, we have to remove the electron-
electron interaction energy once. This is conveniently achieved by ex-
pressing this energy in terms of the electric field made by the elec-

trons,
T - - Fy - (-2 -
E = VIV ( r)) . (1-66)

We have carefully substracted the contribution to V that stems from the
nuclear charge. What we have to add to EIP in order to remove the doub-

ly counted interaction energy, is then

R o= [laf) B

- > A
[@n) v + 21°

-

(1-67)

The evaluation of this integral is facilitated by the observation that
in our model

AN/
Z _ m'+1
V(r) + £ = ——F—— + const for R ,<r<R .., (1-68)
Accordingly,
(z2-2 ) 2
Bval)1? - —_m'+] -
[V(v+)1? = e for R_,<r<R_,,, . (1-69)
which holds for m' = 1,2,...,m . Additionally, we need
0 for r<R
[V (vel)12 = ‘
Ei for r>R ° (1-70)
rt m+1
At this stage, we have
SRR Rae1 o .
- - 2 Zyq2
E, = o [ + ] + ...+ / + Anr?dr [V(V+3)] =
e} R R R
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1 Zm -2, 0% 1%
= = _2, fdr ———-T—-——-—* - E fdr — (1—71)
m'=1 R o R *
m! m+1

il

1 N2
Z‘sz+1>2‘ - S 3R

m'=1 m' m'+1 m+1

N =

A unit shift of the summation index transforms the sum with Rm'+1 into

an equivalent one with Rm,:

— - 2
125&5&':_1_)_ an (= m') 1N . (1-72)
2 2 R 2 2 R

m'=1 m' m+ 1

The recognition that Z - Z1 = (0 , combined with

_ 2 _ - 2
(Z Zm.+1) (z Zm.)
= (Zm.-Zm.+1)[(Z—Zm.) + (Z-Zm.+1)]
m'~1 (1-73)
= 2m*' 2 (2 g 2m"? + 2m'?)
m" =1
m'-1
- V2 Zz::j
- 21'[1 le (2 Um"(Rm|) + Um| (le)) ’
m"=1
which uses Egs. (45) and (52), as well as [Egs. (45), (52) and (9)]
m
N% - (z—zm1)2 = u2(m+1)2[2§ 2m" 2+ p2{m+1) 2]
m"=1
(1-74)

m
= 2
= 2D 2R 25 UL (R ) T (R )

m"=1
turns (72) into
m
- 12
E, = E 2m E "(R W) oF u2m+1)? g m“(Rm+1

m': m“ 1 m"_1
(1-75)
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1 - 1 1 2 A
7> UL R+ a2 e ) B IRD (Ry )]

m'=1

The contents of the two curly brackets are immediately recognized as
the interaction energy of the pairs of shells and the self energy ESse
of the individual shells, respectively. Indeed, E, is the negative of
the electron~electron interation energy, as it should be.

Before adding EIP of (65) and E2 of (75) to get the total en-

ergy itself, it is useful to rewrite E . From (64) we get
IP,pot

12
EIP, pot E 2m' = E U (Rpa) + 00 (RG]
m'=1

+ p2(m+1)2 -

E Um' R * uUm+1(Rm+1)]
m+1

m'=1

m oo =1

= ( "2 ¥ 2
Rm' ( Z+ > 2m"4) + E 2m'*<U I(Rm,)
m'=1 m"=1 m'=1

m m (1-76)

=1 m"=m’ +1

m
12
+ U E 2m' U (R

m'=1

2{m+1)? s 2
+ P (-Z+ 2m*?)

(R

+ [p2(m+1)2] x {pU m+ 1

m+1

)]

After using Eq.(59) and the m'-m" symmetry of 2m'? Um"(R .} [the action-

reaction symmetry that we observed in Eq. (53)1, this reads

m
= =2 E 72, - 2p 3z2
EIP,pot £ m m+1

m m"- 1

m"=1 m'=1 m'=1



20

m
#2435 ety (R s 2 me) 21 Ieu, (R D))

m'=1
m , ) (1-77)
== 2 E Zpv T2k Zpaq T By B -
m'=
Finally, we obtain the total binding energy
"B o= - (Bt EIP,pot * Ey) (1-78)
m
B * B By Bese -
m*=1

We compare this with Eg. (46) and notice that the more symmetrical treat-
ment of the electrons leads to an additional term, ESse , in the eneragy.
This is very satisfactory because Esse is the interaction energy of
electrons in the same shell (plus the innocuous electron self-energy),
which was left out when (46) was derived.

Equation (78) can be simplified. First, we use

2 - - -
2m'? = 7, 2ot e (1-79)

and
p2(m+1)2 = 3 - (z-N) ’ (1-80)

m+1

which are consequences of Egs. (45) and (9), to rewrite ESse of (60) as

= - 2 - -
Bege = § Brr= Zpraqd 2 * B Zpyq — (BTN, (1-81)

-E = z Zov Bprgq * u(z—N)zm+1 . (1-82)

We can now evaluate the sum over m', express m and U in terms of y, as
given in Egs. (16) and (19), and pick out the two leading contributions
to -E. They are
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B = (z2y - J2y ¢ Sy7) - 322+ 0027 Puaytey?) (1-83)

/3

To this order, y is simply given by (—;—N)1 [Eq. (21)]1, so that

- 3, 1/3 _ T N2y _ 1,0
-E = 2% (3N) 1T tEEh) - 52

N2

1
2

(1-84)
+ 0 (ZN2/3«, N5/3

)
The neutral-atom binding energy predicted by our improved model of Bohr

atoms with shielding is, consequently,
- = 0.736 2773 - 122 4 0253 . (1-85)

Without shielding, that is: without accounting for the electron-electron
interaction, the result was [Egq.(22) for N = Z]

—E = 1.145 2773 - 127 0?3y . (1-86)

Whereas the screening of the nuclear potential by the inner electrons
reduces the leading term by 5/14 = 1/3, it does not affect the 722 term
at all. We shall see later, in Chapter Three, that this next-to-leading
term is a consequence of the Coulomb shape of the effective potential
for small r. It is the same for all potentials with Vv =z - Z/r for r » o,
for which reason it is independent of N [Egs.(22) and (84) confirm this].
The two examples that we looked at so far, the Coulomb potential of (26)
and the V(r) of (56), both have this property.

Size of atoms. A last application of our model of Bohr atoms with shiel-

ding consists in studying the Z dependence of the size of neutral atoms.
The individual Bohr shells shrink proportional to 1/Zm, as Z increases
[see Eg.(59)]. This would mean that the size of an atom is roughly gi-
ven by 1/%Z, if there were not the necessity of filling additional shells
to compensate for the growth of nuclear charge. Clearly, aqualified state-
ment about atomic size requires the evaluation of some average of r over
the atom.

According to Eg. (59), it is the inverse of le that is easy
to handle. We shall therefore measure the size R of an atom as
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1
N °r . (1-87)

where <1/¥> denotes the expectation value of 1/r. In our model it is

given by

1 mIZ 2(m+1)2 _
< > E R ) + R . (1-88)

T m+ 1

It has a simple physical significance: <1/r> is the electrostatic energy
of the electrons in the field of a unit charge situated at the location
of the nucleus, r=o; or, equivalently, the electrostatic energy of this
unit charge in the field of the electrons. As such it can be evaluated

in terms of the effective potential V:

<> = (Ve %) (r=0) E U, (0) + uU () . (1-89)

m'=1

Indeed, Eqg.(52) assures us of the equivalence of (88) and (89).
After employing Eq.(59) to rewrite (88),

1, -
<> =2 E Zov * 20 2,

ml-

(1-90)

m
2 E (z- %m’(m'-1)(m'— %))+ 20 (Z-N) + 4p?(m+1)?

m'=

[the latter equality also uses Eg. (80)], we can sum over m' and then
identify the leading contributions with the aid of Egs. (16), (19), and
{(21) . The result is

1o _ 3.y 1/3 1N, _N 2/3 -1/3 _
<> = 2Z(§N) -z 3 Z(1- 3) + 0(N®/ “n ZN ) , (1-91)
which for neutral atoms reads
<%> = (wZ) 0223y . (1-92)

Consequently, the atomic size is [Eq. (87)]
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rRaz /3 (1-93)

Heavier atoms are geometrically smaller, This prediction of our rather
simple model will remain wvalid in more realistic treatments.
A remarkable observation is the agreement of Eg. (92) with the

Z derivative of Eq. (84) to leading order,
1, ~ 9 ,_ _
<;> = 57( E) . (1-94)

Its physical significance becomes transparent when we exhibit the change
in the binding eneray that is caused by increasing the nuclear charge Z

by the infinitesimal amount 6%:

6(~E) = %(—E)az x <§r§> ) (1-95)

This says that the change in the binding energy is mainly given by the
electrostatic energy of the extra nuclear charge; the induced alterations
of the shell radii R+ do not contribute to &(-E) to leading order. This
result of the model must be contrasted with the corresponding implication
of the exact treatment based upon the many-particle Familton operator
(7). In general, an infinitesimal change of a parameter in a Hamilton

operator causes a change in the energy, which is equal to the expecta-
5

tion value of the respective change of the Hamilton operator In the
present discussion, this statement reads
5% &7
- = -_ S = — = e -
5 (-E) <5 ( Hmp) <z r.> < r> ’ (1-96)

which says that the change in the binding eneroy is entirely given by
the electrostatic energy of the extra nuclear charge 6%7.

As we see, in our model of Bohr atoms with shielding, Eqg.(96)
is not obeyed exactly, but approximately. This minor deficiency could
possibly be removed by a slightly different definition of the le [Eq.
(59)]. It is not worth the trouble, though.

The models studied in this Introduction not only provided

a first insight into the general characteristics of complex atoms, but
also made us somewhat familiar with a few important ideas: the concept
of the effective potential, the semiclassical evaluation of traces
through phase-space intecorals, and relations of the kind illustrated
by Eq.(32) are the central ones. The next Chapter, devoted to the Tho-
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mas-Fermi model, will use them for a first self-consistent description.

Problems

1-1. Sums of powers of m', as, e.dg., in Eq.(9), can be conveniently
evaluated following the pattern of this example:

m m 1 1 ]
> m' =5 Sl Hi-tm- 2]
m'=1 m'=
m—1 1
- f _2__ . 1
= § (m'+ g (m+2)2
m'=
et -doehis duedio

Show that the other sums, that occur in this Chapter, are given by

n'?2 = zm+x)d-=m+x5) ,

m'=1

| 1y, _1 1 1
m'? = zm+z)t-gm+z)?2 + '

51
m'=1
m
1, 1. 1, 1 1
b = Y5 L -} 3
m' gim+5)° —gim+s) trpmey)
m'=1

1 1 5 1

5 = L )6 _ 2 L3 __ 2_____

m' —6(m+2) 24(m ) + (m+2) 58 !
m'=1

and

31
1344

1
5)

m'S =%(m+%)7—%(m+%)5+%(m+%)3— (m +

m'=1

1-2. Use the periodicity of <y> [see Eg.(17)] to write it as a Fourier

series,

Z‘” =D o -
e sin(2nmy) = - <y> .
m=1
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Integrate this repeatedly to evaluate

o0 m -] _ym
-Z— g:;:n;z cos (2mmy) E §m1n;3 sin(2mmy)

m=1 m=1

[ m
—:—1%11—;7 cos (2nmy) .

m=1

1-3, In order to establish Eq. (43), first use the one-dimensional sta-

tements

which are illustrations of

e-if(p) xeif(p) - d

X"Elsf(?)
and ] )
e—lf(x) pelf(x) =P+dixf(x) ,

to show that

i oo -4 B2 i B2
1(2p Fx)t _ 16 iFxt 1 &7
e = e e e
iFxt -i -1—(p+Ft)3 ip—a-
6F F
= e e e

iFxt -1 %(p+%—Ft)2t -i F2t3/24
= e e e

Generalize to three dimensions and arrive at Eqg. (42).
1-4. The average value of r? for an orbital state in the Bohr atom is
m' 2
(T e pr = ggzlBm? =320 (2 + D1,

where m' is the principal guantum number and £'=0,...,m"-1 the angular

momentum quantum number. Average this over the £' values to find
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2 =m'2 12
(r4) A (7m +5) .
A measure for the size R of the atom is the average of r?,

N RZ = (r2)

m S
- 12 (2 2 {2

atom 5 2m' % (r )m' +p2(m+1)® (r )m+1 .
m._

Show that

V374 3.,2/3 1
—z LGN gl

R =
for large N. Compare with Egs. (87) and (92).

1-5. The contribution of a full Bohr shell, with principal quantum num-
ber m', to n_, the electron density at the site of the nucleus, is gi-

e}
ven by
(ZZ)3 (1)3
41 m -
Show that

8] 4n

3 = - -
=422 (S -38m T o3,

m'=1
for a Bohr atom (without shielding) that contains N electrons.

1-6. Derive the identity

m m m

fm') - [ayEy) = [ay <y-p L Lremyae o]
1 1

m'=1

(which, incidentally, was first proven by Euler) and use it to confirm

Eqg. (47).



Chapter Two

THoMAS - FERMI MODEL

The crude models of the preceding Chapter taught us that it
may be useful to treat the electrons in an atom {(or ion) as if they
were moving independently in an effective potential. We shall now take
this idea very seriously, without, however, making explicit assumptions
about the effective potential, V. It is clear that V possesses the ge-

neral structure1'2
vV = - % + [electron-electron part] , (2-1)

and the challenge consists in finding the electron-electron part in a
consistent way. The fundamental tool for achieving this aim is the elec-

trostatic Poisson equation
- Llwyry -on (2-2)

which relates the electron density, n, to the electrostatic potential,

\ due to the electrons. As soon as we shall have managed to express

es’
both ves and n in terms of V, Eqg.(2) will determine the effective poten-

tial.

General formalism. The dynamics of the electrons is controlled by the

independent-particle Hamilton operator
H = %pz + V(¥) . (2-3)

The electrons fill the eigenstates of H successively in such a way that
all states with binding energy larcer than a certain value, z, are occu-
pied, whereas those with less binding energy are not. The parameter 7 is
thus determined by the requirement that the count of occupied states
equals the number of electrons N. Just as in Eg. (1-27) this is expressed
as

N = tr n(-H-7) , (2-4)

where we remember that the spin mulitplicity of two is included in the
trace.
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The sum of independent-particle energies is, analogously,

EIP = tr Hn(-H-7) . (2-5)
The combination H+g, that appears in the argument of Heaviside's step
function n, invites rewriting EIP as

Erp = tr (H+g)n(-H-z) - gtr n (-H-g) , (2-6)

which, with the aid of (4) and the definition

E, = tr (E+g)n(-H-1) (2-7)

reads
E =R, - ¢N . (2-8)

In this eguation, N is the given number of electrons, and both EIP and

E1 are function(al)s of the effective potential V and the minimum bin-
ding energy .
Let us make contact with Egs. (1-27) and (1-32), in that we

write

- fag' Ny, (2-9)
4

E, (2)
where
N(z') = tr n(-E-¢") (2-10)}

is the count of states with binding energy exceeding ¢'. Egquation (4)

appears now as
N = N(z) . (2-11)

Equation (9) can be equivalently presented as a differential statement.
If r deviates from its correct value {which is determined by Eg.(11)]

by the amount &z, then E1 is off by

BE1

= == 8f = &z = N& . 2-12
6€E1 z C N(z)é¢ 4 ( )

This has the important implication that E of Eg.(8) is stationary un-

Ip
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der variations of ¢ (around its correct value, of course):

6C EIP = 6C E1 - N6z = o . (2-13)

In addition to g, E1 and EIP also depend on V. The local response
of both energies to variations of the potential exhibits the electron

density n:

& =6 = {(@r 7 T 2-14
v Erp = Oy By = f( r')&év(r"') nir') . ( )
Although this is intuitively obvious, let us supply a formal proof. The
first equality follows immediately from (8), because N is the given num-
ber of electrons and ¢ is a parameter that we regard as independent of

V. For the second equality, we need the following identity:
6H tr £(B) = tr 8H £'(H) , (2-15)

which expresses the change in the trace of a function of an operator H
as the trace of the product of the change in the operator, 8H, and the
derivative of that function. [Note that (15) is not true without the
trace operation, unless 5H commutes with H:

SH f(H) = 68 £'(H) only if [8H,H] = o. (2-16)

Under the trace the possible noncommutativity does not matter.] In our

application,
£(®) = (E+g)n(-H-g) ,
(2-17)
£'(H) = n(-H-7)
[compare with Eg. (1-29)], and 8H = &V. Accordingly,
6y By = tr &V n(-H-g)
(2-18)
=2 [(dx") <2 |6V(DIn(-H(B, %) - )| F'>

We use, again, primes to distinguish numbers from operators; the factor

of two is, once more, the spin multiplicity. Now, since

< [eVI(T) = sV(E') <¥'| (2-19)
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and, anticipating that
2<F' [n(=H-7) |F'> = n(¥") (2-20)

Eqg. (18) implies Eg.(14). Indeed, eguation (20) is nothing but the
representation of the density as the sum of squared wavefunctions over
all occupied states. Upon labelling these wavefunctions by their ener-
gies E' and additional quantum numbers, o, the left-hand side of (20)
is

2Z w;‘:a(zl) n(-E'—c)wElrQ(;')

E',a

(2-21)
=20 g JED TR
E',CX. ¥

which is recognized as the usual definition of the density.
For consistency, the integrated density must equal the number
of electrons,

N = [@nEY) . (2-22)

This follows immediately from Eq. (20):

faznE) = 2 [@r)<F n(-E-0) [F'>

(2-23)

il

tr n(-H-z) = N(g) = N .

Another, and more instructive, proof makes use of (i) the definition of

n in Eq. (14); ({(ii) the circumstance that E, does not depend on V and g

1
individually, but only on the sum V+z; (iii) Equation (12). Consider
infinitesimal changes in g and V such that SV(T) = —5;.3 Then 6 (V+g) =0,

implying 5E1=o. In view of Egs. (12) and (14) this means

-)" - -
o = 6C E, + &; B, = N6z + JdE") (-87)n(¥")

. (2-24)
= 8z (N- [(d¥)n(¥)) ,

which is equivalent to (22). This second proof has the advantage of re-
maining valid when the trace in E1 is evaluated approximately. There is
no assurance that the densities derived from (14) and (20) are identical
in a certain approximation. If they are not, Eg.(14) is the preferable
definition. {We shall, indeed, be confronted with this possibility la-
ter, in Chapter Four.)
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Equation (14) relates the density to the effective potential,
so that we have taken care of the right-hand side of Eq.(2). We are left
with the problem of expressing the electrostatic potential of the ele-
trons, V__, in terms of V.

es

We proceed from noting that E is not the energy of the sy-

Iip
stem. Just as in the preceding Chapter [recall the remark after Eq. (1-
65)], the use of the effective potential causes a double counting of

the electron-electron interaction energy, E The interaction potential

ee’
Vee which is the electron-electron part of V in Egqg. (1), is naturally
given as the response of Eee to variations of the density,

8By, = [(dE') 6n(Z') V__(F') . (2-25)
[Please do not miss the analogy to Eg.(14).] Since V and ¢ are the fun-
damental quantities in our "potential-functional formalism," 6n(;) must
be regarded as the change in the density induced by variations of V and
z.

Seme evidence in favor of (25) is supplied by considering the
electrostatic interaction energy

£ =1 [ @ 2EIRE) (2-26)
es 2 1§";"| !
for which
6B, = {(aF")6n(¥') f(dE") T:Ei§i% ) (2-27)
="

Thus, Eq.(25) implies the familiar expression

Voo (1) = fragm 2l (2-28)
Irl_rul

which is egquivalent to the Poisson eguation (2).
The electron-electron interaction energy, as it is incorrect-

ly contained in EIP("double counting of pairs"), is

tr Voo n{=H-7)

2 f(az) Voo (T n(-H-) [F'> (2-29)

frarnv_ EonEn
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the last step uses Egq.(20). Consequently, the correct energy expression
is
-
E=Ep - AV, n+E . (2-30)

The second term removes the incorrect account for the electron-electron
interaction contained in EIP' and the last term adds the correct amount.

The energy of Eq. (30) is endowed with the important property
of being stationary under variations of both V and Ty
6 E =6, E = o. (2~31)

In order to see this, first appreciate

8( - [(ar)v n + E_)

(2-32)

- j(dr)(éveen + Vee6n) + f(dr)&n Vee

fl

~ {(a¥)nsv ,
ee

which is an implication of Egq.{(25). Further, a consequence of Egs. (13)
and (14) is

SEIP = 6;EIP + 6V EIP
N (2-33)
= [(dr)nsv
Then, the change in E is
> g
8E = j(dr)n(&V—SVee) = f(dr)né(v Vee) (2-34)
In view of [Eq. (1)]
vae<Z,y {2-35)
r ee !

the variation 6(V—Vee) vanishes, and Eq. (34) implies Eq. (31), indeed.
It is useful to separate Eee into the classical electrostatic

part, Ees, of Eg. (26), and the remainder Eée, which consists of the ex-

change interaction and possibly other effects. Accordingly, we write

E = E + B! , (2-36)
ee es ee
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and likewise

\Y =V + V! . (2-37)
ee es ee

The electrostatic contribution to the energy (30) can be rewritten,

with the aid of the Poisson equation (2), in terms of the electrostatic

field -V _:

s

- [@hn v +E_ = -5 [(@)n v,
= o [(@F) (VV_)V__ = - o [(aF) (TV__)?2 e
T En o es’'es  Bm es

[The surface term of the partial integration is zero, because Ves = N/r
for large r. ] Further, we combine Egs. (35) and (37) into
Z

V._=V+2-V

es T ée ' (2-39)

thereby expressing Ves in terms of V, as needed in (2). The energy now

reads

E =E -

p g J @) V(v

Kl

~y! 2
vi)]

(2-40)
>

- I(dr)n v' + E! .

ee ee
This expression for the energy is our basis for approximations. Various
models emerge depending upon the accuracy to which the trace in EIP
[Egs. (7) and (8)] is evaluated, and upon the extent to which Eée is
taken into account. Of course, a consistent description requires a ba-

lanced treatment of both.

The TF model. The simplest model based upon Eq. (40) is the TF model. It
neglects Eée entirely [then Vée also disappears from (40)], and evalu-
ates the trace of Eq. (7) in the highly semiclassical approximation of
Eg. (1-43). The TF energy expression is therefore

> >
Egp = 2 I(df; ‘?3’ (39244200 (- 5p?-V=r) - N
s

- g% [ (@%) [V (v+ %)]2 . (2-41)

We recognize the last term as the quantity E2 of Eqg.(1-67), which was
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there introduced to remove the doubly counted (electrostatic) inter-
action energy; the term plays the same role here. The phase-space inte-
gral is the TF version of E1, properly denoted by (E1)TF' We shall,
however, suppress the subscript TF until it will become a necessary
distinction from other models.

The step function cuts off the momentum integral at the (r-

dependent) maximal momentum (the so-called "Fermi momentum")

P = /~2(V+g) , (2-42)
so that
- f(aF an fap p? dp- Le?
g, = f(ar) - 4m [dp p? (zp°~ 3P%)
(2m) o (2-43)
= 7y Lt - Lyps
= [(af) —(5 - gP° .
i
or, square roots of negative arguments being zero,
By = [(@) (- =) -2 1P (2-44)

51

This is the Thomas-Fermi result for E1. The entire energy functional in

the TF model is then

ETF = E1 + E2 - CN

(2-45)

1
15m?2

fad) - 2w 132 < Lpad Fve L7

Is there any reality to it? Yes. Look back to Chapter One, where (45)
has been used unconsciously for the Coulomb potential V=-Z/r. In this
situation, E,y equals zero, and Enp gives the leading term of Eg. (1-22)
[see Egs. (1-26) through (1-37)]. Since V is essentially equal to the

Coulomb potential in a highly ionized atom, we conclude

Epp = - 22607 for W<z . (2-46)
We shall return to highly ionized systems in a while and find the modi-
fication of (46) when accounting for the electron-electron repulsion.
Before doing so, we have to study some implications of Eqg. (45).

The stationary property of ETF with respect to variations of
V and ¢ reads
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SEpp = I(df)év{gi[—z wie)13/2 4 Lyrws By

o
n

+ 8z{ [(a¥) _.LZ[—z(v+;)]3/2 - N}

3n (2-47)

1 > > VA
- g [@ ¥ (sv v+ 2))

The value of the last integral is zero, because the equivalent integra-
tion over a remote surface vanishes in view of &V=o0 for r-w. The varia-
tions of V and r are independent, so that the two curly brackets equal

zero individually. Accordingly,

R T 2y o1 5 3/2 2-48
am Vv Q) 3n2[ (V+z)] { )

and
jlad) 21?2 =, (2-49)

3m?

of which the first is the Poisson equation, and the second the normali-
zation of the density to N. Obviously, Eg.(49) is the TF version of (11},
as we notice that Eqg. (10) is realized as

N(gt) = 2 fARLR) o %Pz-v-c') = J@h-r-2v+g 1772 2-50)
(2m) 3 3n?

This, inserted into Eg. (9), reproduces (44), as it should.
On the right-hand side of (48) as well as under the integral
of (49) we have the TF density

n = p2wip1?? . (2-51)
3mn?

In the classically forbidden domain, characterized by V>-g, this density
vanishes. There is a sharp boundary assigned to atoms in the TF model.
In contrast, in an exact guantum mechanical description the transition
from the classically allowed to the classically forbidden region is
smooth. We have just learned about one of the deficiencies of the TF
model. It is going to be removed later when we shall incorporate quantum
corrections of the sort discussed briefly after Eq. (1-43).

The differential equation (48) for V, known as the TF equation
for V, is supplemented by the constraint (49) and the short distance be-
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havior of v,
rvVv->-2 for r~+o . (2-52)

It signifies the physical requirement that for r+o, the effective poten-
tial is mainly given by the electrostatic potential energy of an elec-
tron with the nucleus; formally, (52) is necessary to ensure the finite~
ness of E2. Consequently, we have the following situation: for small r,
the potential is large negative, and the density is large; as r increa-
ses the potential becomes less and less negative; finally, at the edge
of the classically allowed region, it equals -z, and the argument of the
square root in (51) turns negative; beyond this distance, Iy, the densi-
ty is zero, so that (48) is the homogeneous Poisson equation. Gauss's
law, combined with Egs. (49) and (52), then implies

Z—-N
V=== for rzr, , (2-53)
and the radius r, of the atom is determined by
V(r=ro) =-7 , (2-512)
or,
r = Z-N . (2-55)
To

The electric field -VV is continuous (there are no charged surfaces in

an atom) ; in particular, at the edge we have

d _Z-N _ L -
—d? V(r)| = 5 = 7 . (2 56)
r I o]

@] (o]

Neutral systems, N=Z, have ¢=o, so that both V and dv/dr vanish
at L= . Consequently, the TF equation for V, Eq. (48), requires r, ==,
since for a finite L it cannot have a solution satisfying these bounda-
ry conditions. We have just learned that neutral TF atoms are infinite-
ly large, they do not have an "outside", only an "inside".

It is useful to measure V+{ as as multiple of the potential
of the nucleus by introducing a function £ (x),

vez=-Zrm) (2-57)

the argument of which is related to the physical distance r by

1.3m,2/3

= Z1/3I/a , a = i(fr) = 0.8853... (2-58)
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The constant a is chosen such that the differential equation for f(x),

) 3/2
4% fix) = [f‘X%]Z , (2-59)
dx?

called the TF equation for f(x), is free of numerical factors. The boun-

dary conditions (52), (54), and (56) translate into

- - = 3 =1 -Y=: -
£(0) =1, £(x) =0, -x & f£(x)) =1-3a , (2-60)

which introduces g, the degree of ionization. Of course, X is related

to r, through (58). Equation (53) now appears as

f(x) = q(1—x/xo) for x

v

X . (2~-61)
Please notice that Z and N do not appear individually in Egs. (59) and
(60). Consequently, f(x) is solely determined by the degree of ioniza-
tion, g, so that all ions with the same g possess a common shape of the
potential and of the density. The potential V itself does, of course,
depend on Z; first through the factor Z/r, but then also because of the
7Z dependence of the TF variable x of Eq. (58). The factor Z1/3 there
implies the same shrinking of heavier atoms that we have already ob-
served in Chapter One, when considering Bohr atoms with shielding, see
Eq. (1-93).

For illustration, Fig.1 shows a sketch of f(x) for g = 1/2,
for which X, = 3. The geometrical significance of the third equation in
(60) is indicated.

~N

14

<+
x

—a—
o
w

—
N

-
X
o

Fig. 2-1. Sketch of £(x)for gq= 1/2.

Neutral TF atoms. For the solution of Egs.(59) and (60) that belongs to
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g=o, we write F(x) and call it the TF function. It obeys

RN o 163} bl (2-62)
dx? x
and is subject to
F(o) = 1 P F(e) =0 . (2-63)
Its initial slope B,
F(x) =1 -Bx + ... for x << 1 ’ (2-64)

has an important physical significance. We insert (64) into (57), use
(58), and arrive at

4/3

Vi{r) Z for r >0 . (2-65)

1]

1
KiN
+
[URTee]

The additive constant is the interaction energy of an electron, near
the nucleus, with the main body of electrons. We can use it to immedia-
tely write down the change in energy caused by an infinitesimal change
of the nuclear charge Z to 72 + &Z. It is the analogous electrostatic
energy of that additional charge, where a minus sign is needed to con—
nect with the known energy, which is that of an electron:

4/3

8E = - Z

TF

ot

82 . (2-66)

The simultaneous increase of the number of electrons from N=Z to N=Z+8Z

has no effect on the energy since 3E/3N - ¢ = o for N=Z%Z, see Eq.(55).

Consequently,

7/3

-E = Z for N =12 . (2-67)

TF

~lw

B
a

This is the TF formula for the total binding energy of neutral atoms.

The constant B is Well known numerically. But before guoting
the results of a numerical integration of Egs. (62) and (63), let us use
our insight to find an estimate for B. Indeed, in view of the physical
approximations that led to the TF model, there is no need, at this stage
of the development, of knowing B better than within a few percent. A
first crude estimate is given by the comparison of (67) with (1-51),
the result obtained in the model of Bohr atoms with shielding:



9 .3,1/3 _ 9.1 _ _
733 = 25 1.52 . (2-68)

We have no way of judging, how accurate this number may be, but shall
see later that it deviates by less than 5% from the correct value.

The stationary property of the energy functional (45) provi-
des a tool for obtaining good estimates for B. If we evaluate ETF(v,m
for a trial potential V and ¢ = o (this much we know for sure when N=Z),
the deviation of ETF(V,;=0) from —% g Z7/3 will be of second order in
the error of V. As we shall see in the following section, the energy
functional has a maximum for the correct potential. Consequently, any

trial V gives an upper bound for the constant B:

7 -7/3
B os-2az P E v, , (forn=12 (2-69)
where the equal sign holds only for z=o and V = - (Z2/x)F(x).

Maximum property of the TF potential functional. Let us consider finite

deviations from the correct potential V and the correct value for g,
denoted by AV and Ag, respectively, as distinguished from the infinite-
simal variations &V and &6f. Whereas Ar is quite arbitrary, AV is subject
to

r AV > o for r > o ’

(2-70)
AV » © for r > ® R

which are consequences of (52) and the normalization V(r + «)=o. The de-

viations of the three terms of ETF in (45) are then

1

5n

) ([-2 (v+av+ £ +82)1°72 —[-2(v+ D) 1773, (2-71)

AE, = [(dr) (- -

and

AE, = -

, = - g J@d) (¥ weave L2 T e Zy2)

(2-72)
= - g @ a1t L fahven e d o,

which after a partial integration and the use of Eq. (48) reads
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ME, = - g fi@d) (Fav) 1= [@d) av ;—1—2[—2 w+0) 132, (2-73)
as well as
A(-ZN) = - (AZ)N = - [(d¥)AcC —1;[-2(v+c:)]3/2 , (2-74)
3n

where Eqg. (49) has been employed. Accordingly,

AE

AE, + AE, + A(-ZN)

TF
= [(@®) (- =) {1-2(vep) -2 (av+a) 1772 (-2 (vag) 1772
15m2
+ 5(Av+Ag)[—2(V+c)]3/2}
(2-75)
- 5= [@ v’
The contents of the curly brackets is of the structure
[u+v]5/2 _ u5/2 _ % v u3/2
v (2-76)
= 15 [c’iv'(v-—v')[u+v']1/2 2 0 ,

o

where u = -2(V+z) and v = -2 (AV+Az) . The equal sign in (76) holds only

if v = o, or, if u+v' £ o over the whole rancge of integration (under
which circumstance the square root vanishes). This implies

AETF

IA

o ; =o0 only for AV = o and Az = o . (2-77)

In words: the TF potential functional of Eqg. (45) has an absolute maximum
at the correct V and ¢.

This maximum property might come as a surprise, as one naive-
ly expects the electrons to arrange themselves such that the energy
achieves a minimum. True, but it is not different electron distributions
that we compare; the competition is among different potentials. In the
same sense, in which it is natural for the right density to minimize the
energy, it is common for the right potential to maximize it. Let us illu-
strate this point by the analogous (and closely related) situation in
electrostatics.
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An electrostatic analogy. Consider the problem of finding the electro-

static potential, &, to a given charge density, p, in the vacuum.4 They

are related to each other by the Poisson equation

- Lygz g - -
in Ve b = p . (2-78)
The electrostatic energy can be expressed in various ways:

3 J(@Fy e = 5 [(ah) (o) 2

=
"

Il

f@fipe - -T2 . (2-79)

If we insert the ¢ that obeys (78) into any of these expressions, they
all give the same answer. Suppose, however, that we do not know the cor-
rect ¢ and have to resort to using an approximate one. In this situation,
it is advisable to employ the third version of (79) in calculating the
energy, because, unlike the other ones, this expression is stationary

at the correct ¢:

6 [(dF) [po - g=(V0)2] = [(@F)60[o+ 5-v20) = o . (2-80)

A finite deviation A¢ from the right electrostatic potential results in

the second order error in E that is given by
-1 Y 2 . -
AE = - 2= [(@) [V(a0)]? <O (2-81)

the energy is maximal for the right ¢. The analogy to the TF functional
is, indeed, close, since the same term occurs also in (75).
Here is a little application of the stationary property of

5

the electrostatic "potential functional."” Instead of inserting ¢ (%),

we evaluate the energy for ® (AT) :

1]

E() = [(dF) p0 ) - 5= [(a¥) [Fo(1F)12

(2—-82)

f@d) p20F) - 1= [@H Fed1e

For A=1, it is the correct energy. Consequently,
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d _ = -
a—x E(}\) = 0 for A=1 ’ (2 83)
which implies

o (@) @02 = [@F) oF- (-To) . (2-84)

We have thus found an unusual expression for the electrostatic energy:
the integral of the scalar product of the dipole density p; with the
electric field -Vo. Note, in particular, that there is no factor of 1/2.
Since a translated charge distribution p(§+§) has the same electrosta-

tic energy,
[@F) p(F+R)IT - (-Y0(¥+R)) = [(@F) p(DIE- [V (F)] (2-85)

we find, after substituting 7»¥-R on the left hand side, that the self

force of any charge density vanishes:
f@)o-vVe) = o . (2-86)

(The stresses, of course, do not.)

A different problem is that of finding the correct charge den-
sity on the surface, S, of a conductor carrying a given total charge, Q.
In this situation, the relevant equations are
(r')

N
de' S f = const. for T on S ’ (2-87)
|z-r

and
fas o(¥) =0 , (2-88)

where o denotes the surface charge density. Here the stationary energy

expression is

> >,
E = fasas TEOED g (o-faso () . (2-89)

, B
The last term incorporates the constraint (88). Infinitesimal variations

of both o and @O imply Egs. (87) and (88), thereby identifying @o as
the (constant) electrostatic potential on S. This energy is a minimum
if only o's obeying (88) are allowed in the competition, i.e., if vari-

ous distributions of the same, given, amount of charge are compared.
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We get

AE = %Idsds' Agl_lhé_ifil , (2-90)
|

()
T

=y 1Ry

where Ac is the deviation from the optimal density o. Since this is
the electrostatic energy of some charge distribution, it is, indeed,
positive.

TF density functional. This digression into the realm of electrostatics

raises the question if it is possible to write down a functional of the
density, in addition to the potential functional of (45), thus getting
upper bounds on the energy, lower ones on the constant B. This can be
done, indeed. It requires appropriate rewriting of (45), whereby the
potential is replaced in terms of the density. Both Eq. (51) and the
electrostatic relation

v(r) = - % + [(ar") ﬂ§¥§;% (2-91)
r-r'

can and must be used in this process.
We start by undoing the step from Eq. (43) to Eg. (44), so that

E1 is split into the kinetic energy, Ekin’ and a potential energy part:

= f@h) —(-2ws0) 132 - [(@h) -(-2(ver)1 132
10m? 6n?
= @) —1(3n2n)®/3 + [(@F) v+o)n (2-92)
10m?

B+ [@P) v Hn - [(@F) Zn o+ cf@hn .

E2 is rewritten by first performing a partial integration, then making
use of the Poisson equation, followed by employing Eg. (91):

1 >y Z 1 > 7
E, = - 5= [@) Five D12 = 2rad) ve &) glo vs
- A -+ > > > > (2—93)
- -z f@hws Hnd - - %f(dr)<dr')n(iigf7 |

Combining the two last versions into
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|T-r' |

2 - [@®) (v+g)n (2-94)

makes the potential disappear from the sum of E1 and E2. The resulting

TF density functional is

E=E, +E, - N
> >,
= fuad) —=@nn)®3 - f@d) Lo+ Jfah) ad) 2ERED
10m r-r'|

- LN - f@Dn) . (2-93)

All we know at this stage is that Eqg. (95) gives the correct value of
the energy, provided we insert the correct density. To be useful this

functional has to be stationary about the right density. Not surprising-

ly, it is:
> >\ o1 > 2/3 % >, n(r')
SE = [(dr) 6n(r)[§(3n2n(r)) -2 far") TE:ETT + ]
(2-96)
-6z (N - [(d¥)n) =0 ,
which uses Egs.(51) and (91) in the combination6
-> - +l
vid) = - t0en@?P oo L fan 220 (2-97)
Ir—r‘
and the constraint (49), now reading
[@n =8 . (2-98)

The successive terms in Eg. (95) have the physical significan-
ce of the kinetic energy, the potential eneragy between the nucleus and
the electrons, and the electron-electron potential energy. The last term
incorporates the constraint (98), thereby identifying r as the corres-
ponding Lagrangian multiplier. In contrast, the potential functional of
Eg. (45) consists of the sum of independent particle energies, E1—QN,
plus the removal of the doubly counted electron-electron-interaction
energy, E2. It is important to appreciate this difference in structure.

Let us now check if the density functional does have the ex-
pected property of being minimal for the correct n and z.
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Minimum property of the TF density functional. In analogy to the pre-

vious discussion of the maximum property of the TF potential functional,
we consider finite deviations An and Ag from the correct n and r. Again,
Az is quite arbitrary, whereas An is restricted by the requirement that
the density be non-negative,

n+ An 2 o for all r . (2-99)
The derivation of (95) made use of (51) so that negative densities had

been implicitly excluded.

The various contributions to AE are then

> 2y5/3
AEy, = [(af) _(_3_“,.22“[(}1%11)5/3 o a8/3y (2-100)
10m
and
> >y
- [@d) En v Tfad) @) EL§L§1T_L,
r-r'

—>|
f(a%) an(F) [- % v faF _%%)_]
[t-x" |

i

> >,
+ % {(d?)(d?') An(r) An(r')
|T-2" |

JELDRAPNERYE

= [a¥%) 3 Anl - zf(d¥)An
10m?
(2-101)
+ 5 [a) (aFr) AnlX) An(e?)
|x-x" |
which uses Eq. (97), as well as
A~ g(N = [(d@¥)n)] = (z + A7) [(d@¥)an . (2-102)
Consequently,
5/3
BE = f(aF) B30T negn)5/3 1 573 2n2/3n]

10m2

¢ 1 @) @) oG mED
Eaal
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+ Az f@F)an . (2-103)

The first term here is positive definite, which becomes obvious when

we write it [compare Egq. (76)] in the form

2,573 An N
fap) B2 10 fay (an-v) () 13 (2-104)
2
101 le)
20 ; =0 only if An(f)=o for all ¥

The second term in (103) is the electrostatic energy of the charge den-
sity An(f), thus it is also positive, unless An=0 everywhere. The third
term does not have a definite sign. Therefore we restrict the class of

trial densities n and trial ¢'s such that
Az f(d¥)an = o . (2-105)

Then

AE o : =o only for An(¥)=o for all ¥ ; (2-106)

[\

the TF density functional of Eg. (95) has an absolute minimum at the cor-
rect density, provided Eq. (105) holds.
In general, satisfying (105) will mean to consider only such

trial densities that obey the constraint (98), since then
f@Ham =0 . (2-107)

The main exception are neutral atoms, about which we know that g=o. Con-
sequently, trial values for ¢ need not be chosen, so that Ag=o. Then

Eg. (105) is satisfied without restricting the density according to (107).
This observation will prove useful, when seeking lower bounds on the
constant B.

Upper bounds on B. We pick up the story at Eq.(69). The calculation is

considerably simplified by employing the TF variables x, X and f(x),
which have been introduced in Egs. (57) throuch (60). In these, the TF
potential functional appears as [£f' (x)_dxf(x)]

5/2 ©
_ 7/3 [£(x)] 1 ' 2
= - (2 £ fax = f[ax[f <
E ( /a){ f —————7—*— t 5 é x[£' (x)+ Xo] +
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(1=q) (2-108)
+ 2790, ,
Xo

where, replacing V and &, it is now £f£(x) and X, that have to be found.7
Whereas arbitrary variations of x, may be considered, f(x) is subject
to

f(o) =1 (2-109)
and

£r(x) = - L for xro (2-110)

Xo

The first of these is Eg.(52), the second comes from the inclusion of
Z, in Eq.(57), into the definition of f(x). In (108) it is needed to
ensure the finiteness of the second inteoral. Note, in particular, that
the trial functions do not have to obey

fixg) = 0 , -x,f' (x0) = g (2-111)

[see(60)]. This, and the differential equation

3/2
£ (x) = 1215%%5- (2-112)
X

[see (59)] are implications of the stationary property of (108). Here

is how it works: infinitesimal variations of £(x) cause a change in E,

sl-(a/z’/3)E]

[e]
I

de 5f(x){[f(x)]3/2 - £7(x)} + de Lo x) [£ (x)+L] )
! ETA Al %o

(2-113)

- " (x)} .

o 3/2
[£(x)]
({dx 5F (X) {-*——X.]—7—2-—~

where the first equality is the stationary property and the last one
uses (109) and (110) in finding the null value of the integrated total
differential. Thus (112) is implied. We combine it with (110) to con-

clude that beyond a certain (yet unspecified) ¥, f(x) is negative and
linear:

f(x) = g XX for X

v
wi

(2-114)
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Next, we consider variations of x,. They produce

o = 6[-(a/Z7/3)E]

1 7 ,
a(;;) g { gdx[f (x) + é%] + (1=-q)} , (2=-115)

implying the vanishing of the contents of the curly brackets. In view

of (114), the integration stops at X:

X
o = [ax[f' (x)+ X] + (1-q)
o *o
(2-116)
- £(%) - X - g = gi* - .
= £(X) flo) + qu + 1 q q(Xo 1) ;
the last step makes use of (109) and (114). Now we see that §=xo, so

that (114) becomes (61) and implies (111).
Let us now turn to neutral atoms, g=o. The maximum property
of the functional (108), combined with the known form of the neutral atom

binding energy , Eqg. (67), reads

co 5/2 o
3 2 [£(x)] 1 )12 -
=B st [dx it 3 faxi£' (x)) ' (2-117)
e} b4 o}
where the equal sign holds only for f(x}=F(x). Note that x, disappeared

together with g, so that we do not need to use explicitly our knowledge

of x == for g=o. According to (109) and (110), the competition in (117)

is among trial functions that are subject to
f{o) =1 ’ f'(x » =) = o. (2-118)
For any trial f(x), we can always change the scale,
f(x) » £(ux) , (u>0) (2-119)

and obtain another trial function. The optimal choice for pu minimizes
the right hand side of

o 5/2 =
3 5 2 Tqp LEG)] 1 T 1l -
7B 55 fax =gy v g Jaxlgf st
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w0 5/2 o
-1/2 2 £ 1 G e

= w2 2 fax i_iz%%i_* + w5 fax[£ (x)12 (2-120)

o] X o]

It is given by
3 5/2 b
3/2 _ 2 [f(x)] 1 2 -

M = £ édx = idx(f (x)] . (2-121)

We insert it into (210) and arrive at the scale invariant version of
(117):

2
N YRV /3¢, 1/3
B <<t Jax 73 fax[£' (x)1? , (2-122)
o] X o}

where now the equal sign holds for f(x)=F(px) with arbitrary u>o.

We are now ready to invent trial functions and produce upper
bounds on B. Before doing so, let us make a little observation. If £
equals F, the optimal pu in (120) is unity, since the equal sign in (117)
holds only for £ (x)=F(x). Consequently, the numerator and denominator
in (121) are equal for f=F. In this situation the related sum in (117)
is (3/7)B. We conclude

o 5/2
2 (F(x)] -2 -
sl =m— =58 . (2-123)
and
1.7 . 2 _ 1
5 [ax[F'(x)]1* = =B . (2-124)
O

An independent (and rather clumsy)} derivation of these equations uses
the differential equation obeyed by F(x) [Eg.(62)], combined with some
partial integrations. Equations (123) and (124) can be employed for an
immediate check of the equality in (122) for f£(x)=F(px):

B=Z w2223 (2513 | (2-125)

2 7 7

More about relations like (123) and (124) will be said in the section
on the scaling properties of the TF model.

A very simple trial function is

1

f(x) = Tix% r (2-126)
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for which

o 5/2 o
2 [£(x)] _2 -1/2 -5/2 _ 8 _
z fax iy T % fax x (1+%) = Tz (2-127)
o] X o]
[the integral, in terms of Euler's Beta function, is B(%,Z) = %], and
Jaxier 12 = [ —22_ -1 (2-128)
o o (1+x)*"
Accordingly,
B < 1; 572/3 _ 1596 . (2-129)
A better value is obtained for
- 1.,4/3 -
f(x) = (1+x) ' {2-130)
when
B < 271%/9 (JIL)1/3 (n€) 123 0 173 < 15009 (2-131)

This number is, as we shall see, very close to the actual one; so there

is no point in considering more complicated trial functions.

Lower bounds on B. In order to express the density functional of Eg. (95)

in terms of TF variables, we write

2
an

7
)

n(7) V2 (V+

~§§(zf(x)) (2-132)

dr

&l
T

2% £ )
it 4 X
a

or, more conveniently here,
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n(F) - g g (2-133)

s}
w

The function g(x), thus introduced, differs from f'(x), at most, by a

constant. We choose this constant to be g/x,

g(x) = £'4x) + &, . (2-134)
(o)

which in view of. (110) is equivalent to requiring
gi{x +«) = o . (2-135)

With (133) and (135) we have for the interaction energy bet-

ween the nucleus and the electrons

7/3 = 7/3
-f@h Ens-— jax gt = = g0, (2-136)
o]

whereas the electron-electron energy is

57/3
a

N —

3 fad) (@ry 2Enll) faxtgi1z . (2-137)
- fe)

[This quantity equals —E2, so that Eq. (134), used in the second integral
of (108), gives this result.] The remaining contributions to the densi-

ty functional can be expressed in terms of g(x) immediately. We arrive
at

7/3 o oo
E = Ej;*{% idx x1/3[g'(x)]5/3 + g(o) + % (J;dx[g(x)]2

(2-138)

- g l1-q- fax x g' (x)])
o o

Again arbitrary variations of X, Mmay be considered, whereas ¢ is restric-
ted by the requirement of non-negative densities,

g'({x) 2z o P (2-139)

and by Eg.(135). Together, they imply
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g{x)s o (2-140)

According to the discussion of Eg.(103), Eg.(138) supplies
upper bounds on the energy. provided that Eq.(105) is obeyed. Expressed

in terms of x, and g, it reads

A<) fdx x Bg'(x) = o . (2-141)
X5

We did notice already [see the remark followina Eqg.(107)], that in the
situation of neutral atoms, our knowledoe of x, =« results in A(—w)—o,
so that (141) is satisfied without further ado. In particular, g?x)
need not be subject to

f ax x Ag' (%) = o (2-142)
)

or [this is Eg.(98)], more precisely,

Jdx x g'(x) = 1=q ; =1 for g=o . (2-143)
o}

The minimum property of the functional (138), tocether with
the known form of the neutral atom (g=o) bindinco enerogy, Eq.(67), im—

plies
22~ 3 fax x' 21 0173 + gl0) + T [axig12) L (2-144)
o o
where the equal sion holds only for ¢(x) = F'(x). For this c(x), the

value of the two inteorals is %B and %B, respectively, as follows from
Egs. (123) and (124), and the differential equation (62) obeyed by F(x).

Consequently,

F!' (o) = -B r {2—-145)
which is nothinc more than the oricinal definition of B in (64).

As in the preceding section, we can consider chances of the

scale. Here the possible scalings are even more ceneral,

g(x) - B9 (pyx) ¢ ligrn, > 0) , (2-146)
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because there is no analog to the restriction f(o)=1, that we had to

watch before. The optimal choices for By and ”2 maximize the richt hand

side of
%—B z - {-g- (};dx x1/3[u1%g(u2X)]5/3 + 1,9(0) + -;— (j;dx{u1g(u2X)]2}
= - {u?/3 u;/3 % fax [cr' (x)1 5/3 + niglo)
o]
2 [+e]
P 211 Jaxtg 012
o 2
(o]
(2-147)
They are
_ 4/3 o -
p, = (43 1mg)] & faxigx)12)71/3 (2-148)
v 1% 1/3 5/3 2o
glax x /7 lg" x)]
o]
and
) 4/3 o
b, = 43 [-gle)] & faxig(x)12)%/3 (2-149)
27 1% 173 5/3 2
gfax x 7l (x)] ©
(o) 4

Inserted into (147) they produce the scale invariant version of (144):

7/3
B 2 (%)4/3 - ) [-g(o)] , (2-150)

(gfax x1/3[g'(x>]5/3)(zjdx[gtx)l y1/3

where the equal sign holds only for g(x)=u1F'(u2x) with arbitrary

Hyrk,>0. Indeed, for such a g(x), we get

7/3
[n,B]
B = (3 1 , . (2-151)
(ui/313/3 1B)( _B)1/3

The main contribution to the energy of an atom comes from the
vicinity of the nucleus. Now, Egs.(62) and (63) imply,
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P (x) = -}; for x + o . (2-152)

Consequently, a good trial g(x) has to be such that

g'(x) ~ 71-}? for x -+ o . (2-153)
An example is
gix) = - (1+/&°% aro . (2-154)

It turns out, that the right hand side of (150) increases with a, so
that we may immediately consider the limit o»w. The scaling invariance
helps in this limit, since it allows to evaluate g(x/a?) for a+w, in-
stead of g(x) for a»x. The limiting trial function is a simple exponen-
tial:

ay -vX

g(x) = lim[- (1+ %&)' = - ) (2-155)

oo

For this g(x), we have in (150)

7/3

773 = 3

)4/3 [-(=11

1
SRR TR TN

(2-156)

= 1.5682

Binding energy of neutral TF atoms. We have found an upper bound on B

in {131) and a lower one in (156). Now we combine the two and state

1.5682 < B < 1.5909 r (2-157)

ox
B = 1.580 + 0.012 . (2-158)

The margin in (158) is about 1.5% of the average value, so that we
know B with a precision of 0.75%. Please appreciate how little numeri-
cal effort was needed in obtaining this result. In view of the crude
physical picture that we are still using, the value for B in (158) is
entirely sufficient. A higher precision is not called for at this stage
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of the development.
Inserted into (67), this B value produces

- 7/3 -
Epp = 0.765 2 , (2-159)

which is the TF prediction for the total binding energy of neutral

1
0 25 50 75 100 125
z

Fig.2-2. Comparison of the TF prediction (160) with HF binding energies [crosses).
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atoms. In Fig.2 the quantity

-E
L = 153 51/3 (2-160)

2%’
is compared to the corresponding HF predictions8 for integer values
of Z. This plot shows that (160) does reproduce the general trend of the
atomic binding energies. Altough the need for refinements is clear, it
is nevertheless remarkable how well the TF model works despite the
crudeness of the physical approximation that it represents. In Fig.2
the continuous TF curve is closer to the integer-Z HF crosses at small
Z values than at large ones. This is, however, a deception since it is
the fractional difference that counts. The amount of this relative de-
viation is 29, 24, 21, 17, 15, and 13 percent for Z=10, 20, 30, 60, 90,
and 120, respectively. It decreases with increasing Z.

Why do we compare with HF predictions, and not with experimen-
tal binding energies? The reasons are the ones mentioned in the Intro-
duction. Total binding energies are known experimentally only up to
2220 (in Fig.2 they are indistinguishable from the HF crosses). Even if
they were available for large values of Z, the TF result should still
be measured against different predictions based upon, e.g., the many-
particle Hamilton operator of (1-7); this way we are sure to not be
misled by relativistic effects, which are the more significant the lar-

ger Z.

TF function F(x). We have learned a lot about the initial slope B of

the TF function. Naturally, there is much more to say about F(x). We
shall do so in this section.

Let us proceed from recalling the defining properties of Egs.
(62) and (63). F(x) obeys the differential equation

2 3/2
= Flx) = P (x) = LEEH T (2-161)
x
and the boundary conditions
F{o) = 1 ;, F(»®) =0 . {2-162)

Upon using /X as the main variable, the differential equation (161)

appears as
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E%E F(x) = 2V F'(x) ,

a_ (2-163)

3/2
F'(x) = 2[F(x
W (x) [F(x)]
Whereas (161) is singular at x=o , this 'system of differential equations
is well behaved at vX=o . We conclude that around x=o
panded in powers of VX :

, F(x) can be ex-

Fx) = 5 s, /%, (2-164)
k=0
which has become known as Baker's series The comparison with
F(x) = 1 - Bx + 0(x3/?) (2-165)
[this is Eq. (64)] shows

s =1 + sy =0 , s, =-B . (2-166)

For the successive calculation of the sk's for k>2, we need a recurrence

relation. We gain it by inserting (164) into the differential equation
(161) . The left hand side is simple:

F" (x) 'E:: Sy %(% - 1)xk/2_2
k=0

5] (2—167)
- % s V2, S X(3—1)/2 (£+1L(£+3)s

14
= 2+3
where 5150 has been used, and the summation index shifted (k=£+3). The
right hand side of Eg.(161) is nonlinear in F(x), so that the power se-
ries becomes more complicated. We have

[F(x)]3/2/x1/2 - }(-1/2[1 £ S - xk/2]3/2
k=2

. . ' (2-168)
=x "2 s> GBS 5, <K/2y3y
=1 3 k=2



58

where the binomial theorem is employed. Next, we make the j-th power

of the sum over k explicit by writing it as the product of j sums over

k1 ’ k2 b kj ;. then the Kronecker Delta symbol ,
1 for k =14
6E,k = o for k z £ ! (2-169)
is used to collect all terms of order x“']/2 xz/2 = x(jz—”/2 :

[F(x)13/2/x1/2 - [1+§Z:(3/2)$ § E %, Sk,

—2 k 2
x..sk x(k1+k2+"'+kj)/2]
]
I VA (z 1)/2 Z(3/2)Z Z 5y
=1 j
x &
K,k1+k2+...+kj
(2-170)
Since each k is at least two, we have
L =%k, +k, + ... +k, 22] 22 ’ (2-171)

so that the summation over £ starts really at £=2 , and the larcgest j
does not exceed £/2 : j £ [£/2] , which makes use of the Caussian nota-
tion for the largest integer contained in £/2. The individual k-summa-
tions stop, at the latest, at £-2(j-1) , since, again, the other k's,
which are j-1 in number, are not less than two each. Accordingly,

' w [£/2] £-24+2
(F(x)13/2/x1/2 - x~1/2 (2-1) /2 3/2

+ x > ( 3 ) R

=2 3=1 k=2
£-29+2
Xeuep s

kj=2 k, k. £,k ,+...+k

(2-172)

This must equal (167), implying
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§y = 4/3 ’ Sy =0 ' (2-173)
and
4 [£/2] 3/2 £~29+2 £=29+2
s = e > ( ) D> Y Sp«.-S, &
£+3 (£+1) (£+3) 557 k=2 kj=2 L kj ﬂ,k1+._+kj
(2-174)
for £ =2,3,....
The s, with the largest index occurs on the right hand side for j=1;

k
it is Sp- Thus Sp+3 is here expressed in terms of sk's with k2£, so

that this is a recurrence relation, indeed. For illustration, consi-
der £=2,3,4, and 5. There is only the j=1 term for £=2 and £=3:

4 3/2 4 3, .. _ 2
s = 7571 )8y = g5 z(°B) = - 5B
(2-175)
_1,3/2 _134_1
S¢ (183 =533 73

For £=4 and £=5 , there are both the j=1 and the j=2 contribution:

) 3/2 (a1 = Aido + 3 _ 3., _
s, = 3E [( ys, + ( 2] _ﬁ[70+§(B)2] = ogB* + (2-176)
sg = 15015, + (P4 (s,5,45,5,)]

I S P 30¢-md) = - 2

= ql3(- 5B+ g2(=BI3l = - 438 .

It is not difficult (only boring) to compute more s, 's. Let us be con-

. k
tent with what we have so far:

- _ hew 4 3/2 _2,.5/2 1.3, 3.2.7/2 _ 2 4
F(x) =1 Bx + 37 X ng + 5xH 70B X 15Bx
(2-177)
+ 0(x?)

The B dependence of the coefficients and their complicated recurrence
relation (174) prohibit asking for the range of convergence of the ex-
pansion (164). We can, however, test the quality of the approximation
to F(x) obtained by terminating the summation at, say, k=8. This is

done by inserting the truncated series into the differential eguation
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obeyed by F(x), and comparing both sides:

8 8
E::k(z—Z)skx(k-4)/2 LS 232002 (2-178)
k=3 f=s k

For B=1.580 , our estimate in (158}, the comparison is made in Table 1.
It shows us,. that this approximation to F(x) solves the differential
equation with an accuracy of 1% for vx < 0.4 ; of ;L% for vx < 0.25 ;

10
of s for vx pS 0.20 . This kind of analysis can be repeated for sums

trugggted at a value of k much larger. One observes that a highly accu-

rate solution to the differential equation (161) is given by these sums

for vx < 0.4 only. This is, therefore, the (numerical) range of conver-
gence of the series in Eq.(164); as a consequence, this expansion in

powers of vX is utterly useless. *

Table 2-1. Left hand side (LHS) and right hand side (RHS) of
Eq. (178), and their relative deviation (DEV) for vx = 0.05,
«esy 0.50 . For B the value of Eq.(158) is used.

VX LHS RHS DEV
0.05 19.8866012 19.8866017 2.3 x 1078
0.10 9.783683 9.783698 1.5 x 107°
0.15 6.35805 6.35816 1.7 x 107>
0.20 4.60944 4.60991 1.0 x 107%
0.25 3.5373 3.5387 4.0 x 1074
0.30 2.8071 ' 2.8106 1.2 x 1073
0.35 2.275 2.282 3.3 x 107°
0.40 1.867 1.882 7.8 x 107°
0.45 1.542 1.568 1.7 x 1072
0.50 1.27 1.32 3.4 x 1072

For a precise knowledge of F(x), we cannot rely upon (164) be-
cause of its small range of convergence. The differential equation (161)
itself has to be integrated numerically. It is not advisable to attempt
doing this by starting from x=o with F(o)=1 and F'(o)=-B , using
a suitable guess for B [as in Eqg.(158)]. If the chosen value for B is
too large, the numerical F(x) will turn negative eventually; if B is
too small, it will start growing instead of decreasing steadily. One
could imagine pinning down the correct value of B by an iteration ba-
sed on this distinction between trial B's that are too large or too
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small. This is not going to work, unfortunately, because rounding-off
errors cause a wrong large-x behaviour of the numerical F(x), even if
one would start with the correct value of B. This difficulty can be
circumvented, however, by integrating inwards from x=« towards x=0 in-
stead of outwards. Let us, therefore, turn our attention to the large-x
properties of F(x).

We start by noting that 144/x® is a particular solution of the
differential equation (161).11 Of the two boundary conditions in (162)
it satisfies the one at x=«, whereas it is infinite at x=o. It is clear,

that F(x) approaches 144/x’® for x+«= from “"below":

F(x) £ 3 for X * . (2-179)

This invites the ansatz

144

F(x) = S G(y(x)) (2-180)
X
with
y(x) ~ o for X * o (2-181)
and
Gly) = 1 for y =0 . (2-182)

The best choice for the function y(x) must be found from insertina (180)
into the differential equation obeyed by F(x), Eg.(161). This leads to

%itxy'(x)]zG“(y(X)))+ T%Ixzy"(X) - 6xy' (x)]1G' (v (x))+C(y(x))

= ey =m>? (2-183)

which takes on a scale invariant form if we choose xy' (x) to be pro-

portional to y(x):
xy'(x) = - yy(x) . (2-184)

The optimal value for y>o has to be determined. Equation (184) and its
immediate consequence

x%y"(x) = (x é% -1) xy'(x) = vy{y+1)y(x) , (2-185)
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used in (183), produce

2

Loyrey) + W yary) 4 ey = (612 . (2-186)
The aforementioned scale invariance is obvious here: with G(y) also
G(uy) is a solution to (186), for arbitrary u. A unique value for v is

now implied by the requirement that G(y) be regular at y=o,
Gly) =1 - v + 0(y?) for y *+ 0 . . (2-187)

Note that because of the scale invariance of (186), the coefficient in
front of the term linear in y can be chosen to be minus one [it has to
be negative to not be in conflict with Eq. (179)]. with (187), Eq. (186)

reads

1o e g5 YNy + 0y =1 -3y + 0y, (2-188)
whence

Y(y+7) = 6 ' (2-189)
or,

Y = 2(-7+/T3) = 0.77200... . (2-190)
The second solution to (189) is -(y+7) = =7.772... and of no use to us

in the present context.
The differential equation (186) is simplified a little bit by
making use of (189):

3/2 (2-191)

2
1 y%em(y) + Fye'(y) + Gly) = [G(y)]
G(y) is thereby subject to (187), which determines the solution to (191)
entirely. This does not mean that we know F(x) after finding G(y), sin-
ce the implication of Eg. (184)

yix) = B x ¥ (2-192)

contains an undetermined constant, B. Its value is fixed by the require-
ment F(x=0)=1. This is, of course, analogous to the previous situation
when F'{0)=-B was determined by F (x»=)=0.

Since G(y) is, by construction, regular at y=o, we can expand

it in powers of y:12
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©o
Gly) = > Cx yk ' (2-193)
k=0
where
c, = 1 , cq = -1 . (2-194)

The steps that led us to (174) can be repeated here for (191)
and (193) with the appropriate changes. Comparing powers of yﬁ on both

sides of Eqg. (191) gives

X2 p(e=1) + 1 &+ 11c
12 2 )

Z j+1 £-9+1 (2-195)

3/2
= E ( S C, ...Cy B
1=1 kj=1 k, kj I.,k1+k2+...+kj

for £21. The j=1 term equals %CZ and has to be brought over to the left

hand side. We then arrive at the recurrence relation

-5+
¢ * 2::(3/2)§:f:: EZE:: . k K k +. ..+kj

(YZK+6)(£ 1)

(2-196)
for £ =2, 3, ... .
For example,
12 3/2)c2 - 9 - 201+21/73
27 Syeee 20V 4yraq2 608
= 0.625697... ,
(2-197)
cy = 12 {( 3/2)(c c,y*Cy )+(3/2)c§}
(3y2%+6)2
- 3-v2/8 _ _ 15377+1813/73

(¥2+2) (Y2+3) 98496

-0.313386...

As we did before, in Eg. (178) and Table 1, we can again insert trunca-
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ted versions of (193) into the differential equation (191) in order to
find the numerical range of convergence of this series. The outcome is:
the expansion (193) represents a highly accurate solution to (191) for

1/Y. Anticipating that the actual value of B is about 13,

¥l » or, x2B
this is xi30]3 Does this mean that the expahsion (193) is as useless as
the one of Eg. (164)?

No. The power series of G(y), for some o<y<1, is needed to get
away from x=~, i.e., y=o, when integrating the differential equation for
F(x), Eq.(161), inwards. Here is a brief description of the essential
ingredients of a computer program calculating F(x) for the whole range
of x, osx<e ;(i) find G(y) and G'(y) for a suitably chosen y1(zO.3 is
a good choice) by employing (193), truncated at a sufficiently large k
(depends on the chosen ¥4 and the accuracy of the machine); (ii) inte-
grate numerically the differential equation (191) up to a certain ¥y
(25 is a good choice), so that we now know G(yz) and G'(yz) within the
accuracy of the computer (the standard Runge-Kutta scheme is well sui-
ted for the numerical integration); (iii) choose a trial value, %(213),
for B, and use Egs.(192) and (180) to find §2=(§/y2)1/Y together with
%(gz) and %'(22); (iv) now integrate the differential equation for F(x),
in the form (163) with vX as the relevant argument, down to x=o. At
this stage, we have a solution to (167), the one corresponding to s:%.
This %(x) obeys ¥ (x=w) =0 , but not %(x=o)=1. Fortunately, one does not
have to vary B until ?(x=o)=1 in order to find F(x). Instead, the ob-
servation that, if %(x) obeys (161), so does u3§(ux) for arbitrary u>o,
enables us to simply rescale ?(x). The last step in the procedure is

therefore: (v) set
F(x) = F(X)/Flo) , (2-198)

where
¥ = x/(¥1"3 . (2-199)

Accordingly, we have B given by

B = -F'(0) = -¥ (0)/[F(0)1%/3 (2-200)
and, as a conseqguence of
v, =B x,0 =8%, (2-201)

B is related to % through
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B = Blx,/%y)Y = BIF1"/3 | (2-202)

The sensitivity of the numerical results for B, B, and F(x), to the
rounding-off errors of the computer can be tested by varying the para-
meters Yyr You and %. Ideally, the outcome should be independent of
them, numerically it is not. The little dependence that one cobserves
shows how many decimals of the results can be trusted. For example,

the realization of the procedure just described gave

[oe)
"

1.58807102261 (2-203)

and

w
u

13.270973848 (2-204)

on a computer with a 15-decimal arithmetic?4 For illustration, in Fig.3

we give a plot of F(x) for o<x<10.

1.0 T T T T

F (x)

164/%3
—

10

Fig.2-3. The TF function F(x).

Now that we know the actual value of B, let us look back at

the bounds that we found earlier, Eq.(157). The upper bound is extreme-
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ly good: it is too large by less than 0.18%. On the other hand, the
lower bound is significantly worse: it is too small by 1.25%. This is
a first sign of the superiority of the potential functional over the
density functional.

With (203) we can give more significant decimals in the TF

binding energy formula. Inserting B into Eg. (67) gives
- E._ = 0.768745 z'/3 (2-205)
TF . .

There is no point in displaying more than six decimals.

Scaling properties of the TF model. In step (v) of our "computer pro-

gram" for F(x) we made, in Egs. (198) and (199), use of the invariance
of the TF equation for f(x),

3/2
£ (x) = lfif%%i——- (2-206)
X

[this is Eqg. (59)], under the transformation
£(x) » p¥f(ux) ' (p>o) . {2-207)

The TF model itself is not invariant under such a scaling, because the
boundary condition £ (o)=1 fixes the scale. Therefore, we have to be
somewhat more careful when investigating the scaling properties of the
TF model.

When we were looking for bounds on B, we found it advantageous
to exploit certain scaling properties of the respective functionals. The

scaling transformations that we considered then, were, Eqg.(119):
£(x) - £(px) (2-208)
and, Eq.(146) with g(x)=f'(x)+q/x_=£'(x) for g=o:

"
1
fo) - E; f(uzx) ’ (2~209)

where y, Wy and kL, were arbitrary (positive) numbers. Let us now exa-
mine the implications of transformations as general as (209) applied
to the TF potential functional.

We return to Eq. (45),
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_ T 1 _ 5/2 1 > > T
ETF = I(dr)( 2)[ 2(v+g) ] 8T£f(dr)[V(V+r)] TN
150
(2-210)
=E, + B, - N
and consider
vir) > p’ vipr) , (p>0) . (2-211)
Since, for the existence of Ez, we need [Eg. (52)]
rv(r) »~ - % for r->o , : (2-212)

such a scaling transformation of V has to be accompanied by a scaling
of z,

Z > 7z . (2-213)

[ I (2-214)

so that the structure V+r is conserved.
In terms of £(x), (211) and (214), without (213), read

£(x) > p¥7!

fpx) (2-215)
which identifies (207) and (208) as the special situations v=4 and v=1,
whereas (209) is realized by Hoy=H and u1=uv. However, with (213), we
just have (208), as we should have, since (212) is equivalent to requi-
ring f£(o)=1; and only (208) is consistent with this constraint.

Under (211), (213), and (214) the various contributions to E
scale according to '

TF

1
1512

E, > B () = [ (@) (——) [-2p" (V(ur) +2) 17/

1
(2-216)
- IJ.5\)/2-3

By

and v
B, » By(u) = - ge/ (@) (T vier) + 512 -



68

{2-217)
- u‘2\)—1 E2 ,
as well as
S AT S \ (2-218)
Consequently
Epp > Epp (1) = pov/2-3 E, + p2v-1 E, - uCN . o (2-219)

For u=1, this is just E for u=1+5u, we have E,.+5 E._.. Now, since

TF’ TF ©u TF
the energy is stationary under infinitesimal variations of Vv and gz, all

first order changes must originate in the scaling of Z. That is

&, Fpp EE%E 5u(u“'1 z) = (v—1)ZE§%E B . (2-220)
On the other hand, from (219) we get
&, Epp = [(Gv-3)E, + (2v-1)E, - viNl&p (2-221)
so that we conclude
(2v-3)E, + (2v-1)E, - vgN = (v=1)2-2E, . . (2-222)
2 1 2 3ZUTF

This is a linear equation in v. It has to hold for any v. So we obtain
two independent relations among the different energy quantities - two

"virial theorems." Besides v=1, when
E, + E, - CN =0 ’ (2-223)

the other natural choice is the TF scaling v=4 [see the commenf to Eq.
(215)]1, for which

- 4N = 3%-5% ) (2-224)

T1E AR

+ 7B

1 2

The latter combines with ETF=E1+E2—QN and

= B = -z (2-225)
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to give

= IR -
7ETF(Z,N) = 3(ZBZ+N3N)ETF(Z'N) . (2-226)
We have made explicit here, that the energy of an atom is a function
of 2 and N.
For N=Z, Eq.(226) has the simple implication
d

7ETF(Z'Z) = 3ZEEETF(Z’Z) ’ (2-227)

or

B} 7/3 _
Epp(Z,2) = - C 2 , (2-228)

where the constant C is yet undetermined. It is found by combining our
knowledge of ;=—3ETF/3N=0 for N=Z with

_ 5 0 ____1 22 Z-Z
Trtre = Py = T g/ @D T W

> Z, 1 Z
f(dr) (V+E) 4—HV2;
(2-229)

"
'
[
<
n
1r
)
1
I
th
[e]
R
=
"
N

The third step here is a partial integration; the fourth one recogni-
zes —ZS(;) as the source of the Coulomb potential %z/r; the last one,
valid for N=Z only, uses Eq. (65). [The comment to that egquation says
that (229) identifies the interaction energy between the nuclear charge
and the electrons:

9
ENe = ZEEETF ’ (2-230)

which, according to (1-96), is a general statement, not limited to the
TF model in its validity.] Now,

= 32 = 370
Epp(2,2) = 7(ZBZ+N3N).ETF(Z'N)I[\I=Z“ 7ZazETF(Z'N)l[q=Z

7/3

Z ’ (2-231)

[
|
~Jw
W

which identifies the constant C. This is, of course, the result that
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we had found earlier in Eq. (67).

The first of our "virial" theorems, Eq.(223), has the conse-

quence
E, = 2(E;=¢N) = 2(EBy, -E) (2-232)
or,
2
By =3 Bpp v (2-233)
and
E, - LN = % Epp - (2-234)

For a Coulomb system, like the one we are considering, one expects the

usual theorems about the kinetic and the potential energy:

E . =-E ’ Epot = 2ETF . (2-235)
Indeed, they emerge from the relations that we have found so far. It is

and E = E

essential to remember how E1 and E2 are composed of Ekin pot Ne

+ E
ee

(2-236)
By =~ Bee
Note in particular the double counting of the electron-electron energy

in E1. With (230) we have

N = g0 -
Epot = Ene * Fee T Zaztrr T By
(2-237)
= (2% + NY)E._ - (E,-ZN)
9% 3N’ TTF 2 ’

which makes use of (225). Now Egs. (226) and (234) can be employed fo
produce the second statement of (235), which then implies the first one
immediately.

The relative sizes are

&
e}

T P e (= 1 .
ce * Prin ¢ (“Byg) = (= 3Epp=iN): (-Egp): (= 3Epp+LN)

=1 : 3 :7 for N = Z, when ¢ = ©
(2-238)
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Tn words: the electron-electron energy of a neutral TF atom is one third
of the kinetic energy and one seventh of the (negative of the) nucleus-
electron energy.

For ions, there is less specific information in Eq. (226). It
merely implies that ETF(Z,N) can be written in the form

7/3

_ : N -
ETF(Z,N) =7 x [function of Z] . (2-239)

This invites introducing a reduced binding energy, e(g), that is a func-

tion of g=1-N/Z, the degree of ionization:

7/3

- .- Z -
ETF(Z,N) = elq) . (2-240)

We know e(q) for g=o, i.e., N=Z

~Jw
o
~

e(o) = (2-241)

which is simply Eq. (231). The factor multiplying e(qg) in (240) is the

same as the one in Egs. (108) and (138). The maximum (minimum) property
of the TF potential (density) functional is, therefore, here expressed
as

1 Ta(e q q(1-q)
7z 7 JaxIET G MR e SR

(o]
: elq) 2 (2-242)

- {% fax x1/3[g'(X)]5/3 + glo) + % faxlg(x)1?}
o o

The competing g(x)'s are hereby restricted by [Eqg. (98)]

fax xg'(x) = 1-q , (2-243)
o

whereas
f(x=0) = 1 . (2-244)

The egual signs in (242) hold only for g(x)=f'(x)+q/x,, when f(x) obeys
Egs. (59) and (60), which also determine xg.

We can relate e(g) to x5(q) by recognizing that Eq.(225) says
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7/3 4/3
—5%—(- —Z——a—— el(q)) = E‘E_E% elq)
(2-245)
= - C = - Z4/3 _..q—
a  x5(q) !
thus,
a = - 9 -
a9 e(q) X5 (@) . (2~246)
Conseguently,
3 q
= = — 1 q' -
e(q) = 5B idq @ (2-247)
and
1 '
el(q) = édq E;TETT ' (2-248)

of which the first one should be applied to weakly ionized systems
(N$Z, gzo), whereas the second one is designed for highly ionized atoms
(N<<Z, q§1). In Eqg. (248) the obvious statement

e{g=1) = o (2-249)

has been used; it says: no electrons - no binding energy.

For ions, Eg. (229) gives

5 _ z
ZygBpp = - Z(ViTE )|+ cz
r=o
z7/3 (2~250)
= So—lfy o) + 21,
=) o
‘so that Eq. (226) translates into
3[-£" g9’ (2-251)
7e(q) = 3[- q(O) - ESTET] .

By writing a subscript g we emphasize the g dependence of fq(x) and its

initial slope fé(o). The comparison of (251) with (247) results in



2 gq 1
_f! = - v _9g
fq(o) B + %o (@) 3 édq %ol
g (2-252)
=B + qu' q' 773 d [—~—7———————] .
o x, (g’ )

The latter equality is verified by performing a partial integration.

Since -fé(o) increases with increasing g, we learn here that

d

[q'/3

x5(@)] <o . (2-253)

&1

We observe in these relations, that in studying ions the cen-
tral quantity is x5(g). It is basically available from solving numeri-
cally the differential equation for fq(x), Eq. (59):

3/2
- -[-f—q‘—’;}lz— (2-254)

f“
q(x)
with the boundary conditions (60):

£q00) = 1, fq(xo(q)) =0 , —xo(q)fé(xo(q)) =g . (2-255)
Nevertheless, in the two limiting situations ggl1 and qz0 it is possi-
ble to make precise statements about the analytic dependence of x,(q)

on 1-q(=N/Z), or, g, respectively. Let us first concentrate on highly

ionized atoms, agi.

Highly ionized TF atoms. In the limit of extremely high ionization,

N/z+o, the interelectronic interaction becomes insignificant as com-
pared to the nucleus-electron interaction. In this situation V is sim-
ply the Coulomb potential -Z/r, and we are dealing with Bohr atoms,
which have been studied in the first Chapter. We concluded already, in
Eg. (46), that then

1/3

E F(z;N) = —ZZ(%N) for N/Z + o . (2-256)

As a statement about e(g) this reads

2/3

et@ = ad-1"3 = 382319 1/3
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for g » 1 . (2-257)
After employing Eqg. (246) we find

/3

xola) = (20-01%3  for g1, (2-258)

which is recognized to be Eq. (1-35) when ;=(Z4‘/3

/a) (a/x,), etc., is in-
serted there.

If N/Z is not that small, Eq.(257) and (258) acquire correc-
tions that account for the repulsion among the electrons. A systematic
treatment proceeds from noting that f£(x) is not the best suited para-
metrization of the potential for the present purpose. It is advantage-

ous to introduce another function ¢(t) by means of 13

Z-N

Vir) + ¢ = - — ¢(r/ry) , (2-259)
or, recalling ¢ = (Z-N)/r, [Eg.(55)] ,
V+r=-7¢ .(E..(ti)_ , t:r/ro = X/XO . (2-260)

Because of the great similarity between the definition of f(x) in (57)
and the one of ¢(t) in (259), the two functions are simply related to
each other:

f(x) = q ¢(x/x5) , ¢(t) = fltxy) . (2~261)

Qim

Consequently, ¢(t) obeys the differential equation

" (£) = A liif%};ii : (2-262)
and is subject to

6 10) =l s smso ey =1, (2-263)
where A=A(q) is given by

v = a P @1¥? . (2-264)

As a consequence of (258), A is small for gg1 :
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6

A= w o . (2-265)

N2

(1-q) =12

Why is it fitting to switch from f(x) to ¢ (t)? The reason is that the
appearance of )\ in (262) offers the possibility of expanding ¢ (t) in
powers of A, whereby the smallness of )\ promises a good convergence of
the expansion.

The differential equation (262) and the boundary conditions

at t>1 in (263) can be combined into the integral equation

[0, (£1)13/2
o, (E) =1 =t + 2 jdt (£'-t) ——7— . (2-266)
tl

where we wrote ¢A(t) in order to emphasize the A dependence of ¢. After
solving this equation for a chosen A, the corresponding value of g emer-
ges from

1
2= 0000 =1+ Jar £ 2, 0137 (2-267)
o

In the first place, one obtains 1/g as a function of ), from which A(g)
is to be found in an additional step. Then Eqg. (248), here in the form

1 1 7/3
elq) = qu'IKTg—;;§7§ , (2-268)
q q'

supplies the desired e(g). The evaluation of this integral is eased
by writing it as an integration over ) instead of g, since then g(})

enters, not X(g). The rewriting begins with

o 4/3
-  da(x) [g(a")]
elq) = [ ax -
M) dx A,2/3
(2-269)
Ma)
-3 e T Fomwon ™)

in view of this implication of Eq. (265) :

2B a3y = 73 a-n- f%x+...17/3) -
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) ; = o for i=0 ’ (2-270)

a partial integration can be performed with the outcome

7/3

A
_3_1d? L2
ST T !

@ q_qn1?/3

q)
dx ——TS-F— . (2-271)

An alternative expression makes use of (251); here it reads

4/3
e(q) = % —qT-j (—¢;\(o)—q) ' (2-272)
[x{a)]
where
, 1 10,0132
-¢3(0) =1 + A édt 172 (2-273)

is the initial slope of ¢A(t)' Note that the equivalence of (271) and
(272) allows to relate ¢i(o) to ¢,(0) = 1/q(}) [this is Eq. (267}]1:
1-164(0)177/3

A
Y30 4 % 223 Jax 573
)

o

=3 (0) = [, (0)] b, (2-274)

which is a useful equation for checking against algebraic mistakes.

Let us now, indeed, expand ¢, (t) in powers of 3,
by

M

¢k(t) =1 -t + Ak ¢k(t) . (2-275)

k=1

This, inserted into (266), implies

3/2

oo 1 ©
%::A£¢£(t) = fatr ety £ T/ 20oed K o (091372, (2-276)
=1 t k=1

The technique that produced the recurrence relation for the Sp in Eq.
(174) can be applied here, too. We find

;
6, (t) = fatr (er-tyer "2 (e 32 (2-277)
t
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and
! 172 &1 370 3/2-3
9, (t) = fat' (t'-t)t’ > (L) (1-t) J

(2-278)

-3 £-3
x > _ . &y (€' )eeety (€98, 4 ¢ .. .4k,
k=1 k=T 3 1 J

for 4£=2, 3, ... .

The first few ¢£(t) can be expressed in terms of elementary
functions; unfortunately, the degree of algebraic complexity increases
rapidly. Let us, therefore, confine ourselves to explicitly stating on-

ly ¢1(t) as it emerges from (277)

¢1(t) = (% - %t)arccos(t1/2) + (% + %t - %tz)t1/2(1_t)1/2.
(2~279)
In particular, we have
1. .1/2 3/2 _ n
¢,(0) = fat £/ 7 (1-t) =36 (2-280)
o]
1
-3 (o) = fat 210372 %;
o]
Equation (279) is utilized in
. 1 2
by0) = 3 far 202y ) < 2 23T (2-281)
o]
and
1 _ 2
~4300) = 3 fat 72 (1-1) /2 o (0) = 5 - 3L . (2-282)

o}

We are now prepared to employ Eg. (267) in order to
find the leading corrections to (265), (257), and (258). From

1 _ 1 _
a —m =1+ (1-q) + (1_q)2 t ..

(2-283)

9,(0) =1 + ¢, (o)1 + ¢2(o)x2+ e ,
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we get
1 cbz(o)
Alg) = 7T (1-g) [1+(1- ——) (1=q) + ... ]
1 [¢1(o)]2 (2-284)
= Bagnre- 220 ¢ L1,
15m?
or
M = BN - 212 Xy oo dy2)) for w/ze<r
15n?
(2-285)
Then, using either one of the Egs. (268), (269), or (271), we find
el@ = 2@ - 31-01- 28 (1-q) + ...
4512
(2-286)
_3.m2/3 N, 1/3., .. 256, N N, >
=19 Pn-a- 20 Feoph
Also, from (264) or (246),
xo (@) = (-0 12314 a- 224 (1-q) + L.
45n (2-287)
16 N,2/3 1024, N N, 2
(— %) [1+(3-———) = + 0({z)*)] .
n 2z 4512 Z Z
The numerical versions thereof are
A = 5.093 %(1+o.5416 g .,
(2-288)
e = 1.0135(%)1/3(1~0.4236 Yo,
xo = 2.9600 2 3 (1v0. 6040 B L) .

Here then is the modification of Eg. (46) that we promised
at that time:

- o233 1/3 ., 256N
ETF(Z,N) = -Z (2N) [1-01 — .1

= + ..
T (2-289)

for N<<Z ;
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it is obtained by inserting (287) into (240).
A simple check of consistency is provided by (253). This

states
L @ <o (2-290)
dg !
or,
d__ \(g=1-N/Z) > o (2-291)
d(N/z) :

A quick look at (285) shows that this is true, indeed.
We close this section on highly ionized TF atoms with a dis-
cussion of the relative sizes of E

kin’ Eee
able to apply Eq.(238), we need gN. It is given by

, and ENe' In order to be

LN = —NJL E..(Z 6N)

3N TTF
(2-292)
- Lt VP 124 v,y
45712
so that Egs. (236) and (234) produce
E = - 4E._ - CN
ee 3°TF
(2-293)
= 223w V3 238, N
451?

The interaction energy of the electrons with the nucleus is given by
[see Eg. (230)]

_ 5 0
ENe = ZEE ETF(Z,N)
(2-294)
=222 3m Pn-g - 228 Ny
451°

whereas the kinetic energy is simply the negative of ETF’ as is ex-
pressed in Eqg. (235). Consequently,

E
ee 1 128 N N

—_ = (3 - ) &+ 0062, (2-295)
Eve 2 45n2 z

which states that Eee is negligible in the limit of extremely high ioni-

zation. [We have already made use of this (physically obvious) fact re-
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peatedly; see, for example, Eq. (256).] Together with the neutral-atom
statement of (238), we have, therefore,

1/7 for N = Z
ee =
“E ) (2-296)
Ne 0.2118§ for N<<z

Likewise, one obtains

3/7 for N =12

E .
_E;n = ) (2-297)
e %(1-0.21185) for N<<Z
Z
and
E 1/3 for N =12

#

- . (2-298)
ino 0.4236) for me<z

Weakly ionized TF atoms. As ) increases, ¢A(t) grows larger for all

t<1, as is evident from Eg. (262), or Eg.(266). Thus q=1/¢A(o) decreases,
finally reaching g=o for the critical value

A = alqg) . (2-299)
q»o
Consequently,
x,(q) = q_1/3[>\(q)]2/3
(2-300)
=z A2/3 q—1/3 for g0 ,

so that Eqg. (247) implies

3.472/3 /3 ¢

elg) = %13 -3 or g o . (2-301)

Accordingly, we have in the limit of very weak ionization

7/3
e - 32 70 _ 42/3 /3,
Epp (2,N) = = 5 =——[B - A g ’"1=
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B z'/3 - 4723 g /3 (2-302)

If we insert Eqg. (301) into the inequalities of (242), suitably chosen

trial functions f(x) and g(x) supply bounds on A_2/3. Details are given
in Problem 10, from where we cite
0.0946 < A72/3 < 0.1008 (2-303)
or,
A72/3 = 0.0977+0.0031 (2-304)
2/3

which tells us that A~
TF atom has, therefore, practically the same binding energy that has

is about six percent of B. A weakly ionized

the neutral atom. In other words: the outermost electrons contribute
very little to the total binding energy of the atom.

In the limit g+o, the relation between f(x) and ¢(t) becomes
singular. We cannot give sense to the right hand side of

f£(x)] =F(x) =qg¢ (x/x_(q)) | (2-305)
T g0 Ala) o g+0

[Eqg. (261)], because xo(q+w) = « sgueezes t=x/xo(q)into an infinitesimal
vicinity of t=o. There is, nevertheless, a sensible limit to ¢X‘t) as
A approaches A . We write o(t) for this ¢A (t). It obeys the differen-

tial equation

3/2
o (t) = o L2 , (2-306)
t
and is subject to
®(1) = o , o' (1) = -1 , (2-307)
and
d(t) » e as t » o . (2-308)

Although &(t) is somehow corresponding to the situation of neutral TF
atoms, the trouble of Eg. (305) signifies that it cannot be used as a
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parametrization of the potential V(r). Fortunately, there is still a
use for Egs. (306) through (308), in as much as they offer a simple and
highly precise method for calculating A . Here is how it goes: ¢ (t)
possesses an expansion in powers of at®, with a yet undetermined con-

stant o and
o =74+ =2(7+/T3) (2-309)

of the form

144/ A% 9 o
d(t) = —[1-0tC + —F—(at™) 2 + ...]1 , (2-310)
t? 12+402

which is, of course, an immediate analog to Egs. (180), (193), (192),
and (190). The coefficients of the powers of at® obey the recurrence
relation (196) after replacing v by o. The (numerical) range of conver-
gence of this series is atcéo.G, or, anticipating that o is close to
unity, t50.94. On the other hand, ¢ (t) can also be expanded in powers
of (1-t) /2,

4l 4\ . . T/2 . 2A . .. 9/2
o(t) = (1-t) + 5-(1-£) /% &+ S (1)
(2-311)

2
11/2 +

6
175(1—t) + ... R

s
+ —6—6—(1_t)

this series being convergent for (1—t)1/2 £ 0.35, or, t % 0.88, when
A is within the bounds of (303). There is a range of t around t=0.9
where both expansions are converging. This allows to determine A and a
numerically by forcing the two expansions to agree within the accuracy
to which they represent solutions to Eg. (306). Such a calculation16

resulted in
A = 32.729416116173 (2-312)

and

a = 1.0401806573862 . v (2-313)

Naturally, physics does not need this many decimals; they are reported
only in order to demonstrate the marvelous precision of this simple
method. Please note that one cannot compute B and 8 in a similar way,
because the expansions (164) and (193) converge for x£0.15 and x%30,
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respectively. There is no overlap.
The A of (312) yields

A"2/3 _ g.0977330 (2-314)

so that we obtain, from Eg. (302),

7/3

~Ey (2, ) 20.768745 z - 0.047310 (z-x) /73

for N Z . (2-315)

X
The correction to the neutral atom binding energy is rather small; even
for N=2z/2 it is only about one percent.

Since A is large, the series of Eg. (275) does not converge
rapidly (if at all) for weakly ionized atoms, and the switching from
f(x) to ¢{t) is pointless in this situation. Here we make use of the
fact that the difference between F(x) and £ (x) is small, when gzo and
x<xo(q). In particular, fq'(o) does not differ significantly from -B,
so that fq'(o)+B is a possibly useful expansion parameter. We use it
in making the ansatz

f (x) = F(x) + }::[f'(o)-+B]k £ (x) R (2-316)
! x=1 ¢ k
where the fk(x) are subject to

fk(o)

[l
[o]
th
[o]
b

k=1,2,... (2-317)
and
f%(o) =1 ’ fi(o) = 0 for k=2,3,... . (2-318)

To first order in fq'(o)+B, the differential equation obeyed by fq(x)

requires17

2
(42 _ 3E(x),1/2

o P f1(x) =0 . (2-319)
One solution is

£ (x) = F(x) + +xF' (x) = —— S (x%F(x)) (2-320)

o 3 2 ax '

3x
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because
2
daz _ %[F(XX)]'I/Z 1 di 23| F(x)
dx? 3x2 X
2
=L | o B2 ey o (2-321)
3x? dx?
However, inasmuch as
£f (1) =1 £1(1) = --éB (2-322)
o ! o 3 !

fo(x) is not proportional to f1(x). The Wronskian of the differential
equation (319) relates the two functions to each other:

fo(x) f;(x) - fé(x) f1(x) =1 . (2-323)

This is equivalent to

£, (x)
d ~1 _ -2
a} fo(x) = [fo(x)] 7 (2-324)
which has the consequence
X 1
£,(x) = £_(x) . S (2-325)

<3[fu(X')]2

This does, indeed, satisfy the requirements f1(o)=o and f%(o)=1 , SO
that we need not add a multiple of fo(x) on the right hand side.

For large x, we have

_ 1 ad 22 d ..
folx) = —— gEl1446 (Y6 = =5 G-y (o) + ...
(2-326)
2 2 _
- 12)% w0 L (2)7 g (143)
X

which uses Eqgs. (180), (187), (184), and (192). This inserted into (323)
or, equivalently, (326) produces

1 o-3

1
— 2-32
I86 Y(y+0) X for large x (2-327)

_f1(x) =
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[oc = 7+y, Eq.(309)].
In deriving Eq. (319) the first order approximation (1+€)3

/2

= 1+%-e has been used for e=[fé(o)+B]f1(X)/F(X)- Consequently,

fq(x) = Fx) + [fé(o)+B]f1(x) (2-328)

must not be applied to XEX where e=~1. We can, however, supplement
(328) with

2

X
£ %) = al1- ) (2-329)

o
which is valid for X=X . [This is obviously no more than the first term
of Eq.(311) as it analogously appears in ¢x(t)]. Let us now join the two
1° The

three unknown quantities xo(q), x1(q), and fé(o)+B are determined from

approximations for fq(x), Egs. (328) and (329), at a certain x=x

the requirement that fq(x) and its two first derivatives are continu-
ous at X=X, . This can be done explicitly in the limiting situation of
very small ¢, since then both xo(q) and x1(q) are large, which allows
to employ the large-x forms of F(x) and f1(x). Thus, we have the three

algebraic equations

xc—3 <
. 144 . 1 _ _ 1
fq. s + [fq(o)+B] BT Yo © a1 XO) ,
1
: 432 (o-3)x7"*
. - ] — . = e -
£q y + [£5(0)+B] paviveo) a’x, (2-330)
1
£, (12)3 + [f'(o)+B] ._‘lf_ilo:i = 0 .
a q 488y (y+0) !
the last one uses (o-3) (0-4)=18. These three equations imply
X
1 _ o+3/2 _ y+17/2 _ 37+Y73 _
i; = 5z T i T 15— = 0.9488 ' (2-331)
and
_ o2 1/3 -1/3 _ -1/3
X, = g3z [96(0+2)1 77 g = 10.32 g , (2-332)
as well as
~£200) = B+ 2096)7 /3 gy (yi0) (042)73 73 -
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(2-333)

=B+ 8.05x107° g>°°?

whereby identities like o=y+7 and yvo=6 have been used. Of course, since
these results are based upon the simple approximations (328) and (329)
we should not take them too seriously. Nevertheless, their structure
is certainly right. For instance, Eq.{332) says that the combination
q1/3x (g) approaches a constant as g+o. This much we know already - the
constant is A2/3~10.2320. The estimate for A2/3 obtained in (332) dif-
fers from the actual value by less than one percent.

Something new is to be learned from Eq. (333). As a prepara-

tion, we differentiate Eq. (252) with respect to q:

e - _ /3 d -2/3 .,
ggl-fg)1 [—173—7—71 =q g (@] ; (2-334)

the latter equality is a consequence of the definition of A(g) in Eq.
(264). Now Eq. (333) implies that

@ £ @173 0 gD g3 (2-335)

We infer that

Aq) = A[1+(powers of q'/3)] ' (2-336)
for values of g not too large. Then, of course,

2/ Y/3)]

3 q_1/3[1+(powers of g . (2~337)

and

+ e +

A~2/3 q7/3 ,a

Y/3 2Y/3 ...] , (2-338)

ﬂq)=%B—% H+%q

which is an implication of (337) when it is inserted into Eq. (247). The
challenge consists in calculating the coefficients €4 €yr e which
determine the corresponding coefficients in (336) and (337). In parti-
cular, Eg. (246) supplies

2/3 —1/3 o Y/3 oty 2y/3 -1

x (q) = A [1+ ze,q'' 7+ ~e,q + ... =

(2-339)
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= /\2/3 q_1/3[1— %e1qY/3+((%e1)2— g;—Y<=.2)qu/3+ eell
Then
y@ = a3 @13/ (2-340)
= a0 e @3 4 35 Ge - Fle 2w 1,
and from combining (251) and (246) with (338)
—-f1 = _7_ q2 = l - —g'—
fq(o) sela) + X (@) (3 qdq)e(q)
(2-341)
_ _.10/3 &, -7/3
= dq[q e(q)]
10/3 4 3, -7/3 3 ,-2/3 Y/3 2Y/3
aa( Bg + 5 A [1+e1q te,q +...1)
or,
-2/3 3 3
-£5(0) =B+ 1 4 343, + 20, 24 L1 L (2-342)

The comparison with (333) yields a first estimate for e,

e, = 0.75 (2-343)
which, in view of the crudeness of the approximation used in arriving
at (333), cannot be expected to have more significance than stating

the order of magnitude. (We shall see below that the actual value is
about ten percent larger.)

A Eystematic computation of e,r € starts from the ex-

2’
pansion (316). Comparing powers of fé(o)+B in the differential equation

obeyed by fq(x) produces

3/2-3 £-3+1 £-3+1

£ (x) = i(”.z)[“x” £ (x)
DI e D B N
j:

Kp=T k=

xoofy (K)8p o ik, . (2-344)
J 1 J
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The j=1 term on the richt hand side is brought over to the left, so
that '

2
- - 2FETR X1E, (x)
dx?

B £ 3/2 [F(x)]3/2_j £=9+1 L=3+1 )
—Z( j ) ‘—;WZ— g vee E fk1(x, e
j=2 k1=1 kj=1

(2~345)

x...f (x)6
kj }i,k1+...+k:.I .

This right hand side contains f1(x), ey f£_1(x) but not fz(x). The
solutions to the corresponding homogeneous differential equation are
fo(x) and f1(x), given in Egs. (320) and (325). With their aid we can

construct Green's function G(x,x') which satisfies

[—gg - %/lei?x] G(x,x'") = &(x-x') ,
dx

(2-346)
G{x,x') = o and g%G(x,x') = o for x=o0
It is given by
Gix,x') = [fo(X')f1(x) - fo(x)f1(x')]n(x—x') . (2-347)

Thus %
fz(X) = gdx'[fo(x')f1(x)-fo(X)f1(x‘)]

2
xS -3FEVR) £,(x)] , (2-348)
ax’

where we refrained from explicitly inserting the right hand side of
(345).

The use of Eg. (348) does not lie primarily in explicitly
calculating fz(x), f3(x), etc. but in studying their structure. Recall
that F(x) can be written as

Flx) = 22 gy = 14 ch[y(x)kljl (2-349)

-

x* xaij+k=1
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which is repeating Egs. (180) and (123). As a consedquence, fo(x) has the

form

£, (x) = 144 %vvy(x)[1+(powers of v(x))] . (2-350)

X

@

Inserted into (325) this implies

'S

1 3 1 )
= —= —_ + ’ 2-351
f,l (x) s 0 )u BY( ) x- [1 (Powers of y(X))] ( )

of which we have seen the leading term in (327). Now we employ the re-

currence formula (348) to conclude that

_ 144, 3 1 <14
fFolw) = 18- 2 %7174, [1+ (powers of y(x))1 ,
x (12)
(2=-352)
where the constants dﬁ obey
a. = -1 (2-353)

1

and

L 3/2 £=3+1  £=3+1
dﬂ = ZO+Y)(Z—1 ; ( ) E "'E dk1 dk 62 k +...+k.
3=2 k=T k=T J

(2-354)

This we recognize to be the recursion for the Cx of Eq.(196), after ¥
and o are interchanged. Consequently, the d,s are the coefficients that
appear in the expansion of Eg. (310). That is

144/>\2
o(t) = ——2 [ 1+ zz:d @tH¥y . (2-355)

This connection between the fz(x)'s and ¢ (t), which is, of course, not
accidental, is the clue to computing €1r 85y .- of Eq. (338). We reveal

its significance by inserting Egs. (349) and (352) into the ansatz (316},

[xg(a)1°
= E_é‘_ t 3 X
fq(x) T [1+ E 1( [£ (0)+B](12)‘+ BY(Y+0) x (q)) k]+
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+... (2-356)

where the ellipsis indicates the terms containing "powers of y(x)."

After introducing hq by
e = 1 4 o -
fq(o) = B + =(12) GBY(Y+G)[hq/XO(q)] ’ (2-357)

Eq. (355) is employed:

_ 144 > x 1ok
£qlx) = =01 > & lalhy 5195

k=1 -
(2-358)

+..

A 2.3 X
i d e tee
Axtq?! Pg *Og xo(q)) ’
where [)\(q)]2=q[xo(q)]3 is used. What is exhibited in (358) is the part
of £ (x) that goes with the zeroth power of y(x). Likewise, an arbitra-

ry power of y(x), say [y(x)]m contributes

[y(x)]m 13% [c. + (powers of a(hqx/xo(q))o)]

m
X
(2-359)
= A 42 m X
g q[x(q)] hq c,ly (x)] wm(hq Xo(q))
to fq(x). The functions wm(t) thus defined are such that
144/72 s
Y_(t) = ——— [ 1 + (powers of at )] . (2-360)
m t3

We can now make explicit what supplements Eqg. {(358):
= A 42 13 X = m X
£q0) = alygy]® RO (g =gy + > cply 1Ty m (@]
m=1
(2-361).
Whereas (316) is an expansion that is expected to converge rapidly for

X not too close to xo(q), the series of (361) is the faster convergent

the smaller y(x) is. This identifies large values of x (i.e., xgx,) as
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the domain of application.
It is instructive to make contact with the original defini-

tion of 9 (t),

B(E) = 8y () (O] = 2 £ (ex (@) (2-362)

g->o q g+ro
[see the comment to Eg. (305)]. Since

y(ex (@) | =8lex @)™ =o , (2-363)
q—}o q—)-o

the combination of Egs. (361) and (362) reads

(t) = h® o(h t)| , (2-364)
q 4 3o

from which we learn that

h | =1. {2~365)
9 gro

This tells us what e, is. Equations (342) and (357) together say

3 , 7 ,2/3 -0/3
e + 2e, qY/ +... = —[fq(o)+B] Y A / g o/
(2-366)
2/3
= ={(12) "aB (y+o) A [ﬁ——-—] '
! 3x (q)
or, after making use of q1/3xo(q)=[>\(q)]2/3
'* -
e v 2e, a2 v = TEh B (veo) 1723 (0150127300
(2-367)
Now the limit g+o identifies
e, = 22 B (yro) A72V/3 (2-368)

With a, B, and A from (313), (204), and (312), respectively, the nume-

rical value of e, is roughly 10% larger than the estimate of (343):
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e, = 0.825908 . (2-369)
Note that Eq. (368) reveals the physical significance of a and $; that
of B and A has been clear since Egs. (67) and (301).

The requirement fq(x=xo(q))=o relates hq to yo(q), given by

vy (@ = y(x_(q) = Blx_(@)]1"
© ° ° (2-370)
- ap=2Y/3 Y/3, A ,2Y/3
= BA q [XTET] '
inasmuch as x = xo(q) in Eq. (361) yields
°(n) +Zcm[yo(q)]m i (b)) = o. (2-371)

m=1

With the aid of ¢'(1)= -1 [which is Eq. (307)], we find to first order

in y (q), or, qY/3, respectively:

ho =1+ ¢y (@ ¢ (1) + O(YO(q))z)

q
(2-372)
=1 -8 A-2v/3 ¢1(1)qy/3 . O(qzy/3) )
where c,= -1 has been used. In conjunction with Eqg. (340) this has the
consequence
A 2/3,0 _ O _aa—2Y/3 v/3 c
(hq[_f\(q) ) = (1*‘(761 BA 11)1 (1))q +o..)
(2-373)
=1+ o@e -en 2y ang? v,
so that the order qY/3 in Eg. (367) is
- o _gp2Y/3 -
2e2 = ce1(-—7-e1 BA ¢1(1)) . (2-374)

To proceed further, we need to know ¢1(1).
The insertion of Eg. (361) into the differential ecuation

obeyed by fq(x) produces

2
== - 3 AATETEIEY g (8) = o, (2-375)
dt?
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when terms linear in y(x) are identified. This is gquite analogous to
Eg. (319), so that

1

Yo (£) = tY[®(t)+-§t 3 (t)] (2-376)

is one solution of (375), the one corresponding to fo(x) of (320). The
Wronskian of w1(t) with wo(t) is

b ()9, E) =y @y, (8) = TEE) fao(ort?Y (2-377)

which makes use of Eg. (360) and the small t form of wo(t),

v () =t iz L (e (t)
= 2@ (2y2 8 116t%a, (@) 2+, L) (2-378)
= - %(%é)ZQAJtG+Y_3[1—2d2Cltc+..]
Equation (377) now implies
vy (E) = v (e) [, (1) /oy (1) - $(22) ao(ow)fdt (w AT

(2-379)

where w1(1) is determined by the t-o form of ¢1(t), statet in Eq. (360).
In connection with (378) this requires that the square brackets in (379)
possess the form

3 ~(o+y) )
th [1+ (powers ofat™)]

I

1 Y
3 vl 112 t!
v (/4 (1) - ~—w<o+w£dt [- 3(5)*ao _‘—_wC,(t')]z

(2-380)
t—2(c—3)

H

1
by (/9 (1) - %(ow){dt' (1+4d,0 €)

Y
1
12)20L0 t 2

1
-3 vppe 1,12 kYT sa_  ~2(0-3) o
aO(O+Y)1J_:dt (- 505 wo(t')] t (1+4d,a t7) }.
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In the latter version, the second integral is no longer singular at

t=o, since the integrand has the structure

{ ...} = a2t'®[const. +(powers of at?)] , (2-381)

which integrates to

1 1 .
farr { ...} = fat' { ...} + a*t‘[const.+ (vowers of at®)]
t o

1
= fat' {...} + t-(O+Y)(ato)z[const.+(powers of at9)]

° (2-382)
The first integral in (380) is
7-20 7-0
3 1-t -t
" o O Iy ¢ 4dye 5]
(2-383)
3 o+Y 3 _—lo+y) oty _.O
a0(1+ud2 7 a) G t (1+4d2 Y at™) .
The conseguence of (380) is therefore
3 oy
v /0, (1) + o5 (14dd, —=0)
(2-384)
1 ¥ 1+4d,at®
3 1,12, t 2 2
- = (o+y) [dt{[- 5 (-2 %00 1% - }=o0
ao 5 3YVA wo(t) to+Y+1
With the aid of wo(1) = -1/3 and, from (310) or (354),
9 9/2 3 ¥
= = = = 2-385
d2 12+ 402 o(20+Y) 4 20+Y ! ( )
this says
=1 oty
w1(1) = ao(1+3 257y a)
(2-386)

o+Y ., O
1 1+3 at Y
P DY fap {20ty 112y, t g2
ao o+y-1 3'x Y (t)
o t [¢} [}

This expression does not lend itself to further algebraic simplifica-
tions.

The numerical value of w1(1), obtained by a method analo-
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gous to the one that produced A and o in Egs.(312) and (313), is
w1(1) = 0.3216868353717 , (2-387)

which illustrates once more the high precision of the algorithm. The

Wronskian (377), at t=1, is employed in finding

i

o = @) - 21 as (o) (2-388)

0.2869164052321 ,

whereas the differential equation (375) supplies

Y= 2y ) = Y () ()

(2-389)
= 0,002936027410
The algebraic statements of (388) and (389) can be combined into
0o = 233 alory) + & vr(1) (2-390)
1 A 6 "1 !

where, because of the smallness of ¢{11), the latter part is only about
0.15% of the sum. In conjunction with Eg. (368), this implies

A—ZY/3 1 -2v/3 "

_6 n —
B Y, (1) == e + ¢ B A (DI (2-391)
which we insert into (374) to find

w."1)
c+6 2, 1 "1

e, =28 oy L 1 g, (2-392)

2 14 1 o-6 2(11\2)qa(0+Y)

here, the wf11) term represents a 0.5% correction to

o+6 2

ey, = 37 e = 0.671015 , (2-393)
resulting in
e, = 0.667554 . (2-394)

Naturally, the subsequent coefficients in (338) can be computed the
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same way.

The results of this section are summarized in

~Epp (2,N) = 0.768745 z7/3
~0.047310 (z-N) /3 [1+0.825908 (1-n/37) 0+ 257334
+0.667554 (1-N/z) 0+ 214668
el (2-395)

which is the weak-ionization analog to the high-ionization result of
Eg. (289) [and its supplement of Problem 7].

One last remark is in order. How could we cget around without
making explicit use of the reqguirement —xo(q)fé(xo(q)) = g ? As applied
to (361) it reads

[l = m 1 -
thD (hq) + §1cm[yo(q)] [hqwm(hq) Ym wm(hq)]
m:
(2-396)
Alg) -3
( ’T\(L 1 hq

Indeed, this together with (371) gives A{g) as a function of yo(q),
which can be converted into X (g) as a function of g, whereafter Eg. (340)
identifies e1, €5 etc. Fortunately, we came to know the relation bet-
ween fd(o) and hq in Eq. (356), so that we could avoid the more tedious

(though, of course, equivalent) procedure based upon Eq. {396).

Arbitrarily ionized TF atoms. We have spent some time on studying the

analytic form of such quantities like elq), xo(q), and —fd(o) as func-
tions of g - both for gg1 and for go, which are the situations of hi-
ghly and weakly ionized atoms, respectively. These considerations, how-
ever, did not tell us how good are few-terms approximations as in Egs.
(289) and (395). Let us, therefore, make the comparison with the re-
sults of numerical integrations of the differential equation obeyed by
fq(x) for various values of g.

We present in Table 2 the outcome of such calculations for
the nineteen g values 0.95,0.90,...,0.05 , supplemented by what we know
for g=1 and g=o. The fractional binding energy
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e(g)/e(o) = ETF(Z,N)/ETF(Z,Z) (2-397)

is additionally plotted, as a function of g, in Fig.4. We observe that

10
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Fig.2-4. The fractional binding enengy e(q)/e(o) as a function of q.

removing 30% of the electrons from the neutral atom, reduces the binding
energy only by 1%; a reduction by 10% requires the removal of 65% of the
electrons. Even when only 5% of the electrons are left, the binding ener-
gy is still more than 50% of the neutral-atom one. Here is the quanti-
tative version of the qualitative remark that the innermost electrons
contribute most to the binding energy, the outermost least.

From Eq. {286), (241) and Problem 7 we find that, for N<<Z,

% =1-0.4236 3 + 0.0909(§)2+ ee. . (2-398)
1.489(N/2) .

The successive approximations that this represents are compared to the
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Table 2-2, TF quantities xo(q), ~f€(o), and elq)/e(o) for N/iZ=
1-q = 0, 0.05, ..., 1.

N_/Z X (a) -fq'(o) el(q)/e(o)
0 0 © 0
0.05 0.416269 3.020996 0.537084
0.10 0.685790 2.233243 0.662517
0.15 0.934348 1.952470 0.742539
0.20 1.179253 1.813524 0.800221
0.25 1.428919 1.734116 0.844082
0.30 1.689292 1.684993 0.878380
0.35 1.965691 1.653119 0.905616
0.40 2.263681 1.631819 0.927406
0.45 2.589715 1.617337 0.944875
0.50 2.951825 1.607410 0.958847
0.55 3.360561 1.600602 0.969946
0.60 3.830452 1.595965 0.978668
0.65 4.382486 1.592853 0.985410
0.70 5.048683 1.590815 0.990503
0.75 5.881272 1.589530 0.994227
0.80 6.973385 1.588763 0.996824
0.85 8.513784 1.588345 0.998508
0.90 10.92728 1.588149 0.999475
0.95 16.10273 1.588081 0.999908

1 [ B=1.588071 1

actual values in Fig.2-5. We see that the guadratic
duces the actual data almost perfectly even for NgZ.
inclusion of the next term, 0.0024369(N/Z)3,18would
unrecognizable in Fig.5.]

In contrast, the performance of the

pansion [Eqs;(338), (369), and (394)1,

approximation repro-
[Incidentally, the

make the deviation

weak ionization ex-

1-elgl/elo) . 4 4 o.8259 73 + 0.6676 g2¥/3 + ... ,(2-399)
0.06154q

is significantly worse; see Fig.6. Obviously, the coefficients in this

expansions do not get small as rapidly as the ones in (398). One needs

a few more terms in (399) for a high guality approximation over a large
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Fig.2-5. Comparison of the Linear and quadratic approximations

of Eq.(398) with the actual numbens (crosses).
Y/3. At this time, only the numerical value of e, =0.550086

has been calculated19, whereas €yr g1 ... are not known as yet. This

range of g

value for e, leads to the dashed curve in Fig.6.

3

Validity of the TF model. The detailed discussion of the TF model,

which touched upon all its important aspects, has made us familiar with
the properties of TF atoms. In order to improve the description we must
now find out what the deficiencies of the model are.

The approximations that define the model are those which
brought us from Eqg. (40) to Eg. (41). They are: (i) the (highly) semi-
classical evaluation of the trace in Eip according to the recipy of Eg.
(1~43); and (ii) the disregard of electron~electron interactions ex-
cept for the (direct) electrostatic one (in particular, we did not care
for the exchange energy). Of the two, the first one is the more serious

one, because it leads to an incorrect treatment of the most stronaly
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Fig.2-6. Comparison of the Linear and quadratic approximations o4
Eq.(399) with the actual numbers (crosses). The dashed curve £is

the cornnesponding cublc approximation.

bound electrons, the ones close to the nucleus that contribute most to
the energy. To make this point, let us recall that the application of
Eg. (1-43) {i.e., the evaluation of traces of unordered operators by phase
space integrals) is justified when commutator terms, as they appear in
the ordering process, are negligible. In the present context this re-
quires that the commutator of the momentum and the potential, which
equals i times the gradient of the potential, be "small." Small com-
pared to what? Physically, this oradient is small if the potential does
not change significantly over the range important for an electron. Sin-
ce the quantum standard of length, associated with an individual elec-
tron,is its deBroglie wave length, X, a small gradient means

(A Vv << |v (2-400)

Substantial changes in V occur on a scale set by the distance r, so
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that criterion (400) reguires that
A << r . (2-401)

On the other hand, ) is the inverse momentum (we ignore factors of two
and pi for this kind of reasoning), which in turn is given by the square
root of the potential, see Eg.(42). In short, we have, as criterion

for the validity of the TF model, the relation

r Ve[ >> 1 . (2-402)
Upon introducing TF variables, this reads

Z1/3 1/2

| x fq(x)l >> 1, {2-403)
First, we learn here that, for a given x, the TF model is reliable only
if Z is large enough. Second, there is information about the regions
where the approximation cannot be trusted.

At short distances, fq(x) practically equals unity, and the

_2/3, or r v

left-hand side of (403) is of the order of one, when x Vv %
1/Z. Consequently, there is an inner region of strong binding where the
TF approximation fails. Indeed, the innermost electrons are described
incorrectly in the TF model.

4 Then, near the edage of the atom at X=X, f (x) has the line-
ar form of Eq.(329). Now the left-hand side of (403) is of the order of

one, when [x-xo[mZ_2/3

/q%, or lr—r0|m1/(Zq2). Thus we find the outer
region of weak binding to be also treated inadequately in the TF model.
The situation is, of course not basically different for neutral atoms,
although the'argument has to be modified. For g=o, the TF function F(x)
appears in (403). Its large-x form F(x)n1/x® implies that the criterion
is not satisfied, once x is of the order Z1/3, or rnvil.

In Figs.7 and 8 plots of the radial densities
D(r) = 4nr’n(r) {2-404)

are used to illustrate these observations concerning the validity of
the TF model. Please note that the regions of failure shrink with in-

creasing Z. We conlcude that (in some sense) the TF approximation be-

comes exact for Z->°°.20

Nice, but in the real world Z isn't that larce, the more so
1/3

2 , which obviously is the relevant parameter. It ranges merely from
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Fig.2-7. Regions of nelability and faillure of the TF model in
an Lonized atom {g=1/2), ilLustrated by the radial density as
a function of the TF vardiable x.

one to roughly five over the whole Periodic Table. Clearly, modifica-
tions aimed at improving the TF model are called for. All following
Chapters are devoted to their discussion. The TF atom is thereby the
leading approximation, and the supplements to the TF model will all be
regarded as small corrections. For this reason it was necessary to
spend so much time with a detailed study of the TF model.

It is important to appreciate that the density, which was
used in Figs.7 and 8, is the right quantity to plot for this purpose.
The TF prediction (51)

_ 1 3/2
nTF(r) = ;[—2 (V+z) 1] (2-405)

= —l—(ZZ/r)B/2 for r+o
312

is c¢learly very much in error at small distances. Also, for an ion of
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degree of ionization ¢, we obtain

1 3/2
—I[22q(1-r/x )] for rgr,

2
3n (2-406)

n

g (1)

n
o

nTF(r) for r>r g

for the density around the edge of the atom. This is a sharp boundary
instead of the quantum-mechanically correct smooth transition into the
classically forbidden domain, where the real density decreases exponen-
tially. In the situation of neutral atoms, the large-r behavior of the
density is

.1 .2 144.3/2 _ 243 _ 1 _
nTF(r) = [2 s ] =g n— (2-407)

3n? X r

where the 1arge-x‘form of F(x) is employed. Again, this is not the cor-
rect exponential dependence on the distance.
The principal lesson consists in stating that the real den-
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sity is not of the form
n = n + ( a small correction) . (2-408)

TF

As a consequence,'the TF density functional of Eq. (95) cannot be used

as the starting point when looking for corrections. In contrast, the

TF potential is very much like the real effective potential, inasmuch
as it behaveé like -Z/r for r+»o and like -(%Z-N)/r for r+«, being struc-
tureless in between. The structure is in the second derivative of the
potential (related to the density), not in the potential itself. There-
fore, we must find modifications of the TF potential functional of Eq.

(45) in order to overcome the insufficiencies of the TF model. If this
is so, why does the vast majority of people working on TF theory use
the language of density functionals? As far as I can see, the reasons
21

the

principal variable was the density, whereas the effective potential

are historical ones. In the original work by Thomas and Fermi

played the role of an auxiliary quantity. This remained so over the
years in basically all presentations of the subject, of which Gombas'
textbook22

henberg-Xohn theorem23 (of which we shall sketch a proof in the next

is the most prominent one. Then, in 1964, the socalled Ho~

section) triggered the development of a density functional formalism.
Because of this theorem, density functionals appear to be well foun-
ded theoretically, in contrast to formulations based upon the concept
of the effective potential, which is widely regarded as an intuitive
approach (our introduction certainly is in this spirit) lacking a "ri-
gorous" theoretical foundation. In the following section, which conti-
nues the "general formalism" that we left after Eq. (40), we shall see
that this preconception is wrong. The potential functional is as well
defined as the density functional, and for the reasons given above it

is the preferable formulation in atomic physics.

Density and potential functionals. For a proof of the aforementioned

Hohénberg-Kohn theorem (we shall state it below), we return to the ma-
ny particle Hamilton operator of Eq. (1-7), where we replace the nucleus-
electron potential -Z/r py an arbitrary external potential Vext(z),

and split Hmp into the kinetic energy operator Hkin’ and the interac~
tion energy operators He and He :

xt e

N N N
1 2 1 1

H = = p: ot v (r.) + % § —_— =

mp gDy 2 Y] Goy oext Y 287 gy
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(2-409)

Different ground states |¢o> will correspond to differing choices of
Vext® In order to simplify the argument, we shall assume that, except
for the irrelevant possibility of a reorientation of all spins, the
ground states are unique (a slight, and otherwise innocuous, change of
the external potential would destroy any degeneracy anyhow). Thus, the

density in the ground state,

n(rn = [(@E,) (@2 ... (@5 [<TITL Y, .. (v > (2
+ [(dF1) (@F)) ... (dEY) [<F3EIEL, . T v >
. (2-410)
+ J‘(d;.'l)- (drli] 1) |<;%I;él _]?I:]'_‘II IU) >|2

Nf(@FY) ... (dFY) [<EiEY, .., E v >

(the latter equality makes use of the antisymmetry of the wave function,
and a trace affecting the spin indices only is understood implicitly),
is a functional of the external potential V

ext®

. . N .
Two different external potentials, Vext and vext’ will lead

to two different ground states |w0> and |$o>, since the respective
ext ° Vext + const.
is not interesting, since we consider only potentials that are physi-

Schrddinger equations are different. (The situation ¥

cally different). The expectation values of H p and ﬁmp are minimized
by lwo> and lw >, respectively, so that

—_ <$ w > < <a{ |;})‘ > (2—411)

<lpo| mp mp mp

and

<y bo> - <$oiﬁmp]$o> > <wOIH -N [wo> ’ (2-412)

olepl mp mp

which are combined into

<y -X lv,> < <V ?5> . (2-413)

o I Hmp mp O mp mp

Now we insert
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N
Hmp_ ﬁmp = Hext - iEjext = zz:(vext(rj)_ &ext(rj)) (2-414)
J=1

and obtain .

N
g¢o|Hmp-ﬁmp1¢o> =:§Z:](dri)...(dr&)(Vext(ré)— %ext(ré))
3=1

> >
X ]<r%,...,rﬁ[wo>|2

flaEn v, (E0- Y ENnE) ,  (2-415)

ext

and likewise for ]$o>. The implication of (413) is therefore

-V __ @NhE)- 5(EF)] <o (2-416)

f(dr')[v ext

ext

from which we conclude that n # n. Different external potentials not
only produce different ground states but also different ground-state

densities. Consequently, a given n corresponds to a certain Vext which

is uniquely determined by n. In other words: Vext is a functional of n.

And since the ground state [wo> is a functional of Vv it can be re-

ext’
garded as a functional of n as well. Then the expectation values of
Hey
Here then is the Hohenberg-Kohn theorem: there exist universal (i.e.,

n and Hee in the ground states are also functionals of the density.

independent of vext) functionals of the density E n(n) and Eee(n),

. ki
so that the ground-state energy equals

E(n) = B,y (n) + [(@Z)V_ (E)n(E') + E () (2-417)

where n is the ground-state density. The minimum property of <w[Hmp|w>
implies that the energy E{(n) is minimized by the correct ground-state

density; trial densities ﬁﬂ which must be subject to the normalization
j@EnsEy) =N, (2-418)

yield larger energies E(g) than the ground-state energy E(n). It is
useful to include the constraint (418) into the energy functional by
means of

E(n,z) = B, (n) + [(@&F)V__ (Z')n(E") + B (n)-

ext
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~z(N - [@)n) (2-419)

since this E(n,z) is stationary under arbitrary variations of both the
density n and the Lagrangian multiplier z.

Before proceeding to construct the related potential functi-
onal, a few remarks are in order. The Hohenberg-Kohn theorem is a very

general one; in particular, the specific forms of E and Hee never

enter. The price for the generality is paid in formké? a total lack of
knowledge concerning the structure of the density functionals Ekin(n)
and Eee(n). The theorem states no more than their existence. Obvious-
ly, the detailed form of these functionals must depend upon the speci-
fic Hkin and Hee that are investigated [one could, for instance, con-
sider relativistic corrections to the kinetic energy, or, in applica-
tions to nuclear physics, reflect upon fermion-fermion interactions
different from the Coulomb form of (409)]. Also, no technical proce-
dure is known that would enable us to perform the step from Hmp to E(n).
One must rely upon some physical insight, when constructing functionals
that approximate the actual E(n).

The kinetic energy in the ground state of Hmp of (409) is

the expectation value

N
- _ 1. .2
Brin = VolHinl¥o™ = Vol > 3pllv> (2-420)
3=1
which, in configuration space, appears as
1 > >
Epin = 7N /(@) [(dry) .. @@ Tz (215, )
PRvAl L 1 -
v N E3EIPRESR (2-421)

1]

I(d;') (di.)'n)%a (—fl_r") %l._v)'ll n(1)(_£|;r||)

Here, once more, the antisymmetrv of the wave function has been used,

and we have introduced the one-particle density matrix

(1) +|,+|| = a . % (Tu 7y T '*( ot _)-l
n (rt;r") = Nf(dr2)...(dr1§1)wo(r PTh e TRV (E T, D))

(2-422)

which is an immediate generalization of (410), so that the density
itself is the diagonal part of J1)(f';;"),
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n@) = V@ Ey . (2-423)

Let us now attempt to interpret n“)(}';;") as the matrix element of an

effective density operator,
(1)+ —}Il - +I 1 2 s +Il
nirt;rt) = 2<et n(-5p -VI(E) - ) ["> . (2-424)

(A more careful discussion hereof will be presented in Chapter Four.)
The effective potential V(f) that appears here is unspecified at this
stage, except for remarking that it is a functional of the density,
n(;), because the density matrix on the left~hand side is such a func-
tional. The factor of two is the spin multiplicity which we now choose
to make explicit instead of further assuming that a trace on spin indi-
ces is left implicit. Note that V is determined without the option of
adding a constant, since Eg. (423) has to hold for the given density.

The diagonal version of Eqg.(424) showed up earlier, in Eq.
(20). We are clearly back to the picture of particles moving indepen-
dently in an effective potential V. The notation established then is
useful here, too. In particular, we introduce the independent particle
Hamilton operator

H(Z,B) = gp° + V(D) (2-425)

just as in Eq. (3). The kinetic energv of (421) is then rewritten as

=
]

rin J’(di‘)') (d;") [_12_$| .'v*n 5(;‘-;")]1’1(1)(;' ;'f")

[(aF") (@F") <F"|p? |F'> 2 <E'[n(-E-0) ">

tr %pz n(-H-z) ’ (2-426)

where we remember that the trace operation includes multiplying by the

spin factor. The quantity E, of Eq. (7),

1

E, = tr(H+g)n(-H-7) (2-427)

is a functional of v+g, thus a functional of n, as V=V (n). The kinetic
energy (426) is contained in (427),

kin = Bq " tr(v+g) n(-H-¢)

=
1]

(2-428)

B, = [(@NVED+nE) .
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This we insert into (419) and arrive at

_ _ ~>' —>' - —)-' —),
E(n,z) = E (V+z) = [(dE*) (V(") Vgt (T (x")
(2-429)
+ Eee(n) - zN
In the present context, V is still regarded as a functional of n. There-
fore, (429) is the same functional as in (419), we have done no more
than reorganize the right-hand side. Consequently, the functional (429)
is stationary under variations of n and r around their correct values,
just as (419) is stationary. An infinitesimal variation of ¢ induces

a change in E(n,z) given by

= a — = - -
SCE(n,C) = (—EBT;'E1(V+C) N)&z = o ; (2-430)

it is, indeed, zero for the same reasons thaf implied Eqg. (13). Now con-

sider a variation of the density:

6. E(n,c) = [(aZ")6 V(E)n(') - [(dF')6 V(' )n(F")
- @ ED -V, ENen(E")
(2-431)
+ [@nen(z) v _(F")
= J@EN) [V(ED+ Vo B) +V (D ]8n(E)

where Egs. (14) and (25) have been employed. The stationary property of
E(n,z) thus implies

V=yV + Vv . (2-432)

In words: the effective potential equals the sum of the external poten-

tial and the effective interaction potential, Vee' defined by Eqgq. (25),
= ‘*l e +| ’ -
8 Eee(m) = J(@r)én(r)v (') . (2-433)

Note in particular, that V is always a local (i.e., momentum indepen-
dent) potential.

So far, V has been regarded as a functional of the density.
Because of the circumstance that the contributions in (431), that ori=-
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ginate in variations of V, take care of themselves, we can equally well
treat V as an independent variable. The energy functional

E(V,n,2) = B (V+g) = [(dZ') (V-V_  )n + BE__(n) - o (2-434)

is obviously stationary under independent infinitesimal variations of
V,n, and ¢. If we do not want to have both V and n as independent gquan-
tities, we have the option of eliminating one of the two. The step from
(434) back to (419) is done bv first solving Eq. (20) for Vv, thereby
expressing the potential in terms of the density, and then using this
V(n) in (434). Likewise, to obtain a functional of the potential alone,
one has to use Eqg. (432), in which Vee is a functional of the density,
to express n as a functional of V. This n(V) then eliminates the den-
sity from (434) leaving us with a potential functional E(V,z).

Let us illustrate these ideas with the respective TF func-
tionals. Starting from

Egp (V,m,) = [(@2) (- =) [-2(v+0) 172 - [(a®) (v+ D)n
2 r
151t
(2-435)
> >
1]
v 3 faf) @ 2RERED oy
r-r'|
where Vext is now the potential energv of an electron with the nucleus,

-Z/r, we get the density funcitonal of Eq. (95), after first inverting
[Eq. (51)1

o2 qver) 1372 (2-436)
3n?

=
i

to

V= - %(3n2n)2/3 -z , (2-437)

1l

which then allows to rewrite the first and second term in (435) accor-
dingly. On the other hand, if
n(;')

EE

Vo= - % + [@dr) (2-438)

is solved for n,

= - oyzqys 2 -
n o= - = VAU D) (2-439)



111

(this is, of course, Poisson's equation), we can eliminate n from the
second and third term in (435) and are led to the TF potential functio-
nal of Eq.}45). Of course, within the framework of the TF model, the
three functionals E{V,n,z), E(n,g), and E(V,7) are perfectly equiva-
lent, but I repeat: as a basis for improvements over the TF approxima-
tion, the potential functional is the preferable one.

We have investigated earlier the scaling properties of the
TF model. Let us now see, what one can state about the behavior of
the exact density functionals By (n) and Eee(n) under scale transfor-

in
mations of the density,

n(?')+nu(?') = n(urt) . (2-440)

The TF approximations to E and Eee scale in the manner that one would

kin
intuitively expect:

1
10m?

[ (3n?n(F'))%/3

(Figin () I

1 (3nfuln(uz)) /3

> 173 Jrand)
10m? (2-441)

- .2 ;
Ly (Ekin(n))TF ’
and likewise

(Eee(n))TF = %. f(d;r) (d;") n(r')n(r")

—fl_;"]
(2-442)
M u(Eee(n))TF
For the exact functionals, the equations
- 2
Ekin(nu) = Ekin(n) (2-443)
and
Eee(nu) = Eee(n) (2-444)

do not hold, however; even their combination

Ekin(nu) + Eee(nu) = p? Epinfn) + p E_(n) (2~445)
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is only true if p=1+e with an infinitesimal ¢. This surprising obser-

24 Please note

vation has been made only recently, bv Levy and Perdew.
that the statement (445) is, indeed, only needed for such p=t1, in or-
der to derive the virial theorem

2 B () = - E () + [(dE)na@E)T U v () (2-446)

ext
from the minimum property of the density functional (417).

As a first step towards proving these remarks about Egs. (443)
through (445), we recall that to any given density there correspond
uniquely a certain external potential and a certain ground state. Let

us keep the notation Ve and |wo> for the ones related to the actual

xt

ground-state density n, and write Veit

with the scaled density nu. Thus |wgk> obeys

and |w$5> for the ones that go

(

B b, _ M 1 N
Hein * Hexe * Hee)|¢o > = EJ [vS> (2-447)

where EJL is the ground-state energy for nu. Clearly, if we transform
|w0> according to

3N/2 ST SUTE SN [ (2-448)

> >
<r! ! >
r1,...,rN|1pO n o

then the density is scaled as in Eq. (440). Inasmuch as

V2T, L uEy ] = < L Elvw (2-449)

where the unitary operator U(u) is given by

N -
Up) = exp{i %-z 1(;j'§j+5j'rj) logu} (2-450)
J:

we can read (448) as

[wo> - U(u)[wo> . (2-451)

The point is that this scaled |wo> is not equal to |w$%>. This emerges
from considering the Schrédinger equation obeyed by U(u)]wo>, which is
immediately obtained from the one satisfied by |¢O>. We have

U(u) (H + H + By

in * Hoyr ) U ) U [v> = B LU (¥, > . (2-452)

e
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> > . .
The action of U upon rj and pj is simply

vw E U = E
- (2-453)
- -1 1 =
U . U = — p. ’
() P (1) 5 P
so that
U{p) H vt =L x
kin , kin !
K (2-454)
-1 _ 1
Ulp) H U (u) = m 0 ,
and
-1 N >
U(p) Hext U (p) = E Vext(urj) . (2-455)
j=1
Consequently,

2 -1 _ 2
(B, + BUWH LU (W) + pH UMW) [ > = EOU(u)Ing> ,
(2-456)
which, in view of the factor p multiplying Hee' is not of the form re-
quired for lwg5> in Eq. (447). Thus, indeed
K . -
vl fu > = [vg> (2-457)

for u#1. Nevertheless, IWJ%’ and U(u)|wo> are not unrelated. In parti-
cular, they give rise to the same density, nu(;), when inserted into
(410). This implies the equality

< lubye Lud> =< | vhw vl vwivy> (2-458)

and for the same reason

= H -1 W -45
Vo | Hgy 10> = <ot Lot B 0T vl (2-459)
We are now prepared to employ the minimum property of the expectation

value of the Hamilton operator of Eq. (447) in the form

u _ B )
<1po [(Hkin * Hext * Hee)lwo > =
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IA

<wo’ U—1(u)(Hkin+Hé;t+Hee)U(u) l1Uo> o (2-460)

which, as a consequence of Egs. (454) and (458), says

Epin () * Bggfn)) s p? B, (0) ¢+ p E () . (2-461)
The equal sign holds only for p=1, in the first place. Since the right
hand side always exceeds the left hand one for p#1, however, the two
sides must agree up to first order in e=p~1, at least, so that the
egual sign actually applies to p=1+e¢ with an infinitesimal ¢. This is
the statement we made at Eqg. (445). Another way of expressing the same
fact is

d = -
aﬁ[Ekin(nu) + Eee(nu)]| =2 Ekin(n) + Eee(n) . (2-462)

n=1

We can also exploit the minimum property of the expectation value of
the Hamilton operator of Eg. (456). Here we have

<ty | 0T ) (B v ou? U E U () o+ k)0 [y >

kin
(2-463)
B 2 -1 b
< <y [(Hkin+ LU(WHE__, U (u)+uHee)|¢o >
or with (454) and (459),
2 2 < _
u Ekin(n) + U Eee(n) £ Ekin(nu) + 0 Eee(nu) ’ (2-464)

where, again, the equal sion is true for all p's that differ from uni-
ty at most infinitesimally.
Equations (461} and (464) can be combined into two state-

ments about Ek and Eee individually, namely

in
(u-1)[Eee(nu) - U Eee(n)] z 0 (2-465)
and
(1=1) [By () - p? By ()] S0 (2-466)

It seems natural to assume that the left-hand sides in (465) and (466)
are of second order in e=p-1 for small €. If this were true, these equa-
tions would mean that
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d _ -

M Eee(nu)L=1 E(m >o (2-467)
and

———d -

o Ekin(nu)l -2 Ekin(n) <o . (2-468)

p=1

As a matter of fact, we shall see below that equal signs have to be
written in (467) and (468) instead of ">" and "<". Consequently, the
left-hand sides in (465) and (466) are, at least, of order ¢, the re-
spective square brackets of order e°. Therefore, also in Eq.{(461) the
equality sign holds up to order e°, at least. These remarks go beyond
the results of Ref.24, where Levy and Perdew stopped at stating (465)
and (466).

For a proof of what has just been said, we have to turn to
the potential functional E1(V+C). In Eg.(216) we found that the TF ap-

proximation to E1 responds like
5v/2~3
(B v+ D) e > 0 (B, (V40 g (2-469)

when V and { are scaled according to Egs.(211) and (214),

> v > v
v{r) > u Vv(ur) , CT->yp © . (2~470)

Although the exact E1(V+E) does not behave like (469) for arbitrary v,
it does so for v=2:

B, (V+2) =+ u® E, (V+7) (2~471)
for

VE) v @) =t v,

(2~472)
z > wtioo.

We demonstrate this by first observing that

n(- 3 p? - VGE - u? o)

= (- 2(B/W? - VD) - 1) (2-473)

1

U n(- 5 pf -vE -0 v,
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where U(u) now denotes the one-particle version of (450),
(k) = exp (i 3B + B+¥) log u} . (2-474)

This-is used in

E1(V+c) = tr(% p?+ v(§)+c)n(— % p2- V(?)—;)
e (3 p?+ w2V (WF) +n20)n (= 3 D2 w2V (uF)-pL)
= wltr U (G p2+ VB +Din (- $p2=v (B -0)U ()
= p? E, (V+2) | (2-475)
or
By (V) + w’0) = u® Ej(VeD) (2-476)

indeed. [The invariance of the trace under cyclic permutations has been
employed in the last step of (475).]

Before proceeding, it is instructive to show where the at-
tempt of repeating the argument for v#2 fails. The analog of (473) would

require an operator (not necessarily a unitary one), Uv(”)' such that

v Ul o= ur (2-477)
> -1 _ —\)/2 >
Uv(u) P Uv (u) = o p

Unfortunately, there is no such operator, except for v=2, as emerges

from considering the commutator of the transformed guantities:

v/2

1 <>

W'TV2 pl = U [£,p1U] =17 . (2-478)

> -
i1 = [ur,u

This is a contradiction, unless v=2.

In the section about the scaling properties of the TF model
we remarked that a scaling transformation of the effective potential
V(;) must be accompanied by a corresponding transformation of the ex-

>
ternal potential Ve t(r). In that earlier context, this was achieved

X
by changing Z appropriately [Eqg.(213)], because the only VeXt conside-
red then was the Coulomb potential -Z/r. In the more general present

discussion, we preserve the structure V-—Ve

Eq. (473),

by scaling Ve like Vv in

xt xt

v (7

> _ 2 Ee _
ext (r) = p Vext(ur) . (2-479)

M Vext,u

The density is, of course, scaled as in (440). Under these simultane-
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ous transformations of V,n,z, and Vext’ the potential~density functio-

nal of (434) behaves as described by
\ = 2
E(V,n,z) ~» Eu(v,n,g, E(Vu,nu,u z)

= p{E, (v+2) - [(dZ) (V(E) -V (F))In(E)-on}

(2-480)

* Eee (I’lu)

Since E(V,n,z) is stationary under infinitesimal variations of V,n, and

r, all first order changes must originate in the scaling of Vext' [The
same argument was also applied to ETF(u) of Eg.(219).] Thus,
d - ) = _a_ > -
e Eu(v,n,c)l_ = [(dr')n(x") 55 Vext,u® )[_ , (2-481)
u=1 p=1
or with (479),
_d_ = T Z T ~>l.—>| )
o Eu(V,n,c)L=1 flar'in(z') (2 Vet (TETVIV L (2]
(2-482)
On the other hand, Eq. (480) implies
d - - —’l +| - T
e E“(V'n'c)i=1 =2 {B (v+D)- [@r") (VIx) -V, (x"))
>, _ _q__
X n(r')-rN}+ m Eee(nu)l_ .
p=1
(2-483)

The equivalence of these two right-hand sides, combined with the virial
theorem (446), yields

a - 2 yvn-
a Eee(nu)L=1 =~ E () =2 B, (n)-2{E (v+£)-[(ar')vn-TN} .

(2-484)
The last step consists of recognizing that for the actual V,n, and z,
the contents of the curly brackets equals the kinetic energy. This emer=-
ges from Eq.(428). Conseguently, the right-hand side is zero. We arrive
at

d -
a E e(nu)[ =E__(n) , (2-485)

e =1
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and .as a consequence of (462),

| =28, (n . (2-486)

E . {(n)
kin p =1

£le

kin
Indeed, the statements following Eg. (468) are justified.

Please be aware of the following mental trap. If the density
is eliminated from E(V,n,Z), so that we are left with the potential
functional E(V,g), one could think that the resulting kinetic energy,

Byin (V/) = By (veg) = [(@E)VE)(E) - N (2-487)
scales according to

2 - 2 -
inasmuch as [Eq. (14)]

6y B, (v+z) = [(@E)6V(z')n(z') (2-489)
together with (471), implies

n(r') + u® n(ur) (2-490)
if V and 7 are scaled as in (472). This is not so, however, because the
potential functional that is to be inserted into Eq. (487) for n(;') is
not the one obtained from (489), but the one that emerges from

8y B () = f@@men(x) V(') - v ()] (2-491)

[Egs. (432) and (433)]. In the TF approximation, for instance, this is

the Poisson equation

-> - _ i Y2 —). _ —>' _
n(r') = In vrEwv(z") Vext(r M (2-492)
in which the scaling of V and Vext [Egs. (472) and (479)] produces
n{¥') > u* n(r') (2-493)

different from the desired form of (490). Therefore, Eq.(488) is not
true, not even for u's that differ from unity by an infinitesimal amount.
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The kinetic energy by itself is not a central quantity in the potential

functional formalism. What we have just seen is an illustration of this

remark.

Relation between the TF approximation and Hartree's method. Somewhere

at the beginning of Chapter One there is the promise to discuss the con-
nection between TF theory and HF theory "to some extent in Chapter Two."
This time has finally come.

Hartree's2? basic idea consists in approximating the ground-
state wave-function by a product in which each factor refers to just
one of the electrons:

> T o

> >
N lvo> = w1(r1)w2(r2)...wN(fN) . (2-494)
The wj's are supposed to be orthonormal,

fdz") wj*(?') Py (B1) = ik v (2-495)
so that the wave function (494) is properly normalized to unity. The
requirement of antisymmetry is not satisfied by (494). Consequently,
exchange effects are not treated correctly. In the present context,
where we want to make contact with the original TF model, neglecting ex-
change is consistent. We are actually talking about Hartree's approxi-
mation, not about the Hartree-Fock model, which does include exchange.
This restriction is not essential for the discussion. The argument can
be repeated for a comparison of HF theory with the proper extension of
the TF model that includes the exchange interaction, which will be de-
rived in Chapter Four. At this moment we are content with the simple
TF model and Hartree's ansatz (494).

With Eqg. (494) we obtain approximations to the expectation
values of the three parts of the many-particle Hamilton operator (409).
These are given by

Byin = <Y Byin [¥>

N > 1 > -> > >
EE ftar") 5 v'wj*(r')-v'wj(r') ,
j=1

(2-496)

and

Boxt = UolHogel vo> =
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N N . . (2-497)
s > [ g Vo @) g (E)

3=1

as well as
Eee = <11)O lHee | 1PO>
Z 7/ (@E) g * (& >[Zf(df")w +")T———|¢k(+")]
3=1
kxj
x wj(?') . (2-498)

Since the description does not pay attention to the exchange energy, we
do not have to be pedantic either when it comes to excluding the self-
energy. In other words: it is perfectly consistent to include the k=]
term in Eq. (498). The approximation to the ground-state energy is then

E = <lPolﬂmplwo> * EByartree

f

Z[(dr){% *(ED Ty E)apx EDV L E gy E)

N
+ %wj* (_fl) [ ZJ’ (d;n)wk* (}*u)_l__f_'__i?"__l lpk (;u)]wj (r! )}

(2-499)

s [ i -
The as yet undetermined wj s are now chosen such that EHartree is sta

tionary under infinitesimal variations of them. Thus

N N -+ >
S THEENGu* (E) (- JT 2RV )+ S @ pHE ) e
1 k=1 Ea

j:
x P (EI I, (F) = o . (2-500)
J
The variations 6¢j* are not arbitrary but subject to

f(dE')awj*(?') W E) =0 (2-501)
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which is a consequence of the orthonormalization (495). Therefore, Eq.
(500) implies
- 1 12 Ly (+|) +§N (d')") *("‘u)____l__ (?ll)} (_fl)
{ Ev ext o I r 11)k * |i."|_'r’u [wk w]
k=1 (2-502)

N

=ZE:: €3¢ wz(;l) '

£=1

where the constants €j£ are the Lagrange mulitpliers of the constraints
(495). The single-particle wave~functions wj and the gjz are to be de-
termined simultaneously from Egs. (502) and (495).

The hermitian property of the differential operator {...} in

(502) is employed in demonstrating that the matrix (Ejz) is hermitian:

€52 f(ar") wz*(?'){...} ¢j(f')
(2-503)

f(@az) wj(‘r"){...} %*(i") = ety -

Another observation is the nonuniqueness of the solution to (502) and
(495). If wj and gjK are one solution, then

N

n,

wj = E uj[ 17 (2-504)
£=1

and

n _ N *

Ejz = E ujk €em Yim (2-505)
k,m=1

is another one, whereby (ujl) is any unitary matrix,

N

u* (2-506)

ni “mk = O3k
m=1
It is essential here that the density, that appears in (502), is in-

variant under such a unitary transformation:

> N -> >
REFY) = EE PHED G ED =
%=1
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N R R R
=5 W ED Y () = nE) . (2-507)
k=1

[The approximate wave-~function (494) is obviously not invariant under
(504). This is nothing to worry about, because as soon as (494) is anti-
symmetrized, the effect of (504) reduces to the mulitplication by a

phase-factor.]
Since (Ejﬂ) is hermitian, we can choose (ujﬂ) such that

" . .
(Ejﬂ) is diagonal,

g g 6. . (2-508)

Then Eq. (502) is Schrédinger's equation in appearance,

N = Moy oo v Vv -
=gV P+ vE ) = ey wj(r ) (2-509)

whére the effective single-particle potential V is

N . 1
vV(z') = vext(%') + zz:j(d%")wk (E) s gy ("), (2-510)
k=1 |£'-x" |
which is equivalent to
N > > 1 > >
g wk*(r')wk(r') i v'z(v(r')—vext(r')) . (2-511)
k=1

Let us now look at the Hartree energy. It is

N
= ;'j (@F ) g ¥ (E) (= 7724V ()

EHartree
1 >, ) w1
+ (Ve = Ve (1)) g (")
N N . N >
= Ez:f(dr Jyg* ) :E:: €50 Volr") (2-512)
3=1 £=1

.
-3 E@ED WED -V EDS urEDYED
3=1

where both (502) and (510) have been used. With the aid of the ortho-
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normality of the wj's and with Eg. (511) we obtain

N

1 >, T Ty _ ) —
=Z1 €. —%f(dr)ﬁ V(") Vext(r))]2 . (2-513)

EHartree 3= 33

This will look even more like the TF potential functional after we use

N

N v N n
€.. = E.. = €. (2-514)
} 33 - 93 Z 3
= j:

3=1 3

: " )
in conjunction with the fact that the gj are the N smallest eigenvalues

of the single-particle Hamilton operator

B=1pi+ V() (2-515)
to write

N

§ Sjj = tr H n{-H~-z} , (2-516)

3=1

where, of course, ¢ is such that the count of occupied states equals

the number of electrons:
N = tr n(-H-z7) . (2-517)

If we cdmbine (516) and (517) in the now familiar way,

N
€]:I = tr(H+g)n(-H-r) - N
3=1
= E, (V+z) - N ' (2-518)
then
_ _L >, N ey >, 2
Epartree = B (V¥0) 8nf(dr Y v (vi(z") Vgt (1)) 15— TN,

(2-519)

It becomes clear now what the fundamental difference is bet-
ween the TF approach and Hartree's method. The latter asks: what are

the optimal single-particle wave functions to. be used in (494)°?
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The answer is given bv the Hartree equations (502.).26 But suppose we

do not care that much for the wj's. Then we can equally well put the
question: what is the best effective potential in (519)? We reply imme-
diately: the TF potential, if E1(V+g) is evaluated in the semiclassi-
cal limit. Does this mean that the TF model is an approximation to
Hartree's description? No, it is rather the other way round: the Har-
tree picture contains more detail than it should. In view of all the
approximations made before arriving at (519), there is absolutely no
point in being extremely precise when evaluating E1(V+g).

Summing up: the TF model and Hartree's method are really
two independent, though related, approaches. None is a priori the bet-
ter or worse one. Whereas I do not want to go as far as Lieb does ["...
TF theory is well defined.(...) - a state of affairs in marked con-
trast to that of HF theory."27

ing TF methods one is more conscious about the physical approximations

1, I do have the impression that in apply-

that enter the development.

In one respect the Hartree detour over the single-particle
wave functions is superior to the TF phase-space integral: the Schr&din-
ger equation (509) treats the strongly bound electrons correctly with-
out any further ado. We shall see in the next Chapter how the TF model
can be modified, in a simple way, in order to handle these innermost
electrons properly. With this improvement the TF description is in no
way inferior to Hartree's.

Please do not miss how naturally we have been led to a poten-
tial functional, Eg.(519), not to a density functional. Here is, once
more, support for our view that TF theory is best thought of as formu-
lated in terms of the effective potential. Then the density is not a
fundamental but a derived quantity.

Problems

2-1. For the generalization of the independent-particle Hamilton ope-
rator of Eq.(3) to

H=+(p-ak(®)P + v ,

N =

2

where a = %E 1/137.036... is Sommerfeld's fine structure constant

fl

and K is an effective vector potential (in atomic units), show that the
analogs of (14) and (20) are



125

_ =; > Xz ST
8% Erp = 83 E, af (@r*)8A(x") (") ,

and
J @ =2<E" |21 B-ak) n(-H-0) +n (-H-0) (B-ok) 1 |Z'>

Then generalize Eq. (25) to read

JA 1 .

BE,, = [(@F')[6n(F )V (F') - a8F-E

Next conclude that, instead of (30), the stationary energy expression

is now
- _ —)-' —)l —>' —>' > —>' .—g- ->|
E = Epp [(ar Voo (r')n(r )+af (dr VA (X')+3(xr') + E
since
> > >
A=A +

ext Aee !

with a given external vector potential Kex How does the TF version

of E1 depend on A?

e

2-2. Another application of the stationary property of the electrosta-
tic potential functional of Egq. (78). Instead of @(;), insert @(;'),
where r' is related to r through an infinitesimal translation by &%

3 . » . . >
and an infinitesimal rotation around Sw,
> > > > >
r =r' + &g + Spxr'

Use (dF) = (d7') and (Vo(r'))? = (V'6(¥'))? to write the primed
energy as

El

[(&2") [p (' +62+60xE") 0 (1) - g=(V'a (£1)) 2]

A

E= [@)p@ed) -g=To@n

where the equal sign holds to first order in &¢ and 6. Conclude, that
the self force vanishes [Eq.(86)], and also the self torque,

[(@D)p(B) Tx(-Vo (X)) = o .

2-3., Write a computer program for the TF function F(X) as outlined
around Eq. (200). Use it to confirm
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fdx F(x) = 1.80006394 ,
o]

Jax[F(x)1% = 0.61543464 ,
(o]

Jax[-F' (x)]°
o]

0.35333456

Tax/FTR7E = 3.915933
o
2-4. With the computer program of Problem 3 check that the maximum of
xF(x) occurs at x=2.104025280, where F(x)=0.2311514708.
2-5. This maximum of xF(x) is relatively broad, so that
B () /[F(x)1% = [xFx)]17 /% = constant
An approkimation to F(x) is therefore represented by the solution of
Brio = Z¥x012 , X = const. ,
X

subject to %(o)=1 . %(w)=o , and (to fix the value of %)

fax ="/ 2% 01372 = 1
o

Find this %(x).28 How good is this approximation when it is employed

in calculating the numbers of Problems 3 and 4?

2-6. Insert ¢A(°) of Eq.(283) into Eg.(274) to find ¢1'(o) and ¢2'(o)

as the coefficients in
L - - ' 2
$,'(0) 1+ ¢1'(o) Ao, (0) AT+ L
Compare with Egs. (280) and (281).

2-7. Find ¢2(t) from Eqg.(278); then evaluate ¢3(o). Use it to show that
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(i) in Eg. (285):

21067 524288

N
W+_2_5__5F¢) (E)z"' 0((M/2)3) H

0(IN/2Z)2) = (12 -

(ii) in Eqgs. (286) and (289):

223 262144
30m2 2025wk

otm/z)?) = G+ Y2+ 0(m/D) )

(iii) in Eq. (287):

0((N/2)%) = (ZE__19019_¥2883584

T - T5ons * TsozeRy ()7 O(0V/2)?)

2-8. Use the recurrence relation (278) to show that

) (5£+2) /2

¢£(t) vo(1-t for tg1 .

Look back at Eg. (311) and notice that, indeed, the first occurence of
A is in the (1-t)7/2—term, and of A% in the (1-t)°®-term.

2-9. Show that, for A>A , cb)\(t) has a pole, at t=t. >0, of the form

A

t
¢ (t) = 200 A for t=t

2 _ 2
(t t}\)

/2 for t.<t <1. Use this to de-

As Ao, t 3

1, so that o7 (£)=Ale(0)]>
monstrate that

d¢

- (81.9)2/5
/1 + ék¢5/2

Tt = =

14
0O~ 8

for A>>A .,

2/3

2-10. Upper and lower bounds to 4 can be obtained from Eq.(301) when

it is combined with the inequalities of (242). A suitable trial function
f(x) is given by
F (%) for ogxs<x
filx) =
9 (x. -
X5 (x2 x) for x

where g is fixed, X, is arbitrary, and Xy and X, are such that f(x) and
its derivative are continuous. For g>o, xq1 is sufficiently large to jus-
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tify the use of the asymptotic form (179) for F(x;x1). Show that this
implies

- 432

Then derive

s 5/2 5
2 [£(x)] _ 2. 2 (12)5 . 2,q.,5/2,4 5-9/3
5 édx /7 T 7B 3 w7 + 26D xS
and
1 Tanre Qq2_1z_ 3 U2)° g ,5.9,
3 édX[f (x) +317 =78~ 55 TR A T

1

Putting everything together you should have

5 b4
%B_ (12) [¥_ 8n+%xo]
x( 3/3 1
> %JB— % A—2/3 017/3 ’ for gro .

It is then useful to switch from X, to a new independent parameter, A,

. -4 2/3 -1/3 ' _ /4 ,1/6 ~1/3
by setting xo_l q . Check that then x1—(432) A a ’
that, for all x>0,

SO

A—2/3 N %-f2/3 8 /56m

-7/6
———7—(———-30)A
3774 33

-2/3 ¢ (303). Show that, for

this optimal A, the ratio x2/xo does not equal unity. Consequently, the

Optimize X and find the lower bound on A

trial £(x) does not change its sign at X=Xo’ as the actual f(x) does.
Impose Xy=X and demonstrate that a lower bound on A_Z/3 emerges, which
is worse than the previous one.

For an upper bound on A_z/3 use the trial function

F'(x) + g/%g for osxsx,
gi(x) =4 -a/x5(1-x/%,) for xqsxsx, .
o for xpsx

Make sure that g is continuous and obeys Eqg. (243). Then evaluate the g-
functional of (242). You should get
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6t

o 1/3.1,35
%0 L e -5y

-2/3
A [§(7?

f/3(1—%t) - 16 + 191t - 74t?2)

AT TR UANCRE AR

where the range of t=x1/x2 is %-<t £1. Find (numerically) the optimal
value for t and thus the upper bound on A_z/3 of (303).
2-11. Insert Eg. (316) into

2(t) = g £.(t x,(q))

1
q o

and derive (352).

2-12. Derive Eq. (462) directly from Eqgs. (433),(432), and (428).

2-13. Because of the homogeneity and isotropy of the physical three-
dimensional space, the density functionals Ekin(n) and Eee(n), which
appear in Eq. (417), have the same numerical value for n(*') and the in-
finitesimally translated and rotated ﬁ(;') =n(?'-+aZ-+55x§'). Combine
this with the stationary property of (417) to show that there is no net
force,

faEnnE) v ) =0
and no net torque,
> > > ->
flar @) x (-V'v_ , (x')) =0

exerted on the system by the external potential. Are you reminded of
Problem 2?

2-14. Show that the density functional of the kinetic energy is given
by
1

i, () = [(dT) g (n)2/n

if there is only one_electron. This does scale like (443). Why is there

no contradiction to the general statement that Ein does not obey (443)?



Chapter Three

STROMGLY BOUND ELECTRONS

In the preceding Chapter there was a section entitled “"validi-
ty of the TF model,” in which we found two regions of failure of the
TF model: (i) the inner region of strong binding, where r does not ex-
ceed V1/%Z; and (ii) the outer region of weak binding around the edge
of the atom (r larger than ~1, for a neutral atom). COf these the first
one is more important because of the enormous binding energies of elec-
trons that are close to the nucleus. Consequently, the leading correc-
tion to the TF model consists of an improved handling of the strongly
bound electrons. This is the topic of the present Chapter.

Qualitative argument. If we simply exclude the critical vicinity of

the nucleus when evaluating the r~integral of Eg. (2-44), then the TF
version of E, is replaced by

(B ) pps = [ (@) (= 1op) -2 (v42) 12

rx1/2

r ! Z,5
4"

/2

[I}4

(3-1)

= (By)qp €27

with C a constant of order unitv. Fere we have made use of V=-%/r for
small r, which states, once more, that the dynamics are dominated by
the nucleus-electron interaction if r is sufficiently small. The third
initial of the subscript TFS stands for Scott, who (in 1952) was the
first to present a discussion of this leading correction to the TF
energy.1

Cur simple qualitative argument (which is a variant of the one
given by Schwingerz) says that the TF energy is supplemented by an ad-
ditive term proportional to Zz, i.e., of relative oxder Z2/Z7/3 =Z"1/3
as compared to the TF contribution. This is consistent with the obser-
vations of the Introduction, where we have seen such terms in Egs. (1-
22) and (1-84), the numerical value of C being 1/2 in both equations.
More evidence in favor of a 22 term is supplied by Fig.2-2, where the
smooth TF curve would be shifted down by the amount of 2C, in which
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event the agreement with the HF crosses would be significantly impro-
ved.

Scott's result,
1,2

(z,N) = ETF(Z,N) + 5 2 , (3-2)

Eppg 2

is identical with the one of the Introduction. In view of the primitive
models of Bohr atoms, with or without shielding, that are used there,
it may be puzzling that the numerical values of the coefficients agree.
This mystery is easily resolved: all that matters is the Coulombic
shape of the effective potential for r»o. The models of the Introduc-
tion are, certainly, realistic at these small distances. But there is
even more to it: since one can easily imagine that the slight deviation
of the effective potential from its limiting form -Z/r + constant is
irrelevant, Scott's result is anticipated to remain valid, when his
reasoning is abandoned in favor of a more convincing one. We postpone
the presentation of Scott's original argument until later.

One remarkable feature of Scott's correction is its independence
of the number of electrons, N. This is, of course, a consequence of the
circumstance that the small-r shape of the effective potential does
not depend on N, or, again, the most strongly bound electrons are hard-
ly aware of the more weakly bound ones because the Coulomb forces of
the nucleus are so strong.

First quantitative derivation of Scott’s correction. For a guantitative

treatment of the strongly bound electrons we split E1(c) [cf. Eq.(2-7)]
into two parts,

E,(g) = tr(A+g)n(-H-¢)

(3-3)

[H]

tr(H+;)n(—H-cs)

+tr(H+c)[n(—H-c)~n(—H-cs)T

TH
(]
+

E

The separating binding-enercy Cs distinguishes the strongly bound elec-
trons from the rest of the atom, the respective contributions to E1 be-
ing ES and ECCS' This CS is not a uniquely defined quantity, but it is
not arbitrary either. It has to be small compared to the tvpical single-
electron Coulomb energy (%Zz) but large on the TF scale:
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4/3 . Ly << 2% . (3-4)

Z

In this first quantitative discussion we simplifv matters by
assuming that for the evaluation of Es the Coulombic approximation V(r)
#-2/r suffices. The effects of the deviation of V(r) from this limiting
form will be dealt with later. At the present stage we are content with
the remark that said approximation can always be justified if Ly is
chosen large enough.

Thus we have3

« 1,2_2 - 12,2 -

Eg = trizp” -Z+oin(- 5p" +2-¢c) . (3-5)
The step function in Eqg. (5) selects the states with binding energy lar-
ger than cs. Since we are back to the Bohr atom (without shielding),
this means that a certain number of Bohr shells is summed over. If the
last one included in the sum has principal quantum number n, then its
single-electron binding-energy %Zz/ni exceeds Cs whereas that of the
next shell does not:

1,2, 2 1,2 2

52 /nS >ty 7 5P /(ns+1) . (3-86)
This situation is illustrated by the sketch presented as Fig.1. Another
way of writing (6) is

Zn+)? ]
- ;s 3
%7%n? |

ngth shell

Fig.3-1. Conceaning cornhections for strongly bound electrons; see text.
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2
Z°.1/2 -7
n, < (-——ZQS) <ng + 1 (3 .)

or, when we introduce a kind of continuous version of ns,

v_ = Z//?cs , (3-8)

then

B
1}

vl = [2/V2T (3-9)

which uses the Gaussian notation for the largest integer contained in
Vge Now we look back at Egs. (1-9) and (1-10) to find the contribution
to E, from the stronglv bound electrons. It is [with m=n and p=o in

1
Egs. (1-9) and (1-10)]

=
1]

2
- Z [vs] + ZNS ’ (3-10)

where

=4
n

2ty 1+ h 3 - 1+ (3-11)

is the total number of specially treated strongly bound electrons. Its
approximate connection with Cs’

.2 .3 _2,2%3/2 _
Ng #3 Vg7 3(—“2;5) ' (3-12)
or
_1 .23,y -2/3 _
Ly =3 203N . (3-13)

inserted into the relations (4), says
1T <<Ng << 2 (3-14)

NS is a small fraction of Z. In particular, if N<<Z, then all electrons
should be regarded as strongly bound, and the interelectronic interac-
tions should be treated as a small perturbation.

Now we turn to ECCS of Eqg.(3), the contribution to E1 from the
more weakly bound electrons. For these we expect the TF evaluation of
the trace by means of the highly semiclassical phase-space integral to
be justified. Let us therefore check in detail that there is no signi-
ficant contribution to E from the vicinity of the nucleus. First ob-

CCs

serve that ECC can be written as
s
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ECCS = tr(H+g)n(-H-g) - tr(H+cS)n(—H-<;s)
(3-15)
+ lggmoltr(-E-c )
or with Egs. (2-7) and (2-9),
ECCs = E,(r) - BEilr,) + (g -TIN(zy)
ts. , (3-16)
= - é dz' N(z') + (~DIN(Z) .
Then employ the identity
Cs d
(t—oIN(z,) = [Tac! agT{(E"c)N(c')} (3-17)
4
to arrive at
E,_ = ?Sdc'(c’—c) 2w (3-18)
S dz’ )

The TF version of N(z'), given in Eq. (2-50), is easily differentiated,
producing

c
B, = - J@h [Parr@r-n r-zween1? (3-19)
s 4

~-1/2

For small r, where V=-Z/r, the integrand in (19) is ~r , whereas it

-5/2

is nr in Eg.(1). It has been reduced by two orders of r. This is

the first manifestation of the strong cancellations for r>o that are

inherent in the structure of ECC in Eg.(16). As an immediate conse-

s
quence, the contribution to EEC from r§1/Z is about (CS—(;)Z/Z2 - with
S

a numerical factor of order unity - which amount is small compared to
Z2 because of the relations (4). Indeed, the vicinity of the nucleus

does not contribute significantly to E In other words: the split-

CCly"

ting of E1 into ES and E successfully separates the stronoly bound

Lls
electrons from the rest of the atom.

We are now justified in evaluating ECCS TF wise, i.e., by means
of the semiclassical phase-space integral. In Egs.(1-35) and (1-36) we

find the relevant results,

3 (3-20)

wito
<

N~(cs) =
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and

2
E (o) + o  N(g) =27 v, . (3-21)

In combination with (10) the change in energy caused by our improved
treatment of the strongly bound electrons is

AE = B, -~ E (g) + (£ ~0)N(.)

(3-22)

22w -t ) = o v - m)

The continuous terms szs— c%vi come from the removal of the incorrect
TF treatment of these innermost electrons, whereas the discontinuous
terms —Zz[vs]+§Ns(=Es) originate in the correct guantum mechanical des-
cription of these electrons which has been used to evaluate ES.

The ASE in (22) obviously depends on the particular value of
Vgr that is on the particular choice made for Cs' On the other hand,
E1(c) in (3) is clearly independent of - What happened ? The result
for Es in (10) contains contributions from the shell structure of the
corresponding Bohr atoms. But no shell effects are taken into account
in computing ECCS' Consequently, in order to be consistent we must dis-
card the shell structure in Es’ but retain all smooth (as a function of
vs) parts.

Let us first look at the difference vs—[vs], which supplies the
neutral-atom value of ASE, when g=o. A plot of this indented function

of Vg is shown in Fig.2. It is visibly of the form

+ oscillation . (3-23)

| —

Vg T [vS] =

0

b e m—. e e —
W — — — — —
y
<
wn

f
2
Fig.3-2. The difference v vyl as a function of Vg

As a matter of fact we know this "oscillation." It appeared early in
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the Introduction. According to Eg. (1-14) we have

1 1 1,, 1
5 * (\)-'2-) - [(VS’E)"‘?]

Vg T [vs] = s
{(3—-24)
1 _ 1
_7+<\)S '-2—> ’
or with Problem 1-2,
1 =— 1
Vg [vs] =5 - E T SLn(annvS) . (3-25)
m=1

Consequently, removing the Bohr-shell artifacts is done by the replace-
ment
1

ve = vl > 5 . (3-26)
In Eg.(22) this reproduces Scott's correction, which is the anticipated
result. What remains to be shown is that the term proportional to ¢ in
(22) does not contribute, which means that it is entirely made of oscil-
lations due to the Bohr shells and does not contain a smooth part.

Upon making use of (24), the cubic difference

2.3 _ 2.3 _2 1,3 1 1 _
Vs ~ Ny = 3vg 3([vs]+ 57+ 6([vs]+ ) (3-27)
appears as
2.3 _ 2 1 _12_ 1
Vg T Ng = 2V vm 3> - v (v s 5 72)
(3-28)
2 1 1.2 1
t 3 <vs 7>(<vs §> - E)
These results of Problem 1—2:4
oo m
-1 2 1
%ﬁﬁ%f cos(2nmy) = <y>" - 1
m=1 (3-29)
== (" 1
W sin(ZTnmy) = '3‘ <y> (<'y> - —4‘) ’
m=1

are then used in arriving at
e

2 .3 o 2 1
K vs - NS = 2vS E pee 51n(2n1nvs) -

m=1
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- 2vs g (Eﬁ) cos(2n1nvs)

< (3-30)

+ E (é%)3sin(2n1nvs)

m=1

1.2
>Z

-E/

0 —1 1. 1 1

0 25 50 75 100 125
Z

Fig.3-3. Companison of the TFS prediction (34) with the corresponding

TF one, Eq.(2-160), and with HF binding enengies [(cnosses); see also
Fig.?2-1.
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It is now obvious, that %Vz_Ns is, indeed, entirely composed of oscil-

lations. Consequently, the analog of (26) is here the replacement
2 3
Vg ~ Ng 0. (3-31)
Both this and (26) then turn Eq. (22) into Scott's result
_ 1
AE = 5 2 . (3-32)

The TFS prediction for the neutral-atom binding energies is thus

_ o R e 7/3 _ 1,2 _
Enpg = Bpp — 3 27 = 0.768745 Z 5 2 . (3-33)
In Fig.3 the quantity
“Errs 1/3
T 5 = 1.537 Z -1 (3-34)
7Z

is plotted in addition to the corresponding TF curve and the HF crosses,
which we have seen earlier, in Fig.2-2. There is no doubt that Scott's

correction represents a significant improvement of the theory.

Scott's original argument. Scott1 regarded the correction for the strong-

ly bound electrons as as "boundary effect"” énalogous to the decrease in
particle density near the wall of a cavity. The "boundary" in Scott's
reasoning is at the location of the nucleus; in other words: it is due
to the singularity of the Coulomb potential. Consequently, he is con-
cerned with the density and the count of electrons. This leads him to
regard Ns as the number of specially ;rgated electrons (which is a cor-
rect interpretation) and to think of 3V as the number of electrons re-
moved from the incorrect TF density (which is a misconception since
there is more to the TFS density, as we shall see below - the count of
1 into E and ECZS)'
Scott then concludes that Vg must be chosen such that the difference
Ns—%vg vanishes. These vg are vg =31/3, 151/3, 421/3,... =1.442, 2.446,

3.476,... if one corrects for the first Bohr shell only, the first two

electrons is not affected by the splitting of E

ones, the first three ones, ..., respectively. The corresponding results
for the change in energy are ASE/%22=O.884, 0.932, 0.952, ... In gene-

ral: if there are ng Bohr shells in the atom, Ve equals
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_ 1,3 _ 1 1,,1/3
Ve T [ing+ 5 z(ng* 7)1
{3-35)
. 1, _ 1 1
E (ns+ 7) Ti/(ns+ 2) '
and ASE is given by
- w2y = 7220y -
ASE = Z (vs [vs]) = 7 (vs ns)
(3-36)

1,2 1 1
7 (1 -g/tng+5))

which approaches-%z2 in the limit n>ee. Now, in the real atoms of the
Periodic Table there are only very few Bohr shells (at most two), so

that this limit is problematic. Certainly, the reliability of the nume-
rical value of the factor %,
typical reaction is that of March in his 1957 review article:s“it seems

as derived by Scott, is qguestionable. A

difficult to give a completely clearcut demonstration of the case." Just
this was delivered - in the spirit of the treatment reported above - by
Schwinger in 1980 (Ref.2).°

One reads occasionally that the first Bohr shell contributes
88%, the second another 5%, etc., to the Scott correction. Both this
and the related remark, that there is a residual energy change of order
ZS/3 due to the strongly bound electrons, originate in Scott's reason-
ing which leads to Eg. (36). Now that it has been understood that Scott
was simply paying too much attention to the oscillatory contributions
from the Bohr shells, it is clear that these statements are wrong. The
detailed shell effects in Eq. (22) have no physical significance. They
are nothing more than a nuisance, inasmuch as we have to be particular-

ly careful when extracting the smooth, non-oscillatory contribution.

TFS energy functional. So far we have been merely concerned with the

change in energy resulting from the improved treatment of the strongly
bound electrons. It is now time to study the correspondincg changes in
the effective potential and the density. The starting point is, as al-
ways, the stationary energy functional, which now will incorporate the
Scott correction. For this purpose it is necessary to go beyond what
we have done above because we must take into account the slight devi-
ation of the effective potential from its limiting Coulomb shape. Tt
will then be possible to demonstate that Scott's enerogy term % Z2 is
not affected by this deviation.

In evaluating the contribution to ES from one of the strongly



140

bound electrons, characterzied by its principal, its angular, and its
magnetic guantum number (n, £, and m, respectively), we can treat the
difference between V(r) and -Z/r as small, so that the energy of said
electron is given by

2

Z > Z : > 1 2 _
", RGNV RIN C) R (3-37)

BE = -
n,Z,m

where wnﬂm ig the corresponding wave function of the Bohr atom. Then,
if Cs is such that there are n_ filled Bohr shells, we obtain for Es
{the factor of two is the spin multiplicity)

ZZE(EII o . (3-38)

1 £=0 m=-

When Eq. (37) is inserted, we meet the sum

n
5 >
ogm) =y alv I, (3-39)

n=1 £,m

which is, of course, the density of the specially treated strongly
bound electrons. Because each closed f-subshell is spherically symme-—
tric, Py depends only on r, the magnitude of the distance vector T. The
integral of ps(r) is equal to the total number N, of Eg. (11),

nS' nS'
[@fp, () = ZZZ - E 2n2
n=1 £,m

n=1 (3-40)

]
=4
1]
wino
B

4]
+
[T
\
ol
—_
o]
+
]
-

Also we know the integral of ps(r) times Z/r, since this is the negative
of the potential energy of a Bohr atom with ng filled shells. The virial
theorem equates it to twice the binding energy, thus

n
N S 2
f@h) Lo () = -2 E am?(- L) < 22%n_ . (3-41)

n=1

Putting all these bits of information together, we arrive at

= - 72 P Z - -
E = = Z ns+j(dr)(v+r)ps+;Ns = (3-42)
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+ N . (3-43)

> 2
= j(dr)vpS + Z°n s

]

This has to be supplemented by the TF evaluation of EZC , obtained from
Eg. (16) by inserting the TF expressions for E1(§) and N?g), Egs. (2-44)
and (2-50), or equivalently by performing the ' integration in Eq. (19).
Either way the result is

B, =@ - 2w s e e )13/
s 15m 15m (3-44)
Hr 0 —Lt-2 (vaz_)13/2)
L mt)—> Zg
3n
Consequently, at this stage the new expression for E1 is
E, = [(@) (- —p) (-2 (vs+2)1%/2
151
s @ g2 w0172 s @ o -2 v )13/
15m 3n (3-45)

+ f(d;)VpS + Zzns * TN,

of which the first term is the oprevious TF result, the remaining ones
its modification.

Since we are now taking into account that V(r) deviates (slight-
ly) from -Z/r, the relation (6) between Cs and ng has to be reformulated
appropriately. All electrons in the ns-th shell have a binding energy

larger than Cs’ whereas those in the (ns+1)-th shell have a smaller one:

Min(-E } > ¢ > Max (-E

£.m nsl'ﬂlm : s Z.m ns+1,£,m) (3-46)
’ I

These energies refer to strongly bound electrons, so that there is no

m dependence [because V(?) is spherically symmetric in the vicinity of
each nucleus of a molecule, the more so in our discussion concerning a
single isolated atom], and little £ dependence is expected [otherwise

it wouldn’'t be stronlgy bound electrons that we are talking aboutl. We
shall therefore simplify matters by using averages over the shells in-
stead of the maximum and minimum in (46). Thus
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C1 > Cs > sy r (3~47)

with
-] _ _
Cj = ;—f E (-2 En',ﬂ,m) ' (3-48)
n. J
j m

where

n, =ng ’ n, = ng +1 . (3-49)

Upon utilizing the definition of E Z.m in Eqg. (37), the cj's appear as
I ’

2
_ Z > Z 2

Ly = P fan v+ Iwnj[av(r) (3-50)

J
where
2 -1 > 2 .
gy lay ) = = g 2| “’nj,fa,m‘r” (3-51)
j £,m :

is the average single-electron density in the nj-th shell. It is sphe-
rically symmetric for the same reason for which ps(r) of Eqg. (39) has
this property. So we can interpret (51} as taking the average over the

angular dependences. Obviously, there is the connection

nS
p () = E 2an® [y |2 (0, (3-52)
n=1

which emerges immediately when Eqgs. (39) and (51) are combined. The well

known Coulomb wave-functions are used in finding

-
4e_2Zr , for ny = 1,
3 (3-53)
; 2 _Z 4 _ 1 2, ~Zr =
[wnj[av(r) —ZE>V$§7[1 Zr-+2(Zr) le , for n]-2 R
4 .. _4 8 2_ 16 3, 4 4, -22r/3
@4—3[1 §Zr +§(Zr) g—T(Zr) +243(Zr) ]e ’

for nj=3 ’

which illustrate the general structure of these averaged densities. As

a consequence of their definition, they are normalized to unity
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[ (%) Wn_[iv(r) =1, (3-54)
j

which can easily be checked explicitly for the examples given above.
Clearly, the E1
Bohr-shell effects that have to be removed in order to obtain correct-

of Eq. (45) still contains all those spurious

ly the Scott correction. For instance, if V(r)=z-Z/r is used to calculate

the contribution to E, from the terms referring to the strongly bound

1
electrons, the result (22) emerges without the replacements (26) and
(31). It would be desirable to perform such an explicit deletion of

1 in (45)

itself, so that all derived quantities would automatically be free of

the unphysical Bohr-shell artifacts in the expression for E

the spurious Bohr-shell oscillations. Unfortunately, it seems to be
impossible to extract the smooth part out of E1 of (45) without destroy-
ing the functional dependence on the effective potential V(r). Never-
theless, one can remove most of the unwanted Bochr-shell structure by
performing a suitable average over [ Indeed, one easily imagines

that the replacements (26) and (31) are the results of averaging over

Vg with an appropriately chosen weight function. To avoid a possible
misunderstanding, let me emphasize that this averaging over Cs is not
the essence of the TFS model; it is merely a technical procedure for
eliminating the unphysical Bohr-shell effects. In doing so, however,

use is made of the fact that CS is not a physically uniquely defined
quantity, but is [within the limits of Eqg. (4)] quite arbitrary. Of
course, one is free to employ any (reasonable) prescription for the
averaging; depending on the particular application there may be one that
is especially expedient. [Later in the development (Chapter Five)

we shall arrive at a formulation which correctly incorporates the Scott
correction without any reference to a separating binding energv like
CS.]

In Ref.7, the average over g is performed with uniform weicht
on the energy scale. This is natural since the energy is the fundamen-
tal guantity. Then, for a given number of specially treated Bohr shells
ng, the mean E1 is just half the sum of its extreme values,

E, =58, +E_)+E , ' (3-55)

where T4 and %y are the limiting values for Tar Eqg. (47). Applied to the

structures appearing in Eg. (22) this averaging procedure produces

ve - v ]+ 3ny-ng) +4(ny-n) = 5 (3-56)
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and

(3-57)

with n, and n, from (49), and Ns from (40). Obviously, the average (55)
is good enough to simulate the replacement (22}, but too simple to also
reproduce (31), instead of which we now have (57). Some of the Bohr-
shell effects are left. Nevertheless, the procedure (55) suffices for
many applications of the TFS model.

It is advantageous to generalize Eq. (55) to

J
E1 = § wj Eg;_ + ES (3-58)
yoe 3j
J
where C1 and s signify what they did before [Egs. (47), (48), and (50)1,

whereas g3, c4, <v+; [. are intermediate values of Cs' for which nj is

J

a (non-integer) number between n,=n_ and n2=ns+1. The corresponding

iwn-lav that appear in the generalization of Eq.(50) are appropriate

(linear) averages of |y |2 and |y {2 . The values of the . and

nq'av n,'av ]

their weights wj are chosen such that in the application of interest

all Bohr-shell oscillations are removed completely. Obviously, (58) re-

duces to (55) when J=2 and w1=w2=%. Another example is J=3 with

n, =n_ + 1 (3-59)
2

and
W =% , (3-60)

which is the simplest average capable of simulating the replacements
(26) and (31), see:

Vg - [vs] ,?(n1 ns) g (n, ns) +3(n3 n.)
(3-61)

and
4.2 1,3
s §(§(ns+7) -Ns) =
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—

1y - -
7 (n+3) =0 , (3-62)

indeed. Please note that the weights W, and Wy

disturbing but, unfortunately, unavoidable. Some additional discussion

are negative. This is

is contained in Problem 3. The occurence of negative weights requires
particular caution to make sure that, for instance, the resulting den-
sity is positive.

Let us now imagine that we accept Eq. (58) and, without knowing
of Eg.(22), use it to find the change in energy produced by the correc-
tions for the strongly bound electrons. We insert Vz-Z/r into the terms

referring to these innermost electrons and £ind

sE = 2%

e
ur\qq
—

J
2.3
wjnj-ns) - g(.21wj§nj-Ns] . (3-63)
J:

Can we give sense to this expression despite of the apparent ambiguities
in choosing the values of n, and wj? Yes, of course, since (63) is clear-
ly to be interpreted as the injunction to remove the Bohr-shell oscil-
lations from the corresponding expression

3 [vs]

8 E =22 (v - v 1) -3 S 2n?) . (3-64)

s

We are thus led back to Eg. (22), and identifying the smooth content
gives Scott's correction (32), as we have seen above. In ceneral terms:
in an algebraic. result, such as (63), the averaging over ES is to bhe
unterstood as the demand to construct the respective unaveraged expres-
sion in terms of Vg and [vs], here: Eq. (64), and to remove the spuri-
ous Bohr-shell oscillations from it. We shall meet examples for this
procedure as we proceed.

We are now set to finally write down the TFS energy functional.
It is obtained from the TF functional (2-45) by replacing the TF version
of‘E1 by the TFS expression (58). So we have

J
Erps = vy Eccj By v By - N, (3-65)
3=

which can be split into the TF energy functional plus its modification,

Epps = Epp + 06 E (3-66)
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with [this is Eq. (2-45)]

IME(—Tﬁi)F2W4w]w2-%#hﬁ)ﬁﬁH%HZ—QN (3-67)
s

Epp =
and J
_ _— 5/2 1 3/2
= § . -2 . 0 ) [ - .
AE > wjf(dr){15n2[ (v+cj)3 + (g c)3n2[ 2(v+;j)] }
=1 (3-68)

+ [N

S

+ j(d?)VpS + z%n s

TFS density. As before we find the density by considering the response
of E1 to infinitesimal variations of the effective potential,

P > >
5VE1 = j(dr)&v(r)n(xr) , (3-69)
which is Eq. (2-14). The situation is different from the TF one, now,
because in addition to the exvlicit dependence on V there is an impli-

cit one, hidden in the 5y

2 (3-70)

6y 05 = = [@BISV [y (S,
J

vV 73

which is a consequence of Eq. (50). This V dependence of the Cj gives

rise to a contribution to the density

J 3B
E W, —2ed (-|v [2 (r))
3 9z, nj av
3=1 ]
(3-71)
J 2
DICETRDNENU R
3=1
where we have introduced [see Eq. (44)]
= -9 = - EA L 1/2 -
Qj = Bcj ECCj (cj z)  (ar) n2 { 2(V+cj)] . (3-72)

Equation (71) has to be supplemented by the part of the density that
is obtained from the explicit dependence of Eq on V,
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3/2 1/2}

2w 132 - Z“’ Ly-2(very)]
3n
j=1

+ p (3-73)

1
+ (Ej-c);—z—[—Z (V+Cj)]

zz:ﬁ j dr' (¢’ —;) [-2(V+z?)] -z, Py

The second version makes use of ECC' as oiven in Eq. (19) and emphasizes
the strong cancellations that occurjfor r+0. The total electron density
is the sum of (71) and (73). It is conveniently split into a density of

the innermost electrons, n B’ and the rest of the atom, n

M
- ’\J -
n o= oy +n , (3-74)
where
J 2
"M T P T E Wi 0y IL”nj[av (3-75)
3=1
and
g5 -1/2
AT, - .
n—§w3£dc(g r,) =5[-2(v+z")]
(3-76)

3/2 3/2
= [ 2(V+z)] w %——{ 2(V+C)]
3n 25; 3n

+ (E—C) 52 (Ve Ly 31172}

1/2

Because of said cancellations n is proportional to r for r-»o, so that

the density in the close proximity of the nucleus is entirely given by

n . In particular,

IME

n(r=o) = nIME(r=o)

(3~77)
(2Z)

L22)7 [Z—+T_"w 0, 1,
n'=1 3= 1 2nj
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which uses

(%)

iwn.l§v<r=°> = %ﬁf “4—5 ’ (3-78)
n.

J

as illustrated for nj=1,2, and 3 in Eq. (53). We shall have to say more
about n{r=o0), but a few checks of consistency are in order, first.

Consistency. The integrated density must equal the number of electrons.
Is this so? The integrals over (dT) of (75) and (76) are

J ’ )
[t@)np, = N +ij o, (3-79)
3=1
and
J
(@) & = (@5 { 52w 13225 v, -2 w1372
J J 3n° ; 3 3n? J }
(3-80)
J
—ZE::wj Q] '
3=1

respectively, where Egs. (40} and (50) as well as the definition of Qj
in (72) have been made use of. Consequently,

J
f(dd)n = [(@ar) {—17[—2 (vg)13/2 -ij —17[-2 (V+cj)]3/2} +N
3n

3n s

i=1
(3-81)

On the other hand, the count of electrons is, according to Eg. (2-12),

given by
_ 0
L (3-82)

which for the TFS modei reads

2n, .

5
_ 1. 3/2
N = [(dr) 3?-[—2(v+c)] -N w <

@D Lsi-2v+213
v 3n J
j:

J

(3~83)
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It is, indeed, equal to the integrated density. Note, in particular,
that this is true for any choice of values for the gj and wj. Neither
does Ny, the number of shells of specially treated strongly bound elec-

trons, matter. In other words: the statement
fidfyn =N (3-84)

holds independent of the averaging procedure selected for the removal
of the spurious Bohr-shell oscillations.

In Chapter Two, it was argued that Eq. (84) is equivaient to
stating that E1 does not depend on V and ¢ individually, but only on
their sum V+{ [see after Eq. (2-23)]. Here, E1 is the sum of its TF ver-
sion and ASE of Eq. (68),

B, = [@D) - 22w s s E (3-85)
15m s

so that the question is whether ASE is a function(al) of V+z. Since

far) vo_ + N, = [(dT) (V+g) o, (3-86)
and
vigy = (V+g) + (cj-z)
(3-87)
Z2 > 2
= (V+g) + o2 {(ar) Vo) v, 1oy
nj 3

the answer is affirmative.
Then there is the explicit dependence of ASE, and therefore

of E1, on Z, the nuclear charge. But E, must not make anv reference to

1
the external potential (here: -Z/r), it is solely determined by the ef-
fective potential (plus z, as we have just recalled). This is essential
in relating the Z derivative of the energv to the electrostatic inter-

action energy of the nuclear charge and the electrons
3 _ >y 4 =
Z 53 E = [(ar)( Zin(@ . (3-88)

This is Eq. (1-96). We have already made use of it, repeatedly, not in
the form of Eq. (88), but in one where the right-hand side is expressed
in terms of the potential. It emerges from (88) when Poisson’s equation

is used and two partial integrations are performed:
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=]
n

fad (-4-Lvf v+

n

[(az) [~ (v+—)](— V)(-—) {3-89)

H

Z
EEAAS PN

the last step recognizes 76 (¥) as the source of the Coulomb potential
-Z/r. If we, however, stop after the first partial integration, the re-

sult is
3 S )Y Zy,% 2
Zoz E=- g [@vv+p vz
(3-90)
- 3 _ 1 W1 2.2
=% w5 {- g [AD)VIV+2)I7}
or, in view of Egs.(66),(67), and (68), for the TFS energy,
2 2 B . =% -2 (B _~A_ E) (3-91)
32 TTFS 9z ""TFS “s !
which requires
Z—B-A E=o0 (3-92)
3Z s :

[Please do not miss that we have done nothing more than reverse the
steps of Eq.(2-229).]

There are various Z dependences in AES, Eg. {68). Besides the
explicit Z2 terms in (68) and in (50), there is also the Z dependence

of the Coulomb densities [w | av and Pg- They are of the structure z3
times a function of Zr, so that

2 2

5 H)nj Iav(r) > > Iwnj | av (r)

Z S-Z- = (3+1reV) . (3"93)
ps(r) ps(r)

This has the consequence

—52—)— {J'(dr)Vp + zzns} =
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3-94
= j(d?)v(3+?-$)ps + 222ns ( )

A partial integration turns the integrand into

(3V - Ve (F V)1p, = [-F:Wlp
s s (3-95)
= hbivm =[v—34ﬂnm
axr s 9r s !
which in comjunction with (41) produces
3 > 2
Z 5y {J'(dr)VpS + Z°n.}
(3-96)
- A z_ 3
= f@n (v += e A DT
The analog of Eg. (41) for a single Bohr shell,
2 2
> Z 2 z°, _ Z _
[ltary 2 v, 1oy = CD(-—5) ==~ , (3-97)
3 2n_ n.
J J
can be employed in writing cj as
o2 [ (@r 2 3 3-98
gyt @nviv, (3,1 - (3-98)
nj 3

after which the steps from (94) to (96) can be repeated with the neces-

sary changes. The outcome is

24y 0= - JE@nweE-2enily (3-99)

[2
J .av

J
This, Eq.(96), and the definition of Qj in (72) together produce

7 2 AE = |(aF z_ 2 EJ 2
B—Z' s = ( r) [V+-i_---a—-r(rV)][pS+ Wijllan[aV] ’ (3‘100)
J=1

or with (75),
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z 2 8 E = [(@)w+i-2(xv)In (3-101)

s IME

This has to be reconciled, in some sense, with Eq. (92), otherwise the
TFS model would be internally inconsistent.
Let us recall that, for a spherically symmetric density n(r),

as is the situation for an isolated atom, Poisson's equation

1 2 Zy _
7 V (V+2) = n(r) (3-102)
is solved by
Z ! !
v o+ Z = f(dfq _215_% = f(d}q Eié_L , (3-103)

(-2 >
where r  denotes the larger one of r and r'; the latter identity is
based upon the spherical symmetry of the density. The contents of the

square brackets of (101) can be written as

z - z -
V+E——(rv)- rar(v+r) , (3-104)

which, in connection with (103), draws our attention to

0, for r«<rx'
O =1 (z-rn) (3-105)
dr r, 1 r -
-, for r>r'
r
Therefore,
a - > ) 1 _1__ S | -
Z oz OGE = [(dr) (ar )npye ()0 () nix-r') . (3-106)

Since the range of integration over r' is limited by r and a further

integration over r weighted by n (r) is required, only those values

IME
of r' contribute for which nIME(r') is of significant size. Consequent-

ly, (106) is well approximated when n(r') = nIME(r‘)+g(r’) is replaced

by n (r'), because n is effectively zero where n is large. After

IME IME
this replacement, the integrand can be symmetrized between r and r',

so that

(r)nIME(r') 1 .

d o] > a2
Z 57 AE = 5 [(dr) (@F’)np,. T
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Dyyg (F) Dy (1)

- (3-107)
[t-x'|

JEEEIRCERD

[ TR

This 1s the electrostatic energy of the charge distribution due to the
innermost electrons. Since nIME(r) equals a factor Z3 times a function
of Zr (just as p_ and [y lgv do individually), we have

Z g% AE =32 x { a positive number } , (3-108)
this "number" being composed of the particular values of N, Wiy and ;j'
We have, thus, found that the implicit Z dependence of ASE is associated
with an energy of order Z -~ perfectly negligible on the scale set by
Z7/3 (TF) and Z2 (Scott). In other words: Eq. (92) is obeyed within the
accuracy of the TFS model; there is no internal inconsistency.

Fine, but didn’t we just blow it? Certainly, ASE is Scott's
correction, it equals %Zz; and, being independent of N, there is no dif-
ference between its partial and its total derivative with respect to Z.
Shouldn't we, consequently, obtain

P _ 2 _
7 SEAE = 20 2 (3-109)

Or is, after all, Eqg.{(92) the correct statement? The puzzling answer is:
all three equations - (92),(108), and (109) - are true.

This is so because the respective left-hand sides have diffe-
rent meanings. Equation (92) is derived in the framework of the general
formalism: we start with a functional of V and ¢, which is specified by
a given number of electrons, N, and a given external potential, here
-z/r; then we ask for the change in energy when this external potential
is varied infinitesimally, here done by varying Z to % + &8%Z; of course,
there are induced changes of V and ¢ [so that, e.g., the second inte-
gral in (67) still exists], but the stationary property of the energy
functional under variations of V and ¢ implies that these induced
changes do not contribute to the change in energy to first order; the
general answer

-
X E= [(dr)6v__,. n {3-110)
Vext ext

[see Eq. (2-434)] appears as Eqg. (88) in the present context; it leads to
Eg. (92), which we now read correctly as the change in ASE caused by var-
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ying nothing but the strength of the Coulomb potential of the nucleus.
In the TFS energy functional this external potential -Z/r occurs only
in the second term of Eg.(67). Therefore, the Z, which is contained in
(68) both explicitly and implicitly in the Cj and in the Bohr-atom den-
sity Pgr and with respect to which we differentiate in Eg. (108), must
posses a different significance. It makes reference not to the external
potential -Z/r, but to the effective potential V, in the sense of

Z = (-xv)| = -{(aD)r(V+)6(X) (3-111)
r=0

where we have added the (otherwise innocuous) constant 7z in order to
emphasize the dependence of ASE on the sum V+7. Consequently, the dif-
ferentiation in Egs. (108), or (101), really means a variation of the
(Coulomb part of the) effective potential, and not of the nuclear charge.
0f course, for the actual V, the Z of (111) must equal the Z of the
Coulomb potential of the nucleus, but not so for the trial potentials
that we are free to use in ASE of Eq. (68). Now that we have recognized
that the Z in (68) changes when the effective potential is varied, we
must also take into account the corresponding additional contribution

to the density, labelled n,. It emerges from Egs. (101) and (111), when

Z
combined into

9
YA ASE GV Z

f(afrsvn,

(3-112)

1t

> >0 9
[@r)8 v (-x8(x))gz OE

as

ny (x) = - r6(¥) 5 [@Inp ()W) + L - Loyl

(3-113)

IME

and has almost no significance, because the product ré(r) is effective-
1ly zero. Its only use consists in the possibility of evaluating the re-
sponse of E1 to an arbitrary variation of V in the standard way of Eq.

(69), where the inclusion of n, into the density enables one to consi-

Z
der variations of the kind 6V = - 8Z/r. We then obtain from (69) the in-

tegrated version (101) that we know already. Note, in particular, that
n,
is an additive constant for r=o [see Eq. (103)], where V is infinite,

integrateg to zero, and that its only contribution to the potential

anyhow. In short: as long as we remember that Eq. (101) must be taken in-
to account when variations of the limiting Coulomb part of the effective
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potential are considered, we can forget about n,.

As to Eg. (109), we need only remark that it does not refer to
the energy functional (68), but to its numerical value for v=-Z/r. In-
deed, we have calculated Scott's correction by simply inserting the Cou~-
lomb potential into ASE. This raises the question, whether we can do
better than that. How does one account for the deviation of V from its
limiting Coulomb shape when evaluating the Scott term? The clue is Eq.
(89) which relates the energy to the small-r form of the potential. In
the TF model we exploited this equation in connection with the scaling
properties of the TF energy functional. In the following section we
shall do the analogous thing for the TFS model.

Scaling properties of the TFS model. As in Chapter Two, we consider
A
scaling transformations that replace the actual V,r, and Z according to

vir) - v’ vipr) ,

T - kT (u>o0) (3-114)

which repeat Egs.(2-211), (2-213), and (2-214)., Again, the stationary
property of the energy functional, here: the TFS functional (66), im-
plies that all first order changes must originate in the scaling of %
[the Z of Egs. (88) and (89), to be precise]. Thus

3

m _ _ 3 : -
&5 E = 8u(v-1) 2 53 Eppe (3-115)

L T TFS
as in Eg. (2~220), or with (89),8

° Fres sty 2@l (3-116)

where pu=1+6p with an infinitesimal &p is understood. On the left-hand
side of (116},

[ = M S K -
5u ETFS su ETFS + ou ASE ’ (3-117)

we already know éu ETF from the earlier investigations,

8, Fpp = {(gv—fﬁ)f(ﬂ)(-?ﬁ?) [-2(v+2)1°/2 -
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~@v-1)g=f (@) (T + 212 - venen (3-118)

which is the left-hand side of Eq.(2-222). For the evaluation of auAsEu’
it is useful to prepare some tools first.

The scaling of Z [either the explicit statement in (114) or
the (identical) result of inserting the scaled V into (111)] has an ef-

fect on the Bohr-shell densities ]wn liv and Py given by
3
p Y
s _ s _
Iy 12 (r). - u3(v 1) 2 (" Ty (3-119)
nj av Iu)n !av

A consequence thereof is

{[f@hvir p = w73 f@hvin o 0" 0
= ptv3 3 f(duv_1?)v(ur)ps(uv_1r) (3-120)
= w¥ [@) vV o (x)
so that
6,{f@hve }* = su{v[ (@F)Vp_ + (2-v) [ (dF) (r2v)o_} (3-121)

su{2 (v-1) [ (@) Vp_ + (2-v) [ (@E) = (xv)p } .

An analogous statement holds for the integral appearing in Eq. (98), im-
plying

=S 2
8, gg‘ = 5u{2(v—1)z;j = (2-v) [(Ar) 3 (xV) lwnjlav} ' (3-122)

or, more conveniently for the seqguel,

2 -
l

avl - (3-123)

8, (b V) = su(v-2) fc + [ (@F) 2 (xv) ]wnj

It is used in exhibiting the scaling behavior of ECC , preferably stu-

died in the concise form (19): J
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u
sE* =5 {-—j(dr) jj dg'{z'-u c)"—[ 2 (pVV (ur) +o C)]1/2}
u C‘gj u r
5 -V_ U
Fv-3 > BT
=5, {-u¥ Junf Tl ('-0) [-2 (v () +2) 1/}
c (3-124)
9E,
=8u('5‘\)-3)E +——la WVt “)
2 zey 33

With Eg. (72} and (123) this supplies

s PR _ 2
5chcj = dp{(5v 3)Ecc3 (v=2)0, [y +j(dr) (V) |y, 5,0}
(3-125)
This combines with both Eg. (121) and
& {2%n_+oN_ 1M = su[2(v-1)2%n_+ vgN_} (3-126)
1Y ] c ] H S ¢ S
to
T 5, - (v-2)- Ltaz
&6, 8gE" = u{(Gv-3)8F - (v 2)[%wjgj;j + 5[ (@) Vp
sf@ g L (ev) + 3 2P0 3 on 1) (3-127)

Together with Eq.(118), we then conclude from Egs. (116) and (117) that

(Gv-3)Eppg + 3v-2)2N+ -z v+ |
r=o
+ (v gef (@) [T (v + D12 (3-128)
1 > = 2 3
= (v- 2)[§;:ijjgj 7f(dr)VpS-+f(dr)nIMEa (rv) + ng-jgNs] ,

which, finally, states the scaling behavior of the TFS model.

Please observe that the terms on the right-hand side of Eq. (128)
all refer to the specially treated strongly bound electrons. Therefore,
replacing ETFS by ETF and setting the right-hand side equal to zero
should reproduce the corresponding statement about the TF model. Indeed,
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what is obtained is (a rewritten version of) Eq. (2-222). There it was
noticed that the most useful choice for v is v=4. This is still true.
After employing

2

£(2,N) = = 5% Enpoo(2,N) ' (3-129)

[this has appeard earlier as Eq. (2-225)] and Eqg. (89), Eq.(128) reads,

for v=4,
- 2 R -
17 - 30 %+ 8 291 B (2,0 (3-130)
= 2[§J: Q.. + [ (@F)Vo_ + [(@F)n_ 2 (xv) +222n-3n 2B (2,N)]
B j=1‘*’j‘ 3912 Ps IMEST 2% Bg 2 gaNTTES 4N

where it is made explicit that we are now interested in the dependence

of ETF on Z and N. This generalizes Eq. (2-226).

S

Second quantitative derivation of Scott's correction. Until now we have

always been content with the approximation V=-Z/r when evaluating the
Scott correction. It is time to pay attention to the difference between
V and its small-r Coulomb part. In general, V(r) is given by Eg. (103).
We rewrite it by using the identity

1 1

—_ :.1.. 1 .1_ - =l -
T r.n(r r) +rn(r r') 1 (r

1 , _
. ,-E)n(r—r ) ‘ (3-131)

obtaining

V(r)‘=-%+_f(d’;')9—(—§:—)~ f@ynEn @, -Hne-ry . (3-132)

The first integral appeared in Eq. (99), it equals - g%ETFS(Z,N). For
the second one we write v(r),
. 1 1
vir) = [(@Z')n(r') (g, ~FInlz-z') (3-133)
so that
vir) = - 2o 25ES (3-134)
r 22 )

In this form, we shall insert it into the right-hand side of Eg. (130).
It is thereby not necessary to keep track of more than the first order
in V+Z/r, since the TFS model is based on the physical argument that
this is a small quantity for the strongly bound electrons [see Eq.(37)].



159

From Eg. (50) we get

2 3E
g,= Ly v 24T, (3-135)
J 2n° 9z 5
3
with
— - 2
v, = j(dr)v(r)lwn_lav(r) (3-136)

] 3

being the average of v(r) over the n.,-th Bohr shell. When evaluating
the integral, that gives Qj in (72), to first order in v, another aver-
age of v(r) is also met,

2n
g 4 Z .3 i -1/2
J(dr)v(r)——5TE2 52 (52~ 1) ' (3-137)

bl

-.‘-’.—l
™y

where the range of integration is r<2n§/z, of course. Then

. 2
i osdE 5 (3-138)
Q. = (g,-%) - v v . -

which in conjunction with (135) and (129) produces

5 5
n’ SE 2n%
9 = nd - - E AL TAN ggs —
bz 3 j z (3-139)
5 2
3E 2n7 5n
TFS ‘73 =
Y 2 220 )

to first order in v and 3E /3%Z2. Purther we have

TFS
JE
9 - 2 _ __TFS _= _
f(dr)VpS = - 22°n 55 Ng — Vg s (3-140)
where n
— > s- 2 -
vg = [@f)v(r)p (x) = E 'ty o, (3-141)
n'=1

Then there is the quantity

[(@) npp ()2 () =
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H

J OF
> 2 TFPS 3
f(dr)[ps+§' v lvy 150 1= =7 = 5 (rv)]

(3-142)
aETFS J
(Ns + E ijj) - 3(rv)/or s
3=1
J
- g w.Q. d(rv)/or '
- 373 nj
J=1
which to first order in V+Z/r is given by
J‘ - - aETFS
(dr)nIME ar(rV) = - 57 - 3xrv) /3 s
(3-143)
§ W, (n +—% TFS)( 33F5+—a(rv_7—) 5T ).
Z J

We are now prepared to evaluate the right-hand side of (130). The out-
come is

- & d
[7 3(Z + N )] Erpg (4,N)

ey

J
s - 3 ,.9 3_3
Z {E Wn, ns} +2(§7-+3N)ETFS(Z,N){E winy _§Ns}
3=t i=1

[

- > wnl @, -5v + ST/,
=1 ) J J (3-144)

+ Gs + 23(xv)/ar s}

TFS (z,N) J

2 5 —
T Ty T w.n. (3v -5v' +2 3 7
Zz o {j=1 R E

where the various curly brackets have to be replaced by their "smooth

parts" according to our general recipy for removing the spurious Bohr-

shell oscillations. The first two such expressions in (144) are the fa-

miliar ones of Egq.(63) - we know that they are replaced by % and 0, re-
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spectively. We do not know the corresponding numbers for the two ex-
pressions referring to v; fortunately, we do not need them, because
the averages of v are essentially equal to Z times a number.

To make this point let us look back at the definition of v(r)
in Eg. (133) and insert n= nIME+n [Eg. (74)] to split v(r) into VIME and
v, correspondingly. As stated repeatedly, DovE has the structure: Z3
times a function of Zr. This 1mp11es immediately that VIME equals 7
times a functlon of Zr. Concerning v we first remark that the small-r

behavior of n, which is relevant here, is given by

J —
i (x) =5 v %(cj-c)z ! £ /2
3=1 "
LD 21 572 (3-145)
= 22 7
=1
, J
= '——'2' E Z er?2 ’
5=1

also of the form: Z3 times a function of Zr, so that %, like VIME’ equals

Z times a function of Zr, at least for the small r of importance. Since
the essential measure of distance is Zr in both (136) and (137), we have,
as announced above,

noi Vhop Vg i 3@VI73r | 3(xvI/3r )
7 ] (3-146)

= 7 x { a corresponding number } .

Consequently, the contents of the third and fourth curly brackets in

(144) are to be replaced by a1Z and as%, respectively, with a, and a,

being numbers that are (practically) independent of Z (if they don't
vanish to begin with).

We then arrive at

[7-3(Z—+N )] ETFS(Z’N)

(3-147)
2

=1 - -
=5 4 a,z a

RN SZM .

S
o

This extends Eq. (2-226), the corresponding equation obeyed by ETF(Z,N),
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for which the right-hand side in (147) is zero. Upon inserting the an-
satz )
_ 7/3 -k/3
ETFS(Z’N) = ETF(Z,N) + 7 E ek(N/Z) Z (3-148)
k=1

into (147), we find9

_ : 1,2 _ 1
ETFS(Z,N) = ETF(Z,N) + 3 Z 3 a1Z
1 1 9 '
- g az E gﬁ ETF(Z'N) + ... (3—149)

_ 1,2

= ETF(Z,N) t 3 2% + 0(2) .
\Indeed, here is Scott's term again; and the contribution to ETFs of or-
der 7 is utterly insignificant, because our model contains physical ap-

proximations already at the order Zs/3

(of which the lion's share be-
longs to the exchange energy; see Chapter Four). Thus, there is not the
slightest doubt left about Scott's correction to the energy; we have
checked, in detail, that v(r), the deviation of the effective potential
from its»li?}ting ~Z/r shape, does not contribute to the energy above

the order 2 3 (notwithstanding the likely possibility that a, and a,

are both equal to zero).

Some implications concerning energy. The Scott term is indepeﬁdent of N,

with the consequence

9 _ 9

TN ETFS(Z,N) = 3N ETF(Z,N) r (3-150)
or after using Eq. (129),

ETFS(Z,N) = CTF(Z,N) . (3-151)

This is to say that the description of the outer reaches of the atom
has not been altered. Another way of looking at the same thing is to
state that the ionization energy required to strip Z-N electrons off

the neutral atom, E(Z,N)—E(Z,Z), is the same for an TF atom and an TFS
atom:
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- = - -152
ETF(Z,N) ETF(Z,Z) ETFS(Z,N) ETFS(Z,Z) . (3-152)

This is qguite reasonable since the modifications that distinguish the
TFS model from the TF model refer exclusively to the deep interior of
the atom.

Next, let us check if the virial theorem for Coulomb systems

2Bgin T Epot = = (Bgg * Byge) (3-153)
holds in the TFS modél, as it should. This is another consistency test.
For this purpose, we return to Eq. (128) and set v=2 [recall that in a
general theory this is the only reasonable value for v, as pointed out
around Eq. (2-477)]. This produces
Z

2E + Z(V-+E

ES - o J@h Tw+H1% =0 (3-154)

)|
r=o

The second term is equal to the negative of the interaction energy of
the electrons with the nucleus, ENe' whereas the third is the negative
of the electron-electron interaction energy, Eee’ so that

2Bpps = Eyo * Bgo = By (3-155)

which, in combination with ETFS = Ekin + Epot’ immediately implies-Eq.
(153). Everything is alright.

We are now justified in writing

I - _ 1.2 _
Ekin(Z,N) = ETFS(Z,N) = ETF(Z,N) 5 Z (3~156)
and
3 _ 5.9 2
ENe(Z'N) = Z-a—-z— ETFS(Z,N) = Zﬁ ETF(Z,N) + Z2° ., (3_1‘57)
so that
e (2/N) = B (Z,N) - By, (2,N) - Eg(2,N)
3 {3~-158)

It turns out, that both Ekin and ENe differ from their TF values by an
amount proportional to Z2; in contrast, Eee is the same in the TF and
the TFS model. In other words: the electrostatic energy of the electron
cloud remains unchanged by the Scott correction; what is altered is the
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kinetic energy of the electrons and the interaction energy of the nu-
cleus with the electronic atmosphere of the atom.

For a neutral atom, N=Z, we have }:':,I,F(Z,Z)=—(3/7)(B/a)Z7/3 g0
that the relative sizes of these various energies are
Ee ® Epip ° (-ENe)
_ . _7a .,-1/3, . _a ,~1/3
=1 : 3(1 B Z ) ¢+ 703 B Z )
(3~159)
=1 ¢ 301-0.65/2"3) : 701-0.56/2"73)

These proportions approach the TF limit of 1:3:7 [Eg.(2-238)] rather
21/3:5, the de-

viation from this 1limit is significant. For instance, in mercury (Z=80),

slowly; for Z in the range of the Periodic Table, i.e.

the proportions are

) =1 : 2,55 : 6.09 . ' (3-160)

Electron density at the site of the nucleus. It has been said already

that the density of the electrons at r=o is finite in the TFS model,
_3/2) in the TF model. Let
us now make sure that the TFS prediction for n(r=o) is not only finite,

whereas it grows infinite (proportional to r

but gives the correct numerical amount.

Upon inserting Eq. (139) into Eqg.(77), we have

3 n J
= o) = X22) 7 8- 1 N S PO I
ng = nlr=o) = “p2—0> St Wy t5 b5z 3E) Bpg (24N)
—T n o 2n. Z
n'=1 j=1 J
J
3/2 E__'l - % -
+ > wj(3 Vo, Vn.) (3-161)
Z j=1 J J

Z 31 J
We confine ourselves to the situation of a neutral atom, when 3E FS/BZ
- 4/3
== (B/a)Z and BETFS/BN 0, for which
Dg_
n {E E w } - 2 z72/3 . % +

n'=1 n'3 3 3 2n3
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J (3-162)
3/2 W

3 3

NI
wiul
<
:3-
<l
o)

=

j=

where the deletion of the unphysical Bohr-shell oscillations in the two
curly-bracket terms is called for. In the first expression this is done

without much effort. According to the general recipy [explained at the
examples of Egs. (63) and (64)], we write

h J sl 4 1
i_ - *%\:WJ on? L—“:s*—:z

2

(3-163)

DEE R DR
n'3

n'=1 =v s ®

= —lj + oscillation
)

11 1 (=] 51n(2nkvs) +3/2 o cos(anvs)
' 3 2 3
s

4 2
nev it 2v Vs k=1 k Vs k=1 (k)
o sin(2nkv )
+ 32 _ 5 ... ’ (3-164)
v 5 (nk)3
s k=1

the derivation of which is presented as Problem 4. Consequently, the

contents of the first pair of curly brackets in (162) are to be repla-
ced by

E —1—3—=1.2020569... ) (3-165)
]

n'=1 "

[In terms of Riemann's Zeta function this sum is ¢ (3).] At this stage,
we have10

3
n /’(Z‘%‘T)T = 1.2021 - 1.7937 272/3 4

ces ’ (3-166)
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where the ellipsis indicates the terms of order Z—1 in (162) [recall
that, as stated in (146), Vv,. and v}, are proportional to Z]. Note that
the coefficient of the 2'2/3Jterm is almost five times as large as the
corresponding one for a Bohr atom, which, according to Problem 1-5,
equals (1/2)(2/3)2/3= 0.38. The mutual repulsion of the electrons makes
the density decrease near the nucleus.
In Table 1 the HF predictions
asymptotic value, the first term on the right-hand side of (166), and

" for n, are compared to the

to the TFS result (166). We observe that the asymptotic value is ap-

Table 3-1. HF and TFS predictions for 4rmo/(2Z)3 for 2=17,34,...

.,102. The columns DAV and DTFS give the deviations, in percent,
of the asymptotic value and the TFS one from the HF number. The
difference between the HF and the TFS results 1is listed in the
column 0(1/2).

z BF Dav TS DrEFS 0(1/2)
17 1.0291 16.8 0.9308 -9.6 1.672/2
34 1.0816 11.1 1.0311 -4.7 1.715/32
51 1.1063 8.7 1.0716 -3.1 1.766/2
68 1.1205 7.3 1.0944 -2.3 1.776/%
85 1.1303 6.3 1.1093 -1.9 1.784/2
102 1.1375 5.7 1.1199 -1.5¢ 1.797/2

proached rather slowly, and that the difference between the HF and the
TFS numbers is only a few percent for atoms that are not too small. In
the last column of Table 1 this difference is recognized as equaling

about 1.8/% for large values of Z. This is a reassurance that Eq. (166)

does display the correct constant and z72/3

term, indeed.

Looking back at Eq. (162) we thus conclude that the term 1/%Z,
which originates in the Scott correction of %Zz to the energy, only
accounts for about half of the 1/Z term supplementing Eq. (166). The
remaining contribution, however, cannot be produced correctly by the
second curly-bracket term in (162), because there are additional cox-
rections on this level of approximation. In particular, it is necessa-
ry to include into the description the changes of the wave functions
to first order in v(r), which means that Eg, the energy of the strongly
bound electrons, has to be evaluated to second order in the difference
V-(—Z/r).12 For the energy considerations it was sufficient to use the
first-order expression (42). Another contribution arises from modifica-
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tions due to the inclusion of the exchange energy (to be described in
Chapter Four), which causes a change of the potential of relative size
1/% at small distances. In short: at the present stage we are unable
to predict the 1/Z supplement to the TFS prediciton (166) accurately.
What we can do is make a numerical estimate. For example, when

(1-272/3) (3-167)

1 0.82
7"z
is added to the right-hand side of (166), the agreement with the HF
predictions is better than 1.0; 0.5; 0.1 percent for Z larger than 3;
11; 18, respectively.
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Fig. 3-4. HF prediction (crosses; for 2 = 1,2,...,102) and TFS result
(smooth curve) fon 4nno/(2z)3.

For illustration, Fig. 4 shows the HF and TFS predictions for
4nno/(22)3, and Fig.5 displays the HF results for the order-of-Z-1 con~-
tribution along with the smooth curve corresponding to the interpolation
(167) . Please note that Fig.5 indicates that n, contains an oscillatory
part. This is the first time during the development that we are con-

fronted with a manifestation of the atomic shell structure.
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Fig.3-5. HF prediction (crosses; 4orn 2 = 1,2,...,102) and interpolation
(167) lamooth cunve) for 0(1/2)/27" = [4nny/ (22)°> - 1.2021 + 1.7937272/3;
/Z-1. The HF predictions fon inent gas atoms are represented by stars.

Numerical procedure. The TFS density of Eqgs. (74) - (76) is to be used
in Poisson's equation,

2(v+%) =n=n__+8 , (3-168)

1

B A
in order to calculate the TFS potential, V. Inasmuch as the density in-
volves not only the potential and the minimum binding energy,;, but also

the parameters Cj and Qj’ solving Eg..(168) under the boundary conditions

~%, for r-+o , (a)
r viz) - (3-169)
-(2-N), for r » = , (b)

is a considerably more complex numerical task than it is in the TF model
of the preceding Chapter. The principal complication is that the ﬁj and
Qj are not independent quantities, but are given in terms of integrals
involving V(and z); these are Egs. (50) and (72).

Before any calculation we must decide upon the number of shells
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of strongly bound electrons to be corrected for, that is: we choose a
value for ns.'Then there is the guestion of how to average over Ly SO
as to remove - to the desired extent - the unphysical Bohr-shell arti-
facts, that is: we make a choice for the number J of representative
values for Cs’ which are called Cj (3=1,2,...,322). Along with J we
select appropriate weights wj to be used for the averaging. To each jJ
there corresponds, in Eq. (50), a certain principal quantum number nj

and its Bohr-shell density |¥ [2

. = =n + ich are
av For n ns, and n,=ng 1, whic

integers, these can be found in Eqg. (53) ; for the non-integer numbers nj3..
. . 2 2
..n; we use appropriate (linear) averages of {wn1lav and lwnzlav' as

remarked after Eq.(58). "Appropriate" means, of course, fitting for the
purpose for which the computation is made; in the typical situation the
choice for J, wj, nj, and [wn_liv will be dictated by the particular
Bohr-shell oscillations that -Jone wants to remove. These decisions being
made the numerical procedure is the following.

For positive ions, N<Z, the search for V begins with a reason-
able guess for ¢ as well as for the Cj and Qj (j=1,...,J). For instance,
one can use for ¢ the corresponding TF value, and for the Cj and Qj the
numbers obtained from Egs. (135) and. (139) when the various averages of
v(r) are neglected. Then, with these guessed 7,7., and Qj’ starting at
a sufficiently large distance (where n=o) with the known asymptotic form
of V, Eg.(169b), one integrates the differential equation (168) inwards
and compares the evaluations of the integrals for the cj and the Qj with
the initial guesses, thereby obtaining improved values of these parame-
ters. Further, one checks if (169a) is obeyed, and the outcome of this
test leads to an improved ¢. Then one tries again with the new parame-
ters. For an initial guess not too bad, this scheme is rapidly conver-
ging.

For a neutral atom, N=Z, we know that 7 is zero as it is in
the TF model. But we have less knowledge about the asymptotic form of
V. For large r, which means outside the region of strongly bound elec-
trons, the density has the TF form (with r=o0), given by the first term
in the second version of (76), and the potential now satisfies the TF
equation

- i% V2 vV = —17 (-2V)3/2 for r large . (3-170)

Thus, asymptotically V must be equal to a rescaled TF potential,

vir) = u4 VTF(ur) ' (3~171)
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with y close to unity. Again, for given parameters - now they are ju,
z., and Qj ~ one integrates the differential equation for Vv inwards

]
and by iteration improves their values.

Numerical results for neutral mercury. For illustration, such a calcu-

lation has been performed for neutral mercury, for which N=Z=80. For
the sake of simplicity, the simplest averaging procedure was chosen,

the one with J=2 and w1=w2=1/2. The initial guesses for the various

gquantities, as they are obtained from Egs. (135) and (139) are compared
with their actual values in Table 2. For this choice of wj's, the se-
cond curly-bracket term on the right-hand side of Eg. (144) does not va-
nish [look back at Eq. (57)] which has the conseqguence that, upon ne-

glecting the terms containing averages of v(r), the energy emerges as13

(1 +Ef§il)7/3

B ,7/3
a 37 (3-172)

= - 3
Eppg ¥ 7 7

2n_+1  (2n +1)2
s s

+ Z Qz+ iv + 5

282

Z2 + O(Z4/3) .

/3 ,

[T

Accordingly, the energy derivative needed in (135) and (139) is

Erpg

0%

2n_+1
S
3z

B ,4/3 4/3

Z
a

)43 4z v Jan ) . (3-173)

(1 +

For the scaling parameter u, the natural initial guess is u=1. As we see
in Table 2, the initial guesses for 9E/9Z,E,n, as well as £1 and Q1 dif-

Table 3-2. Comparison of initial guesses (IG) with actual values
(AV) and their deviation (DEV) in percent; for N=Z=8o, ns=1, J=2,
w1=w2=1/2.
Quantity 1G AV DEV
~3dE/9%Z 547.9 550.5 -0.47
~-E 18560 18340 +1.2
i} 1.0000 1.0045 -0.45
4 2652.0 2788.0 -2.8
sy 252.1 443.6 » -43.0
Q1 0.8828 0.8667 -4.4
Q, 2.521 5.115 -51.0
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fer only by a small amount from the actual values, whereas the agree-
ment is much poorer for o and Q2. This could have been anticipated,
because the integrations to be performed for [ and Q2 cover a much
larger range of r than the ones for c1 and Q1. In this larger range,
neglecting v (r) causes a significant error, which it does not for the
small r associated with 4 and Q1. This situation is improved, however,
when the calculation is repeated for a larger value of Z. As noted in
Ref.7, for a Z ten times larger, the percentage deviation is smaller
by a factor of 5 (for E) to 15 (for ;2).

150 T 1 1 1
120} -
90k -
= 60F .

(e}

30| .

0 1 1 1 L
0 005 01 025 05 1

r

Fig.3-6. Comparison of radial densities D=4mr’n for neutral mercunry.
Smooth curve TF; curve with structure: TFS (with the parametens of
Table 2). The abscissa 4s Linear An the square root of r.

This computation for neutral mercury also supplies a TFS densi-
ty, which is compared to the corresponding TF density in Fig.6. In or-
der to stretch the small-r region where the interesting structure is
located, the abscissa in this plot is chosen linear in the square root
of r. The two radial densities differ significantly for r<0.2. Please
note in particular that the TF density is much larger in the immediate
vicinity of the nucleus at r=o. Of course, one must not take this TFS

~density too serious in the intermediate region, where we see two sharp

peaks. These originate in the sum-over-j term in the second version of
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Eq. (76), and are consequently artifacts of the typical TF discontinuity
associated with the square root. Another averaging scheme will naturally
result in a TFS density that looks different in this intermediate region.

1.014 T T T 1
1.012
1.010
1.008
= 1,006
b
2 1.004
o 1002
>l—
1000
0998 I i 1
0 005 01 025 05 10
r
Fig.3-7%. Ratic of potentials, VTFS/VTF’ as a function of r forn neutral

mencuny |(the TFS parameterns being those of Table 2). The abscissa 4%
Linean Ain the square noot of r.

Finally, let us see whether the statement in the paragraph after
Eg. (2-408) is, indeed, true, namely that the potentials obtained in the
extensions of the TF model do not differ much from the TF potential it~
self. Here we have the first example of such an extension: the TFS mo-
del. In Fig.7, a plot is presented not of the TFS and the TF potential
- they would be indiscernable - but of their ratio. We observe that
this ratio is close to.unity, the maximal deviation being hardly more
than one percent. In contrast, the respective densities differ by an
enormous amount for rg0.1 as illustrated in Fig.6. Thus we are right in
preferring the potential over the density as the fundamental quantity.
As a matter of fact, up to date all attempts of deriving Scott's correc-
tion in the framework of "density functional theory" have been unsuccess-
ful (unless some ad-hoc modifications of the theory are introduced - a
strategy that is hardly acceptable). »
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Problems

3-1. To prove Eg.(25) without making use of Problem 1-2, first note
that one can express [vg] as an integral involving Dirac's Delta func-

tion:
"sl vs o
[vgl = E 1= dv E Sn'-v) ,
n'=1 vO n' =~

with 0<vg<1. Then employ Poisson's identity

o0 o0 [=+]

i2mmy
E &6(n'-v) = E et =1+ 2 E cos (2mmv)
n's-e m=1

m=—co

perform the v integration, and arrive at Ed. (25). Repeat this procedure
to evaluate

[vgl
n!
n'=1

and derive Eq. (30).

3-2. As an illustration of Scott's "boundary effect" argument, consider
N non-interacting particles, restricted to the one-dimensional motion
along the x-axis, and confined to the range 0:xfa. These particles occu-
py the N states with least energy, one per state. Compare the TF appro-
ximation to the density and the energy with the exact results. Note, in
particular, that the requirement of vanishing wave functions at x=0 and
x=a cause the exact energy to be larger than the TF result. Repeat for N
particles confined to the interior of a three~dimensional sphere, and
observe that there is much less structure in the density than in the

previous one-dimensional situation. Why?

3-3. Simulate the replacement (31) with the aid of a weight function
wivg),

favg w(vs)(%vg - Ng) = 0.
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Since Ng is constant for ng<vg<ng+l (ng=1,2,...), it is natural to

choose w(vs) periodic in vyt

wivy) = flvg - [vgl) = £() .

Then the range of integration covers one or more periods of w. Conclude
that f(u) must obey

1

1
c{du £(u) (ng+u) > = (ng+ 5> - Ting + 1)

for ng=1,2,3,... . Show that any such f(u) also simulates the replace-
ment (26). Evaluate

L 2
[fap £y (1-2p)°
(o) 7

and conclude that f(u) cannot be non-negative for all u.

3-4, Use a procedure similar to the one of Problem 1 to derive

fln') = [avE(y) + 2Z f AvE (v) cos (2my)

N =gl +1 Vs Vs

Then integrate by parts repeatedly to find

o o oo sin(2nmvs)
f(n') = fdvf(v) - £lvg) —
=[vgl+1 Vs m=1
) cos(anv )
1
-5 £'(v,)
2 Z (1'Lm)2

x 51n(2nmv)

£ (v ):E:: + ...

m=1 (nm)3

] -

= [dvf(v) + oscillation.
Vs

Specify f(v) = —%—, and arrive at Egs. (164) and (163).
v



Chapter Four

QUANTUM CORRECTIONS AND EXCHANGE

In Chapter Two we learned that the TF energy of an atom is propor-
tional to Z7/3; in Chapter Three it was established that the leading
2. Z7/3/Z1/3. In this

Chapter we shall be concerned with the second correction which, not
7/3/Z2/3 =Z5/3

correction to this TF energy is proportional to Z
surprisingly, supplies a term of order Z to the binding
energy of atoms. It will account for the difference between the inte-
ger - Z HF crosses and the continuous TFS curve in Fig.3-3.

There are two different contributions to this ZS/3

term. The first
originates in what we called "quantum corrections” when discussing the
relation between quantum mechanical traces and semiclassical phase
space integrals [see after Eq.(1-43)]. It thus means an improved eva-

luation of the trace in
2
ENV+;)=tr%p +V+Un(—%3-v—;) . (4-1)
This E1 is, however, only part of the energy functional (2-434),

E(V,n,z) = B, (V+z) = [(dE")(V-V_  )n+E_ (n) - N, (4-2)

in which the electron=-electron interaction energy Eee is also the ob-
ject of approximations. So far it was sufficient to be content with the

Coulomb energy

n(Tin(z")

E=3

1 - >
E,.(n) = 7 [(dr)(ar’) ) (4-3)
but now it will be necessary to include the exchange energy as well (in
an appropriate approximate way). This is the second contribution to the
Z term in the binding energy.
Since both AquE, the change in energy due to the gquantum corrections,

5/3 ; con-

and Eex’ the exchange energy, are of the same order, namely Z
sistent models must not prefer one over the other. We shall therefore
refrain from considering those extensions of the TF model which include
either only AquE-(the "Thomas-Fermi-von Weizsicker model") or Eex (the
"Thomas-Fermi-Dirac model"). Instead we shall aim at a description in

which the TFS model is supplemented by both the quantum corrections and
exchange. :
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Qualitative arguments. In order to justify the remark that both AquE
5/3

and Ee are proportional to Z let us briefly discuss the situation

in a qﬁalitative way.

The error in Eq.l1—43) is due to the noncommutativity of T and 5,
which appear in the Hamilton operator in the potential energy V(¥) and
the kinetic energy %pz. So we are confronted with corrections that are
associated with the finiteness of VV. (Accordingly, these are called
"gradient corrections” or "inhomogeneity corrections" by other authors;
we shall stick to the name "quantum corrections.") The relevant measure
of the size of VWV is the one of Eq.(2-400), namely |AVV|/|V
-1/3, ?va1/3, and ANJ|VI-1/2 Ly Z_2/3

. And since VWV is a vector, the corresponding energy correction,

. In view

of ra 2

, this quantity is of order
Z—1/3

which is a scalar, is (to first order) proportional to the square of
$V, so that it is smaller than the leading energy term by two factors

of z7V/3, Therefore,

A _E

qu_ , ,-2/3 {4-4)
Epp
. 7/3
or with ETF N g / ,
bgg B ® z3/3 (4-5)

indeed. Incidentally, we shall see below that consistency requires to
include a contribution from the second derivative of the potential; it

also leads to a Zs/3

term in the energy.
We turn to the exchange energy now. The electrostatic energy of each
electron with the other electrons, constituting Z electrons at a distance

mZ—1/3 -1/3 =Z4/3. Consequently, the total electrostatic
4/3 —Z7/3
- ’

, is of order %z/%
energy is proportional to Z x2 a result familiar to us since
the discussion of the TF model in Chapter Two. In contrast with this

electrostatic energy, exchange is limited to electrons with overlapping

wave functions at a distance mAmZ_2/3; thus the exchange energy of each
electron is of the order 1/Z_2/3 =Z2/3, that of all Z electrons being
mzxzz/3 =ZS/3. Indeed, we have

B ~zo/3 (4-6)

ex

as stated above.
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Quantum corrections I (time transformation function). The guantum cor-

rections concern the term EC: of Eq.(3—3), since the contribution from
s

the strongly bound electrons has already been taken care of. According
to Eg.(3-18), this quantity is given by

°s d ‘
= (gt~ — ! -7
Bre ,{ A’ (¢'-1) gzv N, (4-7)

which combined with Eq. (2-10),
N(z') = tr n(-E-g') , (4-8)
reads

B = % art(ci-n) tr 2o ni-E-gt) (4-9)
(44 4a

T

s z 6

We remember that in these equations H denotes the independent-particle
Hamilton operator,

B=4p% + V(E) (4-10)

V being the effective potential.
The result of differentiating Heaviside's unit step function n(x)

is Dirac's Delta function &(x),

L =8 | (4-11)

the Fourier transform of which is
8ix) = [ &= e . (4-12)

Consequently, the trace in Eqg. (9) can be written as

d oo o J—
tra—z—,—n(-H-—E)— tr §(-H-L"')

-3 ' (4-13)
=-trfg‘%el(H+C)t .

Upon evaluating the trace as the diagonal sum in configuration space,
the last equality is

tr 8(-H-g') = 2[(dF") f§5 <¥r [ FHFEIE T, (4-14)
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We meet here the time transformation function

<F'LE|E",0> = <F'e o>, (4-15)

needed for r'=r". With Eg. (15), Egs.({14) and (9) appear as

tr 8(-B-g') = 2 [(dF") [§E eI k(T 0 (4-16)
and
;s > dt -iz't - >
E = -2 [T dg' (') f(dr") [ = e <r',t|r',o> , (4-17)
tLg z 2n
respectively.

So far we have been approximating traces by the corresponding
phase space integrals [see Eq. (1-43)], which gives

+| —).l
tr 8(-H-z') = 2 [L4F "d3 Lg(-dp2-viEn - o)
(2m)
d 1,2 Z '
- 2 feaF) [EE AR iR TV L (4-18)
(2m)

when applied to the left-hand side of Eq.(16). The comparison with the
right-hand side of this equation shows that this semiclassical approxi-
mation can be regarded as
<;'.t|;',o> = <f'[e_lﬁt[f'>
(dp') -i(2p'2v(FN)t
E}'—P-—je 2

(21'5) (4_19)

1 v3/2 -iv(F")t
(2nit) €

This relation is exact for a spatially constant potential. It is a good
approximation for z—dependent potentials if the considered time t is
small, since then the particle has not enough time to propagate far
enough to become aware of changes in the potential.

As a first step towards improving (19) by including effects of the
derivatives of the potential, let us consider a linear potential descri-
bing a constant force %,

>

Vi) =Vg -F T . (4-20)
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According to Eq.(1-42), the ordered version of

: 1.2 * >
o~iHt _ -i(5p"+Vo-Fer)t (4-21)
is . S a C 1z 13,2 . 2.3
omilt _ mi(V-Fer)t -i s(p+zFt)7t  -1F7t7/24 , (4-22)
so that Eq. (1-41) implies
tr e Tt = 5 [(a¥r)<F,t|F 00
>, s BT TR - | 2 2,3
-2 @) @B AVemEENE mig (BT 7 Fe) e -iF‘t7/24.
(2m)
(4-23)
Thus, after translating the origin in d' space,
E ST 1,2, .23
<§',t[;‘,o> = fléﬂ_% e 1V1(r )t etz Pt gmiFt /24
(2m)
1.43/2 _—ifvq Bt s (Grvgd))e3/24)
= (5=vr) e 1 1 , (4-24)
2nit/

which, for the potential (20) is, indeed, the correct result.

It is tempting toc use the expression (24) as an improved approxi-
mation to <§',t];',o> for potentials with small second derivatives, just
as (19) is employed when the gradient, the first derivative of the po-
tential, is smal%} Doing this woui?,indeed, result in a correction of re-

=2/3 3

lative order Z , because V17 implies that the relevant values of
4/3

t are of order Z /> which combined with ﬁ”bé% ~v 213 shows that

($'V(§'))2 £3 n (z1/3 z4/3)2(z'4/3)3 - z72/3 (4-25)

This much is fine; what is wrong, however, with the approximation (24)

is that it does not contain all corrections of relative order Z_2/3.
To illustrate this point, consider a quadratic potential
> > > 1 > 3 >
Vz(r) = VO + ker + 3 Tew'er (4-26)

s 3 3 K3 . . >
which is a second order approximation to any given potential V(r) around
T = ;', if the constants VO,E, and 23 are such that

>
V(E) = Vo + KeEr o+ 4 Bt E = v, (3
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TvE) = ke w2 Ty, @ (4-27)
= V'V, (E)

These constants given, it is always possible to adopt a coordinate sys-
tem in which the (symmetric) dyadic ;? is diagonal:

<

12027 = 1?2 2
5 Tew'er = 2(wx

2 2 2 2
X"+ wy yo ot ow) oz Y (4~-28)
with the consequence that the dynamics in the three perpendicular di-
rections of x, y, and z is independent. We can thus simplify matters,
for a start, by considering the one-dimensional motion along, say, the
x-axis, governed by the Hamilton operator (we choose to distribute the
constant V, equally among x,y, and z)

1 2

1.2 1 2 _
Hy =5 py *+ 3V * kX X + 5w, X . (4-29)

The time transformation function <x',t|x",0> for such a one-dimensional

harmonic oscillator is well known,

1 ]1/2 -19

<x',t[x",o> = (ZEiT e T x (4-30)
X

where the phase @x is given by

2
k wt w, t .
=21 - X X X
o, = 3 Vot 3 (5 tan(z.))
W
X
kx th
.S ] "
* o (x'+x") tan (—5—)
X (4-31)
w, t
1 wy 2 b4
* g (x'+x") w, tan (=-)
. w_t
- % (x'—x")2 0 cot (—%—) ’
and the "tyme" Ty by
_ 1 . -
TX = 51n(th) . (4-32)

X
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(The dependence on Wy is even, so that these equations hold both for
w}2(>o and for wx<o.) Eq111ations (30) to (32) can be easily produced by
a variety of techniques; at worst, one verifies that the Schr&dinger
equation

2

i X <x',t|x",0> = <x',tIHX[x",o> (4-33)

is obeyed, as well as the initial condition

<x',t|x",0> » 8(x'-x") , for t-o . (4-34)
Please note that <I>X splits into two parts depending on the sum and dif-
ference of x' and x", respectively. Thus, if we now denote their diffe-
rence by Sy and half their sum by x', we have

<I>x(x' ,sx,t)

9 th (4-35)
Sx Wy COE(5)

=

= @x(x',o,t) -

where

' 1 k}Z{ w 't w t
@x (x ,O_,t) = 3 Vot - ‘m—‘3- (—2—‘ - tan (—2—) )
X (4-36)

w_t
+ (2kxx' + wxzx'z) 51— tan(—;(—)

-1/3

Let us now find out of which order in Z the various terms are in

Egs. (32), (35), and (36). As in the discussion of (24) we have

raxtag /3 , v ng!/3
(4-37)
V(r')mz‘V3 , g3
so that [Eq. (27)]
2.2 6/3 3
wzmmxmz/ , wxmz/3
(4-38)
kvk r\,Z5/3 ,
x

v vzt/3
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Further, Sy signifies the distance between two x-coordinates, which is
relevant only when overlap integrals are evaluated. Therefore, just as
in our qualitative discusssion of the exchange energy, s = (Sx’ sy, sz)
is of order of the electrons' de Broc¢lie wave length,

|—1/2

svs v |V ngT2/3 (4-39)

As a consequence of (37) and (38), we observe

1/3

wt v z" , (4-40)
so that
t t
Wg- Wy 1,973
tan(-—z—) =5t 3(*"2—') .. (4-41)
is an expansion in powers of Z_1/3{ Inserted into (36), this produces
: 1 A 2,3
¢X(x ,0,t) = 3 Vot + 53 kx t
2,2, .t 1 2.3
+ (2kxx' o, X! )(EHFEZ w, t ) (4-42)
v 0@ Y3
Up to order 572/3 4e thus have
1 Ve lp2 gt
_@x(x',O,t) = (3 Vo-rkxx U X 't
(4-43)
1 2 2.3
* 57 (kx-rwx x')7 t
Analogous expressions are obtained for ¢y and o1 their sum being
o (r',0,t) = 8, (x',0,8) + o (y',0,t) + 0, (2',0,¢t)
—3
= (Vg + KT o+ 2 TR ENE (4-44)
1 2, 22 2.3
t oy K+ 0T e,

or with Egs. (26) and (27)
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o (3',0,t) = V(F') t + 2l4[%'v('f')]2 e . (4-45)
Likewise we find for the Sy term in {35)
2
t s
1.2 " U %k o1 L2 2 4-46
Tx Ux °Fl3) Fax T 7p Sk ux B (4-46)

which then leads to the three dimensional result
o (T',8,t)

o (¥',0,t) - @2 vEny . (4-47)

n

Tost(l-gwl tY) (4-48)

with this implication for three dimensional T:

n

, 1/3 2, 2, .2 _
Tz (T,TT) ST Rl B (4-49)

1 2
t(_'l ":m'(wx + Wy

y

or P
T, = t(1-5p VP VED)) . (4-50)

The tyme T does not depend- upon 3 up to the order considered here, that

is up to corrections of relative size z72/3,

In summing up, we state that our new approximation for the time
transformation function needed in Egs. (16) and (17) is

> > > 1 > 1 3/2 -id
<r' + S, t]r'—i- s, 0> = (m) e ’ (4-51)

Nof =

where the phase ¢(r¥',S,t) and the tyme T(Z',%,t) are given by Egs. (47),
(45), and (50), which are correct up to oxder Z_2/3. One checks immedi-
ately that Egs.(24) and (19) are reproduced in the situation of a line-
ar or a constant potential, respectively.

After arriving at Eq. (24) we resisted the temptation of using this
expression as the basis of improved approximations because the corres-
ponding ¢ and T did not contain all terms of relative order Z—2/3. While
the "local oscillator approximation” of Egs. (26) and (27) does, indeed,

produce all the terms missing in (24), we have, so far, no way of know-
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ing that nothing has been left out. An independent count of the powers
~1/3
of 2

by <§',t|§“,0> , of which the one dimensional version is written as Eq.

is asked for. It is supplied by the Schrddinger equation obeyed

(33). With the Hamilton operator (10) it reads in three dimensions:

., 0 - > _ 1 2 >—> - >
i <rf,t[r£,0> = (- 3 V) V(r1wj <r{,t1r£,0>
= (- 20 2 vEN) <EotE),0 (4-52)
2 2 2 17 27 :

Upon setting

- 1 >

rt= (XL , s=T)-T) (4-53)
accompanied by

2z, ___l—>' > > =l+ _ 2 _

V1 5 v o+ Vs ' V2 3 v' VS ' (4-54)

the sum and difference of the two versions of (52) appear as

N T I T S T o1y o1 3/2 =io_
Lggrg Vv g 05 - g(VE +g 8 +v( -Z_S)):}(ZniT e =0,
(4-55)
and
Tr.T > 12 >, _ 1z 1 3/2 -id _ _
VieV, - (V(z' +5s8) - V(T -2—3)]} o) e =0, (4-56)
where the time transformation function is inserted in the form (51).
These differential equations are to be solved subject to the initial
condition
1 ,3/2 -i .
() 22 e 5 8(3) , fort -0 (4-57)
[cf. Eq.(34)], which is satisfied provided that
T+t , for t-+0 , (4-58)
("tyme -+ time") and
s2 £ t+ 0 (4-59)
> - 5T or + .

For the sequel, it is helpful to carry out the differentiations in (55)
and (56) formally, and to separate the real and imaginary parts of the
resulting equations. This leads us to a system of four partial differ-
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ential equations determining ¢ and T,

{ait 3 - % VSZ log T + %(%\slog T)2 - %(%s®)2}
- % 3 71097 - %(3'1ogf)2+ (V19)?) (4-60a)
= lvE el s vE-1HT
- % _Y7'-_V>SlogT + % V'logT - VslogT - % _Vr'ﬂ)-_V}s@
= JVE 33 - VE-29T (4-60D)
{3 2 logT + v2e - 3V o7 logT }
+ 2 {v?e -3V e VrlogT} =0 ime0e)
Voo - 3 VeV logT - 3 Vtlogr-V e =0 . (4-60d)
Now since
;-Emz4/3 ’ 357'\; 22/3 , g mz1/3 ' (4~-61)

we notice that in (60a) and (60c) the first and second curly-bracket

terms are of order Z4/3 and 22/3

, respectively, whereas the left-hand
sides of (60b) and (60d) are of order Z?’/3

(60a) is equal to

each. The right-hand side of

J_'S’.‘v*! ..l'g’,.'v"
T (& +e? ) v@E) = coshlE T viEN
> 1,1> =»..2 > 1,12 2,.4
= V(') + EWE'S'V') vir') + zzfi's”v') V(;') + e (4-62)
which are terms of order 24/3, Z2/3, Z0/3, .«. . Similarly, we have in
(60b)
1> = 1> =
=8 V! -~ 58V’
1 ~e ? ) VE") = sinh(3E-V) v(EY
= 33U vEDY + 2G5 vEn L, (4-63)
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these being terms of order Z3/3, Z1/3, ... . The counting of the powers

of Z—1/3 is facilitated by introducing a parameter p that essentially

plays the role of 771/3 . 1t enters Egs. (60a-d), (61), and (62) via the
replacements

9 1 9 *> 1 = > 1 =

€ a0 Vs T 3Vs Vi Vo

(4-64)

V+l4v , 2.V 5 op 8.9

p

Then the power of i multiplying any term indicates its order in powers
of Z_J/3. All reference to u can finally be removed by setting p equal
to unity.

After common factors of u are cancelled, the effect of (64) is to
multiply the second curly-bracket terms in (60a) and (60c) by u2 and to
VV(F') and
(1/u)sinh(%§§-§')v(f‘) for the right-hand sides of (60a) and (60b). It
is then straightforward (and left to the reader) to verify that these

write, in conjunction with (62) and (63), cosh (%E .

equations are solved to order u2 by

> > s2 > 2t > > 2> > > 2,2
o(r',s,t) = [~ 5p + VEIt] + 17 57 {(EVIVET) + [VIVIEDTT]
(4~65)
and 2
logT (£',8,t) = logt ~u® 55 v v(En) (4-66)
the latter one being equivalent to
>, > 2 t2 2 >
T(c',s,t) = t{1-u" 35 V't ovi(r")] . (4~67)

Inasmuch as (65) and (67) are identical with (45), (47), and (50), as

soon as u is put equal to one, we are, indeed, assured that those appro-

ximations are correct up to the relative order of Z_2/3.

A few comments are in order. The last reasoning, the counting or

powers of p, shows that only even powers of u emerge; these correspond

to corrections of relative orders Z_2/3, Z_4/3,
-1/3

there is no 2 term. The Scott correction, however, is of relative

size Z_1/3. How does this fit in? The answer is both simple and instruc-

and so on. Remarkably,

tive. The strongly bound electrons are exposed to the Coulomb potential

without any shielding, so that their energies are measured not in mul-

4/3 -1/3 1

tiples of 2 but of Z2, and their distances are not ~Z but ~z o,
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which is also the magnitude of their deBroglie wavelength. In other words:
in the Coulomb part of the potential the scale is changed to the effect
that, instead of the TF relations (37) and (61), we now have

v 22 , r' a s 771 , VoA ?s w2
(4-68)
-2 2
tn Z ’ é% N7 B

which has the consequence that all terms in Egs. (60a-d) are of the same
size, namely mZ4. This implies that, in contrast to the TF situation,
there. is no expansion parameter available for a systematic approximate
calculation of ¢ and T if V is the Coulomb potential. Any scheme based
upon disregarding certain terms in Egs. (60a-d) will inevitably result

in a wrong answer.2 Therefore, the vicinity of the nucleus will not be
dealt with correctly if one simply extrapolates the gquantum corrections
of Egs.(45), (47), and (50) into this region. There is no way around the
special treatment of the strongly bound electrons that we studied in the
preceding Chapter.

A second comment is the following. In arriving at the new ap-
proximation via the local oscillator potential of Egs. {(26) and (27),
terms of order t3 were kept in ¢ and T, those of a higher order in t
discarded. Does this imply that one could regard the expansions (41) and
(46) as counting the powers of the time t? Of course, they do; the final
results [Egs. (45), (47), (50)], however, are not correct in the sense of
displaying all contributions to order t3. As a matter of fact, they do
not even contain all terms of order t, since

1
2 51nh(—s'$')
-8 |2 v@E)e+ 0t (4-69)

is the small-t form of ¢, as can be verified with the aid of Egs. (60a-d).
The extra terms disappear from (69) for S =0, but the situation is dif-
ferent for the contribution ﬂt3, because

2(E,0,8) = VEDE + L ([T vE) I - A2 En) e

5 (4-70)
+ 0(t7)
replaces (45) if powers of t instead of Z—1/3 are counted. Thus, it is
really Z_1/3, not t, what is the expansion parameter.3

Here is a third comment. If the transition from the dimensio-
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nal many-particle Hamilton operator (1-1) to the dimensionless one (1-7)
is not made, the gradients in Egs. (60a-d) as well as (45),(47), and (50)

come with a factor of # each. Then the g~2/3

terms are all multiplied

by ﬁz, so that they can be misunderstood as the beginning of a series

in powers of W, or hz. It has already been remarked, on the first pages
of the Introduction, that B is not a parameter of the theory, so it cer-
tainly cannot serve as a measure of the quality of an approximation.
What is really meant by the phrase "expanding in powers of K" is the
process of counting the powers of the A operator. Indeed, the Z_Z/3
terms are all displaying two V's. This is not accidental; there is a

/3 150 contain the ¥' differen-

simple reason why all terms of order Z
tial operator exactly m times. An immediate implication of Egs. (60a-d)
is that both ¢ and T are even in & and odd in t, so that an arbitrary
term in the expansion of either quantity is (symbolically) given by
(7112)%(Z.1) 2B v 1720 (4-71)
where a, B, vy, and & are integers. Now, if V is the Coulomb potential,
(71) is of the order a+y-1-286 in ZZ, and since each such term is of order

o . .
Z~, as discussed above, we find

a+y=1+28 . (4-72)

With this restriction, the most general form of (71) is

2,0

£ 79%3 38w oY, (4-73)

which, for the TF potential, is of order 2(o+B) in Z_1/3. This is, in-
deed, the number of the Y1 differential operators. We have thus estab-
lished that, for our application to large atoms, expanding in powers of
Z_1/3 is equivalent to counting the powers of 3', or, more colloquially
of ﬁ.4 It must be emphasized that the situation is likely to be different
when the approximation is applied to other physical systems. We have al-
ready mentioned the bare Coulomb potential, for which there is no para-
meter for an expansion in the first place, so that the mechanical coun-
ting of the powers of V' or K can only be qualified as nonsense.

The final comment answers the gquestion why it is advantageous
to write <;',t[;",o> in the form (51) followed by approximating ¢ and T,
as compared to the apparently simpler

132 eii—t—iv(?)t )

2nit

<r! +%—E',t[?' -%E,o> =
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2

2., ,> t 2 > L
V(r')~+TEV' vir'") -i3

[WvEn12+ 0@ 43},

] w

{1 = a5 (5:71)

(4-74)

which is known under the name Wigner-Kirkwood expansion.5 To understand

the principal reason it is useful to consider the guantity

tr e HHE - f(df]) <f‘je_lHt|f‘>
(4-75)
= 2 [(dF') <¥7,t|?',o>
The spectral evaluation of this trace,
s it
e oTHHE D ) ST E (4-76)
A

identifies the energy eigenvalues H'(A) of H and their multiplicity m(}),
both parametrzied by a set of (quantum) numbers, symbolized by Xi. It is
clear that, since the energy is the fundamental quantity of the system,
the spectrum H' (A} is of central interest to us. In the TF approximation
(19), X stands for T' and 5’, the semiclassical spectrum being

B = 40"+ V(EY) (4-77)
and the multiplicity

m ;2‘dr')‘d3') , (4-78)
(2m)

that is: two states per phase space volume of (2n)3. The advantage of
the approximations (45) and (50) in (51) over the expansion (74) is that
the former is easily written in the spectral form (76), whereas the lat-
ter is not. It is instructive to evaluate the spectrum and multiplicity
corresponding to our new, gquantum-corrected, semiclassical approximation.
After writing the tyme factor of (51) in analogy to the free-particle
momentum integration in Eq.(19),

1.2
3 2 ~izp'"T
3/2 _ f(dp ; e 2 ) (4-79)
(2m)

()

the trace of (75) is approximated by
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12, i Eeo iy 12.2 ,2
er o-iHE o 2f(d?')(d+') e—l{ip +VI(r'))t 8[($ v(r')) 3P
(2m)

(4-80)

Since we are aiming at an exponent linear in t, as required by (76), it
is fitting to represent the exponential function of t3 with the aid of
Airy's function Ai(x),6 defined by

.3 o .
N A R R T (4-81)

The properties of Ai(x) will be of particular interest later, for the
moment, however, it suffices that with (81) Eg. (80) reads

tr e 1HE . 2]i§zlll§%ll dx ai(x) e ' ELRLE (4-82)
(2n)
where
B (F B0 = aprlevE) - xi(FvE)2-Zp 2ty @ /3
(4-83)

identifies the effective, quantum-corrected, semiclassical spectrum of

H, the multiplicity being

—>' _).'
n = 2 {4E )(d3 ) ax ailx) . (4-84)
(2m)

In contrast to this argument for the form (51), an interpretation of
(74) as a natural starting point for a spectral evaluation of tr e_th
does not seem possible. Therefore, remembering the importance of spec-
tral sums in quanfum-mechanical calculations, the form (51) is obviously

preferable over the expansion (74).

Quantum corrections II (leading energy correction). Upon setting y=o in
Eq. (81), we infer that

o«

[ dax ai(x) =1 , (4-85)

-0

3
v-2V(%'n§
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which permits one to introduce a definition of Airy averaging:
<f(x)>»® = [ dx Ai(x)f(x) . (4-86)

—00

In this notation, Eqg. (81) appears as

. . 3 _
e Ve o Y3 (4-87)

which has the special consequences

<x>*® =0, <x29 =0, <x39 =2 . (4-88)

In view of the Airy average on the right-hand side of Eq. (82),

-iHt _ zj»(dr )(dp') (TP Xt
(2n) >

tr e ' (4-89)

the trace of any function £(H) of the independent-particle Hamilton
operator (19) is now approximated by
> >,
,0)) = zj_(_@r_')_(d_gh £(H' (F1,5',x)) (4-90)
(2m)

which uses the effective spectrum (83). Please note by how little this
quantum-corrected version differs from the highly semiclassical phase-
space integral (1-43). This original approximation is recovered from
(90) by the replacement

H' (T',p',x) + H' (£',p',0) = H(X',p') . (4-91)

Concequently, the leading quantum correction to (90), Aqutr f(n), is

given by the first non-vanishing term of an expansion in powers of

Hl(;l’El’X) _H(‘ft,_ﬁl) = ——;-'X[(%'V(r'))z—%—p'2V'2V(f')]1/3 .

(4-92)
Because of Egs. (88) this is the cubic term. Thus

Byt £(H) (4-93)

= 2f((?§))(d )f'"( =P +V(r)) (~5g )[('V’v) _gp2v2V]
T

I
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where the primes denote differentiation with respect to the argument.
(The primes on the integration variables have been dropped, since a con-
 fusion of numbers with quantum-mechanical operators is no longer likely.)
The partial integrations

[ @ £mdpPev) G? = [ (@) TveTer dp2ev)

(4-94)
= [(a%) (-v2v) £" (%p2+V)
and
f1B) £GPPI p® = [ (@B Bl £ (hpPev)
b (4-95)
= [(a) (-3) £" (3p%+v)
simplify the right-hand side of (93), producing
- (dZ) (dp " 1.2
ButT £ = 2j—-(2T)E— £ (30 2w () ( -5V V) (4-96)
When applied to
CS
B, =- [ dg'(z'-g)tr &(-H-¢") (4-97)
Co .
{which combines Egs. {(9) and (13)] this gives
= 1 V(- ___2L 1/2 -
AquECES = 57 j(dr)vvf az' (¢'=¢) (7v) = [-2(V+z")] , (4-98)
which uses
2 (ABL 5(-lp2yogy = Lr-2wegn1 V2 (4-99)
(2 ) T

Aiming at a perturbative evaluation of (98), we first dispose of the
delta function at the origin in VZV. 0f course, [-2(V+c')]1/2 is singu-
lar at that point. But, the two derivatives with respect to z' wipe that
term out. Indeed, the whole structure of the second derivative

n [-2(V+<;')]—3/2 N r3/2 is thoroughly zero at the origin. [This is also
essential for the partial integration of (94).] So we can, without

changing anything, replace VZV in (98) by VZ(V+Z/r). Then we eguate this
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to -4nn through the Poisson equation and, with the r' integral evaluated,

arrive at

__ 1 > > _ /2 _ (_ 1/2
AqUECCS =~ En f@ryn(x) {[-2(v+g)] [ 2(V+CS)]
(4-100)
-1/2
- (g mp) [-2(V+E )] }
Now, the density n is composed of the TF density (2-51)
= - 3/2 -
Npop = 5 [-2(V+T)] (4-101)

and corrections to it referring to strongly bound electrons, quantum
effects etc. Likewise the curly brackets are the sum of the TF term
and corrections to it. Consequently, the leading guantum correction to
E1 is obtained by disregarding the modifications of the TF part of Eg.
(100), implying

1

+ 4/2 _
A ®B, =- {{dr) [-2 (V+1)} ] , (4-102)
gqu 1 18n3

where V and ¢ are the TF quantities corresponding to the system under
considerat;on. What has been discarded in going from (100) to (102) are
corrections to corrections which, if taken seriously, result in energy
contributions of a lower order in Z_1/3. In Egq.(102), the power 4/2
instead of 2 is a reminder that the domain of integration is the classi-
cally allowed region where V+{<o.

For neutral atoms, we have =0 and V=-(Z/r)F(x), so that
g3 =

fax[F (x)1°
qu 1 (4a)2 °

>
=]
It

(4-103)
- & X 0.269900 g5/3

2
1

which makes use of the numerical value given for this integral in Prob-
blem 2-3. The reason for exhibiting the factor of 2/11 will be clear
later, after the leading exchange energy contribution will have been
evaluated.

The first convincing derivation of (103) was given by Schwinger?
his original argument differs slightly from the one given above, which
follows the reasoning of Ref.8. Historically one associates the name

von Weizsf—icker9 with the leading guantum correction to the TF model. Let
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us briefly halt the further development of the theory in order to estab-

lish the connection with von Weizsidcker's work.

The von Weizs&icker term. What is known as the von Weizsicker term is

the leading inhomogeneity correction to the TF density functional for
the kinetic energy,

B, ) = [(@) —=6ef3 (4-104)
10m

derived in Chapter Two [see Eq.(2-95)]. So far, we have worked out the
guantum-corrected potential functional E1(V+c). To find the correspon-
ding density functional we must follow the instructions given after Eq.
. (2-434) : use Eq.(2-20),

6,8, (Vrg) = [(dD)&v(T)n(D) (4-105)

to express V in terms of n, then this V(n) produces Ekin(n) when inser-
ted into Eq. (2-428),

Eyip = By (V4E) - [(dT) (V+g)n . (4-106)

kin
Aiming at the von Weizs&cker correction we first forget about the spe-~
cial treatment of the strongly bound electrons, so that Es is chosen ar-
bitrarily large in Eq. (98), implying that

1

S1-2 o)1 2 vPy (4-107)
24mn

>
Byu By = f1dx)

supplements the TF result (2-44),

(B))gp = (@) (-1 -20v+0)1/2 (4-108)
151
Now (105) produces
n = -—1—2[—2 w+)13/2 - 12[—2 w+r)1~ V2 o3y
3n 24m

1

24n2

+

Pr-2wsg)1V/? =
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(4-109)
- 2w 12 - w172 vy
3n 12m
- 2172 Gn?
24n
or
GrPn) 23 = 2] - Fgi-2 w17 vy

(4-110)

1 -2 2
- ggl-2(v+7)] (vm°

where the corrections to the leading TF expression are consistently
treated as small. Equation (110} is solved for V by using the TF connec-
tion

~2(v+z) = (3n®n)2/3 (4-111)

in the (small) last two terms on the right-hand side. This results in

2
~2(v+g) = (3nm 23 4 [(%—n)2 -Xny (4-112)

In the TF regime the relative size of n and V is nszz, $wa1/3, SO

that (112) displays corrections of relative order Z_z/3

, as it should.
This quantum-corrected expression is now inserted into (108) and the
second term of (106); in (107), which in itself is a quantum correction,

the TF result (111) suffices. The outcome is

By = (By)pp - Aqu®
> 2.,5/3 , 1 Gm? 5 2
= ftan) {(- - 5) 3n°n) > 4 g o~ 2 vin) (4-113)
151
and
[(at Corpam 1 a2 .5/3 m? 1 2
- r) (V+z)n = [(dr) {2—743ﬂ n) *947 5 " T2z ¥ n}. (4-114)
T

The terms that are multiples of Vzn integrate to a null result, so that
according to (106)
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> 2
5/3 L) 7y, (4-115)

(n) = [(&F) [5G’ L
n 10n2 72

where the second contribution is the von Weizsicker correction to the
TF result (104).

In deriving (115) from the quantum correction (107) the special
treatment of the strongly bound electrons has been "forgotten" about.
This just means that we extrapolate the correction, which is known to
be the correct one in the TF regime, into the vicinity of the nucleus
where, according to the discussion around (68), it must fail. And it
does. For, although the von Weizsicker term in (115) is supposed to be
a small correction, it cannot be treated as a perturbation. If we would

try to do so by inserting the neutral atom TF density

npp = —5122F 0132 = 2L e /m ¥, (4-116)
3n 9n
the resulting integral
5/3 w©
n 1/2 ] 2
AquEkin = a2 j = [F (%) ] [F(x) -xF'(x)] (4-117)

would obviously diverge at x=o due to the singularity of Nop at r=o.
When being conscious of the necessary corrections for the strongly bound
electrons, it is nevertheless possible to arrive at (103) after star-
ting from (115), as is demonstrated by Schwinger in Ref.7.11
On the other hand, it is quite clear that there is no chance
of being able to express V in terms of n if the special treatment of
the innermost electrons is explicitly included into E1(V+;) as described
in the preceding Chapter. The transition from the potential functional
to the density functional is no longer feasible now that we have gone
beyond the original TF approximation. These observations are, of course,
in agreement with the general anticipation discussed after Eq.(2-408),
namely that the potential functional is much better suited for improve-

ments over the TF model than the corresponding density functional.

Quantum corrections III (energy). We pick up the story at Eq. (90) where

we left it to study the leading correction. In (90) our new approximation
is stretched a little bit too far since the intermediate step (79) con-
ceals the circumstance that our knowledge concerning the dependence on
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V2V does not extend beyond the linear term. Consequently, consistency

requires to expand the right-hand side of (90) in powers of V2V and to
discard the quadratic and higher-order terms. In view of the later app-
lication to energy it is useful to do this not for a function of H but

of -H-z, for which Eq. (90) reads
tr £(-H-z) (4-118)

= 2]——&(dr(;(‘)i ) (—%pz—v—;+—[(vv) 2p2V V] 1/3)
hys

With the abbreviation

2 =gt -v-c+ W23 (4-119)

-

this is to first order in V2V

tr £(-H~7)
(4-120)
+ 2 AdE) ‘d L <g(z) -3 xp? [T 73 vy £y
(2n)
Now, the identity
P’ £1(z) = - 3oL £(2) (4-121)

ap
allows a partial ﬁ—integration, so that an eguivalent statement is

tr f(-H-7)

(4-122)
. zj‘dr) (‘f <tz) - Ix|Fv| T3 v g »
(2m

A further simplification is achieved after observing that the differen-
tial equation obeyed by the Airy function,

d2
—5 Ai(x) = x Ai(x) (4-123)
dx

[which can easily be derived from the defining equation (81)], implies
the equivalence of the Airy averages
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d2
<x g(x)>° =<-—7-g(x)9 . (4-124)
dx

One application is the recurrence relation

k+1., k-2

<x »® = k(k-1) < x ® (4-125)
it generalizes (88) to
-k/3 k!
3 3T for k=0,3,6,...
ko‘ (k.3)! ’ 19y 9y 7
<x™® = (4-126)

0 , otherwise

Since

2
Lot = 2w e, (4-127)
dx

employing (124) in (122) produces

> >
tr £(-n-g) = 2GR cp gy L gy vRye (4-128)
(2n)

which is the desired modification of Eg. (90).

This new injunction for evaluating traces of functions of -H-g

is now applied to the trace in Eg. (97). The outcome is

> > T
B o=-2 48R FSe iy ez - sT (2 VRV, (4-129)
tlq e’ 12

where z' is related to ¢' just like z is to ¢ [Eq.(119)]. After perfor-

ming the ' integration, we arrive at

_ 5 (4d¥) (df;)

E = - <z[n(z)-n(z )]
(R4 s
® (2m) (4-130)
- 2[8(z) - 8(z_)+(z_-2)8" (z_) 1 VoV
12 s s g’ !
where, of course,
z, =—%p2—v—cs+;—x W23 = - (g -t) . (4-131)
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Equations (129) and (130) are the quantum corrected versions of the TF
expressions (3-19) and (3-44), respectively, to which they reduce upon
neglecting the Vv and V2V dependences and performing the Airy averaging
and the momentum integration. It is a technical detail of enormous sig-
nificance that one can both Airy average and integrate over momentum in
(129) and (130) explicitly, so that, as before, only the spatial inte-
gration is left. Because of the Delta functions the E—integrals are im-
mediate; the Airy averages, however, are nontrivial.12 The next section
shows how to deal with them.

Airy Averages. It is expedient to first consider

N >
2/ g1 (z)0 = - o 2B (5

(210) 7 (2m)
(4-132)

= —17 <[-2(V+g --;—xﬁv[

1

2/3,y-1/25

where the second equality is based upon the momentum integral (99). Let

us reexpress this in terms of the variable
2 (V+
gy = |2+( |2)3 ) (4-133)
'A%

which has the property of being negative (positive) in the classically
allowed (forbidden) region, to get

2R o2y = 2 v T E ) (4-134)
(2m)
where
F(y) = 21—“ (2723 x gy V2 (4-135)

Since the fundamental Airy average, Eq. (87), concerns an exponential
function of x, we employ the identity

(27273 _y)—1/2

% -2/3

= | ar 6(r2+y—2 x} , {4-136)

-0

in conjunction with the Fourier integral of the Delta function (12), to
arrive at
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oo = . 2 —2/3
_ 1.2 -i{t " +y-2 X))o,
Foly) = (57) [MdT {mdo <e 4 s
(4-137)
L, 2 3
1,2 - ~i0°/12
= (35 fdrdo e i(t7+y)o-io .
the last step using (87). After the substitutions
o = X+x' , T = %(x—x') , dtdo = dxdx' , (4-138)
the integrand factorizes,
1 —iyx-—ix3/3
Fo(y) = 35 {wdx e
(4~139)
© \ . .3
1 —iyx'-ix'7/3 '
X —2?[.. {wdx' e Y
so that the Fourier transformed statement of Eg. (81), namely
o . )
. _ 1 -iyx -ix /3
Ai(y) = o {wdx e e , (4~140)
can be used twice, with the final outcome
. 2
Fo(y) = [Ai({y)]”™ . (4~141)

Before proceeding to the evaluation of the Airy-averaged momen-
tum~-integrals of &(z), n(z),... , let us supply another, more physically
oriented derivation of this result. For this purpose recall that the ap-
proximations (47) and (50) are exact in the situation of a constant force
potential. Therefore, by simply undoing the steps that introduced the
momentum integral [Eq.(79)] and the Airy average [Egs.(81) and (87)],

we have

5
2[Rl <61 (z,) = 2<F |6 (-H-0) (B>, (4-142)
(2m)

where zy and the Hamilton operator H, refer to the constant-force poten-

1
tial V1 of Eq.(20). The eigenstates of HT’ characterized by their energy
- £ and their transverse momentum Kl (which is to say that the two-di-

mensional vector ii is perpendicular to the constant force —%V) are,
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properly normalized

-E 2 e g6 AL
<r|E,EL> =,e(2—)2 2 {2VV1| Al(m ’ (4~-143)
T
1

which reminds us that the differential equation obeyed by Ai{x), Eq.
(123), is essentially the Schrédinger equation for the one-dimensional
linear potential. The matrix element on the right-hand side of (142) is
now evaluated by

> o0
2f Bl <or (z ) = 2f aEf(ak) [<F|E, k> 12 67(E-2)
(2n) -
(4-144)
= 2f(d§l)(-§%)|<f]g,ﬁl>{2 ’

This squared wave function does not depend on ¢ and il individually but
only on the sum 2;+KE , with the consequence

> co
2f AR (ot (z )2 = an [ ak? (--2)[<E [0,k > |2
= an|<E|z,05% = 212%v [TV 3ai 17 (4-145)

Now, dropping the subscript “1“ and comparing with (134) reproduces
(141).

It is useful to deal with all the Airy-averaged momentum inte-
grals of zn(z), n(z), 6(z), ... as a set, exploiting their relationship
through differentiation. To convey this compactly, we shall introduce

positive and negative powers of derivatives:

8" (z) = Edg 8'(z) , 6"z = (7?8 (2) (4-146)
and
6z) = ()7 87(2) , n(z) = (P8 (2)
. (4-147)

3

2z = P e

and so on. Obviously, (d/dz)"1 is short hand for integrating according
to
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4
f(z) = [ dz' £(z") , (4~148)

]

d

-1
(37

which exhibits the specific boundary condition at z=-« that selects uni-
quely one of the indefinite integrals of £(z). With this notation, and

in view of the linear dependence of z on the constant -z, we can write

5 (3P d,-m ., o
2fIRL (&)™ g1 (2) 5

(2m)
A mm L (AD) ey oyae _
[-—————d(_c)] zf(zn)3 <6'(z)> (4-149)

d -m 2 -1/3
fgjtgyl n ;|2$V| / Foly)

where the last equality uses Eq. (134). The definition of y in Eg. (133)
has the immediate consequence

d *,1-2/3 a _
I 2]2vv| ay (4-150)
which implies
(dp) d,-m ., 2 -m,2 (2m=1)/3
zj——L3 <lgzp) 8T (z)® = S 27020V F(¥) (4-151)
(2m)
with the functions Fm(y) defined by
_ . g -m
Fo oy} = dy) Fo (V)
(4-152)
1, d.-m _=2/3__ . -1/2,
= EE( a;) <(2 X-Yy) >

The boundary at z=-« in (148) clearly corresponds to {=«= and y=« in
(149) and (152), respectively, so that (c’i/dy)_1 signifies

o

(%)“1 £ly) = - ij/ ay' £(y') . ' (4-153)

An immediate recurrence relation for the functions Fm(y) is
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d - -
" & Fm(y) = Fo 4 (v} . (4-154)

To produce another relation we first remark that, for m2o, the second
version of (152) has the significance

F(y) = —2— L <2723 _yym 120 (4-155)
1 21
(m—-z-)!
which can be checked against (154). Now observe that
(2723 y)m+1/2>° - <(2—2/3x_y) (2—2/3}{_37)1:1—1/2>°
(4-156)
2
- (% Jii”’y) <(2 2/3X__y)m 1/29 ,
dy
on applying the Airy averaging relation (124). Accordingly,
2
1 _o1oas
(m-rj) Fm+1(y) = (Z g—j v) Fm(y)
y (4-157)

T Fa ) =Y E (),

which is compatible with (154) and therefore also valid for m<o. Because
of the boundary condition in (153) all Fm(y) must tend to zero for z-e,
a property that

is conserved by the recurrence relations (154) and
(157).

Now, beginning with our knowledge of Fg(y), Eq.(141), we first
use (154) to compute successively

F_,{y) = -22i(y) ai'(y)

!

(4-158)
F,(y) = 2{yai 1%+ i@ 17},

and so on; then we apply (157) for a purely algebraic computation of

i

Foly) = -yl s aL1?

(4-159)

F, (y) %{yz[Ai(y)]2 —%Ai(y) Ai'(y) —y[Ai'(y)]z} '
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and so forth. Of course, one makes use of the differential equation
(123); and it is clear that all Fm(y) are sums of polynomials in y mul-
tiplying the square of the Airy function, or of its derivative, or their
product.

If the gradient of V happens to be zero, then we have, for mzo,

ZI—EEQ§ <(—(-i—)_m &' (z)>°

(21) dz
= Id(fc)l_m 2I—((f))—3 <6' (- 3p7-v-1) (4-160)
= ey ™ ;17 (-2 (v+r)1 712
=5 (_%)! -2(v+)1™ /2
m (m-5)!

where the Airy average is immediate and the momentum integral is the g
derivative of the one of Eq.(99). In Eq.(151), the limit |§V|+O means

y -0 or y >+ depending on the sign of V+{. This implies the asymptotic
y dependences

1
(-7 m-1/2

[IH]

1
F ) 2 50— (-y) , For -y>>1 , (4-161)
(m-f)!

and

it

Fm(y) 0, for y>>1 , (4-162)
of which the second one holds also for m<o, whereas the first one does
not. This becomes more apparent when we use the known asymptotic forms
of the Airy function [see Problem 4 , or Ref.6],

Ai(y) = —‘l—(—y)_’l/4 cos(%(—y)3/2-%) , for -y>>1 , (4-163)
YT
and
Ai(y) = L y_1/4 exp(—%y3/2) , foxr y>>1 , (4-164)
2/n

to. check Egs.(161) and (162). For y>>1, we have
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4 3/2)

exp(-3y , (4-165)

11
F_(y) g 5= —
o

4n /7
which upon differentiation and integration produces

-(m+1)/2

P oY) = o (4y) exp(-5v°'%) (4-166)

consistent with both the recurrence relation (157) and the statement

(162) . For y<<-1, matters are not this simple. For instance, (163) gives

[cos(%(-y)yz--%)]2

A=

- ak

Foly) =

/2y, (4-167)

= [1+sin (5 (-y)>
which coincides with the highly semi-classical value (161) only after
averaging over the oscillations of the sine function. This invites the
physical interpretation of producing the TF result by averaging over
quantum oscillations, a procedure to which another and more precise mean-
ing will be given in Chapter Five. When integrating (167) with respect

to y, the sine function does not contribute to the leading order, so

that the statement (161) is reproduced for m>o. Let us see, how it

would alternatively work for F1(y) if (163) and the corresponding asymp-
totic form of the derivative,

. = 1 1/4 2, 3/2_E _
Ai'(y) = = (-v) 51n(3( y) 4) P (4-168)
were inserted into (159):
P = L AT {leos G ¥ -1 sin G- 32 -T2y
1 (4-169)
=E ﬁ ’

indeed, there are no oscillations in the leading term. However, when
differentiating (167) with respect to y, the dominating contribution is
supplied by the sine function, with the consequence that for m<o the
leading terms of all Fm(y) are oscillatory:
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Fly) = 1(-ap) T 2550 y) 32Ty

(4-170)

for m<o and -y>>1

Please note that both the smooth and the oscillatiné term in (167) are
necessary in order to ensure the consistency of the asymptotic forms
(161), (167), and (170) with the recursion (157).

For the purpose of illustration, Fig.1 shows plots of the
functions Fm(y) for m=-3,...,2. In agreement with their known asymptotic
behavior, these functions are all rapidly decreasing in the classically
forbidden region of y>o, and either oscillatory or increasing in the

classically allowed region of y<o. The major achievement

_2 | | 1 {
8 -6 -4 2 0 2

Fig.4-1. Plot of the Fm(y) 4o m=3,2,1,0,-1,-2.

ig the smooth transition from the classically allowed to the classically
forbidden regime, which is to be contrasted to the situation in the TF
approximation, where instead of a continuous transition there is typi-
cally a sharp boundary associated with the discontinuity of the square
root, as is illustrated by the TF density (101).
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Validity of the TF approximation. The derivation of Egs.(161) and (162)

from the comparison of (151) with (160) implies that the TF regime is
where the functions Fm(y) do not deviate significantly from their asymp-
totic forms. In order to give a more precise meaning to the requirements

05 T T T T T T T

04+ ] _

F (y)

0.2

01

-6 A 2

Fig.4-2. Actual Fo(y) and its asymptotic approximations for -6Sys3.

"y>>1" and "y<<-1" a plot of Fo(y) together with its. asymptotic appro-
ximations (165) and (167) is presented in Fig.2. We observe that the
asymptotic forms differ substantially from the actual function only in
the small region |y|£3/2. Consequently, the TF model is reliable when

vl = l2wen) | 27323, (4-171)

which sharpens the criterion (2-400) used in Chapter Two for the dis-
cussion of the range of validity of the TF treatment. [Of course, one
is free to pick another number, slightly different from 3/2, on the
right-hand side of (171}.] If we insert r=o and the neutral-atom TF po-
tential V=-(2/r)F(x) into (171), we have

—(2a)1/3 Z2/9 X1/ 2/3

) [F(x) -xFU(x)]”

Ypp (%) =
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2/9 x F'(x) }2/3

- _ 1/3
= -(2a) z F(x)-x F'(x)

[ (4-172)

[the latter equality uses the differential equation obeyed by the TF
function, Eq.(2-62)]. Upon making use of the small-x and large-x forms
of F(x) [=21 and = 144/x3, respectively], this gives

—(2ax}1/3 , for very small x

2
vpe/2° = , (4-173)
2.1/3
-(18a/x") , for very large x
showing that Yop tends to -0 both for x+ o0 and for x+~. At x=0.742,
the function xF"(x)/[F{x)-xF'(x)] acquires its maximal value of 0.3999,
so that

2/9
Ypp/Z /3 5 —0.657 , (4-174)

which implies that the criterion (171) is only met, in a certain range
of x, by Z's larger than (1.5/0.657)_4"5 =41.1. Then, if Z is very large,
we learn from (173) that said criterion is obeyed for distances in the

region

27 _=2/3 1/3

_1—6—5 Z / ,6 X é 4vai3 Z / ’ (4"‘175)
or

1%1 Srs1.9 . (4-176)

This gqgualifies our previous statements, extracted from Eq.(2-403), that
the range of validity of the TF model is limited by distances of the
order of 1/Z and of the order of unity.

9/2

Figure 3 shows a plot of yTF/Z . The abscissa is chosen

linear in x1/3, so that the curve is a straight line at small x, as im-
plied by (173). The asymptotic forms (173) are dashed. Further, there
are horizontal lines indicating yTF=-3/2 for Z =30,45, and 90. It is
clear, that Z must be much larger than that in order to be able to apply

the limits of (175) for the range of validity, where >3/2. For va-

Yrp
lues of Z corresponding to the Periodic Table, the relevant range of x
is substantially smaller than the one of (175). Nevertheless, it is cer-

tainly true that this range increases as Z grows, whereby the Z depen-
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Fig.4-3. yTF/Z as a function of x. The abscissa 4s Linear in the
cubde noot of X. See fext.

dence is basically that of (175). As a further illustration, Fig.4
shows, as a function of Z1/3, the range of x in which —yTF>3/2. The

dashed lines represent the limits in

-2/3 -2/3

1.91 2 (1+9.08 2 ) 5 x5 2.17 2V 3(1-2.24 27V/3y,

(4-177)

which improve (175) by including the next-to-leading terms into the ap-
proximations for F(x) at small and large values of x [F(x) 2 1 -Bx and
F(x) = (144/x°) (1 -8 x~Y), respectively].

Of course, all these considerations must not be taken too se-
riously. Nevertheless, here is the important lesson that the TF approxi-
mation can be justified only for rather large values of 7z, hardly for
Z 5 60. One would not expect the TF limit to be particularly accurate
for lighter atoms, but as we have observed in Fig.2-2, for instance,
the performance of the TF model is not markedly worse for small Z values.
It is clear, though, that the refinements of the model, such as the

Scott correction or the quantum improvement, have a larger significance
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Fig.4-4. The nange of x, where ~Ypp > 3/2, 4s Limited by the x values
on the s0fid Line. The dashed Lines connespond Lo the Limits in Eq.(177).

The abscissa L8 Linear Ain z1/3.

for the small-Z atoms.

Quantum corrected E1(V+§). Upon employing Eq. (151) in the energy ex-
pression (219) [or, equivalently, in (130)], we have

y
- > A 5/3 s ' "
B, = -[@n) 4[2W]>77 [ Tay'(y'-y)IF, (v")
s y
_%|ﬁv]'4/3v2v F_, ("1,
(4-178)
where Yg is related to V and Cs just like y is to V and 7:
Yg = 2(V+g) [ﬁv['z/3 , (4-179)

to be compared with (133). As discussed in Chapter Three, no unique va-

lue can be physically assigned to fg, and in order to remove unphysical
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Bohr shell oscillations we average over a suitable range of L @8 in

Eg. (3-58) . This directs our attention to the ;s-averaged Fm(y)'s, de~-

fined by
. J yj .
FoWe W) = 5wy [Ty (v -y By ty")
j=1 "~ Y
4-180
a7 , a2 ., ( )
= E wj f dy' (y 'y)(a§7) Fm(y )
j=1 = ¥
or, after performing the y' integration,
Fa VoWV = > wy R (9)=F (v ) = (y =0 F, 4 (v)] (4-181)

3=1

The yj correspond to the various Ej which have the same significance as
in Chapter Three, see around Eq. (3-58). Just as in that equation, the
potential functional E1(V+c) is here then given by

B, (V42) = tr(3p>+vac)n( - 2p°-v-c)
J (4-182)

ZWjEccj tEg

j=1

n

with

e > 1o 5/3 10 1/3.2
ijECCj = - (dr) 1] 2V F3(V,WV[)-§|2VV[ vvF1(v,1€7v|)],

j=1
(4-183)
and [this is Eqg. (3-43)]
- e 2 _
E, = f(dr)Vps + 2%ng + TN, (4-184)

where Pgr Nigs and NS signify what they did in Chapter Three. This is the
quantum-corrected E1.

In Ref.8, a further approximation was introduced aiming at a
simplification of E1, in the sense that it becomes a functional just of
Vv and I%V[. To this end, the term in (183) with the Laplacian of the po-
‘tential is integrated by parts whereby the resulting terms containing

the gradient of [%V[ are neglected. All of this amounts to the replacement
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= %| 28| /302 £ (v, 19V > = 1 (20 53 5w, [9v]) (4-185)
in (183), so that
J .
L (a1 5/3.. _1 }
ijEU;j 2 =[(Ar) g [2W |7 T IF 5 ~ ¢ Fol (4-186)
3=

is the expression used in Ref.8., The reason why this was (erroneously)
considered to be an approximation more advantageous than (183) is ex-
plained below [see the remarks in the paragraph after Eq. (213)].

Before proceeding to construct the new, quantum-corrected den-
sity expression, let us briefly remark upon scaling. In Chapter Two it
was found that the exact E1(V+g) responds to transformations of the form
(2-472),

V) spivad) (4-187)
2
[ VI A
by exhibiting a factor of u2:

E, (V+z) » u2E1 (Vv+g) . (4-188)

It is reassuring that both terms of (182) possess this scaling property.
For Es this follows from the related discussion in Chapter Three, and
for E;cL it suffices to recall that (187) implies first
J
Z - Uz , (4-189)

[upon using the significance given to Z in (3-111)] and then

2
. . 4-190)
Ly BTy (
[in view of both the definition of Cj in (3-98) and of the scaling pro-

perties of the lwn Ev displayed in (3-119)] with the consequences
]

v(T) >y (¥ , yj(f)»yj(u'r’) , (4-191)

and
Fo (V, [TV ]) (£) > Fp(V, [TV ]) (uE) (4-192)
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so that

oy ” ~f (@) g5 1 | 20017 (uh) B )

-5 12w | V2 b viv ) F i) (4-193)

indeed.

Quantum corrected density. Next, we construct the density corresponding
of Egs.(182) to (184) by employing the fun-

to the guantum corrected E1

damental relation (2-14),

_ > > > _
6, E, = ftar)ev(r)n(r) . (4-194)
As in Chapter Three we must not forget about the implicit V dependence,
hidden in the ;j:

12 . (4-195)

6y to = - JldDev |y |0

v n.
J j

which is Eqg. (3-70). The resulting contribution to the density is that
of Eq.(3-71),

J 2
> wiQy oy I3y () (4-196)
3=1 )

where, recalling the definition of Qj in (3-72),
0, = -2 5 =2 R sy -l v (a,) Py
3 9Ly LTy (em)> 3 itz 3

(4-197)
1/3

. 1 > _1 -1 2.
(cy=e) f1ad) o L2W[° Fytyy) - 5[20] 7 v Py )]

which uses Ecc. in the form (129) and the Airy integrals (151). This re-
duces to (3-72)J in the TF limit, where the gecond term vanishes, and in
the first one the asymptotic approximation (169) is to be inserted for
F, (yj).

The variation of the potential in Es’ Eqg. (184) , exhibits Pgr
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which, combined with (196), gives the density of the inner-most elec-
trons,

J
- 2 -
imE T Pg T § Wij|¢nj|av ' (4-198)
J=1

previously seen as Eq. (3-75).

The density of the remaining electrons, denoted by #i, is ob-
tained by varying V in (183) without taking into account the induced
changes of the Cj that give rise to (196). Thus, again utilizing the

form given for ECC in (129), & emerges from
J
J(@%) v () & (2)

(4-199)

—-§ v Idc(p -0)8, %ﬁgﬁiﬂi<su ) - &wZ)vvf},
=1 (2m)

where we must carefully add the three contributions that originate in
the explicit change of V and the induced changes of ¥ and Vzv. The cor-
responding change of z' is [Eg.(119)]

gzt = - &v + £ 6|ty |?/3
= - &V + ’—6‘13\/['4/3 5 (Fv) 2 (4-200)
= - BV + %ﬁv["l/‘?’ WeVsY

with the consequence

av[gf_d_ﬂﬁﬂ <5(z') - 26"(2‘)V2V>°}
(2m)

f (axr) (—6V)2J'—(§L)3 <6'(z') = b6m(z 1) TPV
(2m) (4-201)

,
~4/3 3y.Tev zj(ip)—3 <x 8'(z") —%5"’(2')V2v>°

(27m)

+

f(di:)%[%’v{

[ (@F) (- 5V av)zj‘dp) <" (2')> .
2n)

+
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The second summand here is then simplified according to Eq. (124), where~
after partial integrations are performed in order to exhibit &V as a

factor. The outcome is

E.
J J >
n = w. | d;'(c'—;)z'f—ﬁig—L EG'(Z')-¥L6"WZ')V2V§
j 3 12
ry z (2n)
j=1
b Ye (<6™(z") - 587 (2') VAV Tv)
12 12
(4-202)
+-$§ V2<6"(z')§ﬂ .
Now, once more employing (124), we have
§<6ll (z' )>o = <8M(z") (_‘V>V+§ —v>|—>v|2/3)>o
(4-203)

= - <8"(z')>’ $V'*f% < (2')5° ¥ (vv) 2 '

implying

J >
az* (zr-0)2[-8B cor (zr) - Lemiz)viy
(2m)

Y Y

J
n = :E:ﬁj

J=1

7 V18" @) (7 - 1 (v 2) 10 . (a-200)

The particular bilinear combination of derivatives of the potential,

vty - W2 = vT- v e, (4-205)
is such that its divergence,
Ve (VAT - TV <)

= [V TRv] - - T (4-206)

= (V2v) 2 - Ty T

does not contain derivatives of the potential of higher than second or-
der. The horizontal double dot symbolizes, of course, the double scalar

product of the dyadics, generally illustrated by
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g Ajk xj (4-207)

The gradient of 8V (z") being evaluated in analogy to (203), Eg. (204)
then leads to

5 (&p) 1 2

=> wy [z (g'=2)2[—E <6 (z') - 758"(z") V'V
— z (2m)
j=1
- 287 () [ (72 2 A ]
(4-208)

1 2<——>
MY

> >
- VVV1 VvV

———luﬁav"ﬁz')ﬁv-$§v-[V2V?1§$v1-$v>°,
(12) :

which, after employing this combination of Egs. (151) and (180):

Z{:& I ac' (g'- ;)zf——ilg <(dz' )2 Mg rzry s
n)
=1 (4-209)

1-m
=2 2% D3k (g, BV,
i m
reads
~ _ 1 2 1 2o1=1/3 2
A= s [2W ] E - = |2Vv | VU R,

-5/3 2.2 ~
- 2] 3w ? - Wy T E,

(4-210)
o 23|77 3 v () 2 - v TR F
Imn -3
o |2¥v |3 (Vv v BTy v Fv e B F

This is the guantum corrected 1f. It reduces to (3-76) in the TF limit,
as it should.
The last three terms in (210), the ones involving Ez, ﬁ3,

and F_ 57 together are a total divergence [see Eg.(204)], so that they
1ntegrate to zero. Thus,
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[(dE)n = [(dF) (npy,p + 1) (4-211)
J 301 a2 1 a0 =1/3 2
=Ns+§ ijj+f(dr)[§-T—[|2VV|FZ-EE|2VV| VVE]
3=

or, after inserting the definition of the Qj [Eg. (197)] and of the Fm
[Eq- (181)]Iv
df)n = EJ d¥) {=| 2%V | [F., (y) -F., (y.) ]
J‘( rjn = NS+ Wjj( r){ﬁl I[ 2 Y) 2 y]
3=1 (4-212)

-1/3 42 }.

_61_n|2vv[ VIVIFG (¥) =Fq (y4) ]

Consistency requires that this is equal to the count of electrons. In-
deed, it is, since Egs. (182), (184), and (129) imply

-0 - 2
N =57 By =57 Bg * ) Wy 5g By,
3=1 J (4-213)

J 5 (ap) 1 2
1 [] —__lan ] o
NS+§ wjj(dr) [agr 2f 3 <6(z') - 58" (z2") VTV,
. 4 (2n)
J=1
which is identical to the right-hand side of (212) after the Airy-ave-
raged momentum integral is evaluated and integrated over z'.

Very remarkably, 10 depends on V, %V, and $%V, but not on any
higher derivatives of the potential, because the third derivatives can-

cel in the divergence of Eg. (206). In fact, whenever E, is linear in

V2V, such a cancellation will occur. This little observ;tion was somehow
missed when the work on Ref.8 was in progress, with the consequence that
the approximate functional (186) was considered preferable because, in-
asmuch as it contains only V and %V, it ensures the absence of deriva-
tives of the potential of higher than second order. For most applica-
tions it should not make a big difference if one employs (183) or (186),
but for principal reasons, preference is given to (183).

Another comment on the gquantum corrected density harkens back
to a remark in Chapter Two, after Eqg.(2-24). There is the statement that
the densities calculated according to Egs.(2-14) and (2-20) need not be
identical in a certain approximation. Such is the situation here, indeed,
as far as n is concerned. In Eq.(202) we have the result that corresponds

to (2-14). When employing (2-20), the exact fi appears as
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B(Z') = J w, 2<T'|(n(-H-7) = n(-H-L,) - (£.-¢)&(~H-c,)) [F*>
L 7 i j j
.
J N (4-214)
=¥ w. 2[ dcr(cr-g)<r'|6' (-H-C') |T'> .
i J ot

In order to be able to use the approximations (47), (45), and (50) in
(51), this is rewritten with the aid of the Fourier integral for the
Delta function:

3

<F |8 (-H-g') |F> ---a-—-j G |ettEEDE 2, (4-215)
where said approximations produce
<;r[6|(_H_C|)I;|>
s__i’_jéi(;ﬁ/zm+ﬁv-zv(}-))e‘i(V(;"*@-')t
oz 2mt2nit 12 / (4-216)

x exp[—i(v(?)+z;')t-——[v'vé')]2t3]

to first order in the Laplacian of the effective potential, as always.
The factor of t2 multiplying this Laplacian can equivalently be re-
placed by (—B/Sg')z which operation is advantageously performed after
the integration. Then the remaining integral is simplified by means of
the identities (79) and (87), followed by explicitly integrating over
t and differentiating with respect to ¢'. At this stage, we have

<;||6|(_H_Cr)l;|>

(4-217)

2 >, N .

= 1 '11_2vl2vaz 2) ij ))3 <6'['%p'2"7(r')'c' +§|$'V12/3}>
' n

JABY) (g1 (ar) - sz v v E)
12
(2m)
the last step uses the definition of z in (119), some variables being
primed now. Consequently, the approximation for fi(r) is here

Ly
@) = v J’ dz' (z-¢" )zj——P— <6'(2') -1 6™(z") VAV, (4-218)
] )

o4
H

to be compared with our previous result (202). We notice that in (218)
those terms of (202) are missing which originate in the induced chan-
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ges of YV and V2V‘Nhen V is infinitesimally varied in (199). As discussed
above, these additional contributions to @ in (202) integrate to zero
and do not affect the count of electrons. They effect a redistribution
of the electrons, or, in other words: describe fluctuations around the
(expectedly) smooth density of (218), which in terms of the Fm's is

R o= o|20v|F, - 28y et g, (4-219)
simply the first line of Eg. (210).

Of the two approximations for 1, Egs.(210) and (219), the
first is preferable on principal grounds, because it is the one for
which the energy is stationary, whereas the second is more attractive
for a practical calculation, because it is simpler. It is obviously con-

sistent to employ (210), but is it equally justifiable to use (219)7?

Yes, for the following reason. Because of (37) we have y’bzz/9 in the
TF regime, implying
F oo g (2m=1)/9 (4-220)
m
as far as the smooth part of the Fm(y) is concerned [see Eq.(161)]. Then
the terms of (219) are of the order Z2 and Z4/3, the additional ones of
(210) being proportional to 22/3, Z2/3, and 20/3, respectively. There-

fore, to first order in the quantum correction, (219) is as good as
(210). In particular, it suffices for the reproduction of the leading
correction, derived earlier in Eq. (109). (For details consult Problem
6.) However, for m<0, the oscillatory behavior of Eg.(170) is dominant,
so that

Foa g mE1)/9

- for m<0 , (4-221)

with the conseguence, that the additional terms of (210) are of the or-
der Z4/3, Z5/3, and Z5/3, respectively. The situation is even more com-
plicated if we take into account that in realistic systems y never is
large negative (recall Fig.3). Then the counting of powers of % is con-
fined to the multiplying derivatives of the potential, resulting in
Z5/3 and z13/9 11/9, Z13/9, and Z11/9
for the additional terms of (210). Summing up: in a general sense, (210)
and (219) agree within the accuracy of the model, nevertheless their

difference may be substantial for atoms with small Z. Incidentally we

for the terms of (219), and in 2

remark. that in applications to situations more complicated than an iso-

lated atom, such as a molecule where spherical symmetry is not available,
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practicality is likely to force the use of the simpler approximation
that Eq.(219) represents.

To get a feeling for the relative size of the various con-
tributions to R, let us consider a simple example. For this purpose it
suffices to use a simple, but somewhat realistic potential. For in-
stance, the Tietz potential of a neutral atom (see Problem 2-5),

vie) = - L ()’

951/3
, R= () /3 (4-222)
does the job. Also, just one Gy is good enough to produce the strong
cancelations at small distances which are the essence of Eg. (181). When
correcting for one Bohr shell, we can choose

2

5 - v+ ) (r=0) (4-223)
2vg

g =

[cf. Eq.(3-50)] with Ve =3/2, thus

o = 22% - 22(3)"7 . (4-224)
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Fig.4-5. Companison of the radial densities obxained grom Eqs.(210) and
(219); see text. The nange o r 44 0sSrs$l, the abscissa being Linear in
r on the Left, Linear in the square root of r on the right.
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For this choice for V and Cor supplemented by =0, Fig.5 shows the ra-

dial density
o 2.
D(r) = 4nr"A(r) (4-225)

corresponding to Z=36 (krypton). The abscissa is linear in r in the
left plot, linear in the square root of r in the right one, as in Fig.
3-6. The thick curves (a) represent the D of the full density (210).
Curves (b) refer to the leading terms (219), curves (c) to the differ-
ence between (a) and (b), given by the additional terms of Eg.(210}.
We observe that the relative size of this difference is small, except
for r< 0.1, where it results in a significant difference between cur-
ves (a) and (b). In this region, however, the density is dominated by
the contribution NovE from the innermost electrons. Consequently, cur-
ves (c) are a small modification of the total density in this range,
too. We conclude that using (219) instead of (210) introduces an error
which is typically of the order of the physical approximations already
present in the model, so that such a procedure is certainly not incon-
sistent a priori, although one must not forget that wunder special cir-

cumstances the difference between (210) and (219) can, indeed, be large.

Exchange I (general). Early in the development, Eg.(2-36), we split the

electron-electron interaction energy Eee into its classical electrosta-

tic part, E__, and the remainder E' ,
es ee

= ' -
Eee Eg +t Bl - (4-226)
It was sufficient until now to keep only Ees’ which expressed as a den-
sity functional is given by

1 (g2 (gzmy REDIn(E")
Eog(n) = 5 [(dr') (dr") = (4-227)
BEd
of course. Time has come to concern the remainder Eée’ which is a guan-
tal correction to the classical interaction energy Ee
The interaction energy Eee is the expectation value of the

interaction operator Hee in the ground state [wo> of the many particle
Hamilton operator (2-409). Thus

(4-228)
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wo 1}...

1 - T (g T
3 N(N-1) [(dr ) (dr))... (dry)
where the tracing over the spin indices is left implicit, and the anti-
symmetry of the wave function has been used in equating the sum over j
and k to N2~N times the j=1, k=2 contribution. Upon introducing the
two-particle density matrix

(2)

n (;1";2';;1"’ ;2“)
(4-229)
= N (N=1) [ (QF Do (@F ) 6 HE S TSN E Sy B U (FE S E e )
Eg. (228) reads
(2) > e,
Bee =7 (@) (@M 1ir'§ T;r") : (4-230)
r'—-¢"

We make contact with the one~particle density matrix defined in Eq.
(2-422) by stating that ’

2@ = e f@Enn® @Es Ty (4-231)

relates the two density matrices to each other.
The line of thought that led to the Hohenberg-Kohn theorem
(1) (2)

in Chapter Two implies that n and n are functionals of the den-
sity n, which functional dependence is unknown to us. We shall there-
fore strive for an approximate treatment, one that is consistent with.
what one does know and exhibits Ees as the leading contribution to Eee'
For this purpose we return to Eq.(2-424) where the effective
potential V is introduced with the defining property that the matrix
elements of the corresponding density operator equal the density matrix
n(1)(§‘;§“). As a matter of fact this equality holds only if ' and r"
are equal or differ by an infinitesimal amount. Nothing more is, indeed,
required in order to ensure that the trace of (2-426) produces the ki-

(1)

netic energy correctly. If we thus write ny for said matrix element

z 2 <E'|n(-%p2-v(§)-c)|§">

H
R
1"

(4-232)

2 <E'|n(-E-7) [T">

then
ot @ = ad @i (4-233)
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if F'-7" is infinitesimal. Clearly, the equal sign in (233) cannot be

true for arbitrary ' and §", since né1) originates in a Slater determi-

nant:
() @ an =Sy kE Y, )
=5 v ED Y,
=1 (4-234)
= N [(dF)..(a%) U E B e T U (2 VT e )
with

wv(¥1',..,,z1\1--,=_/§%??i(¢j(§£)j, (4-235)
whereas the true ground state wave function wo(§15"q§ﬁ) is certainly
not of this simple structure. The wj‘s in (234) and (235) are, of course,
the N lowest-energy eigenstates of the effective Hamilton operator H,
counting different spin states separately. In Eg.{(2-509), these were de-
noted by ij.

The fact that n
of n¢1) as an approximation to n

Likewise, néz)

(1 and ny agree for TreTn suggests the use

(1)
(1)

for arbitrary values of T' and T".
2) . +|_+I|:+|;+|v

if ri=r, X, =T, that
is for the range of arguments which contributes most to Eee' Upon inser-

should not differ much from n(

ting the contruction (235) into (229), we obtain

(2)_)'(_)'“'*“-)“ ..zN Ea * 2 n ' T
nV (r11r2,r1,r2 ) = W]*(r1 )wk(r2 ) w] (r—‘)wk(rz)
J. k=1 (4-236)

* 0 * > 0 T T
VSED BED b E) vy E)]

Before proceeding it is necessary to recall that in both Eg. (234) and
(236) tracing over spin indices is implicit. For instance, in (234) the
spin matrix is 60,0“ with o' and o" taking on the values + and - ("up"

and "down") each. Thus the trace in question is

> 6 g 52 (4-237)
ar

which is, of course, the factor of two that reflects the spin multipli-
city in Eg.(232). Now the spin matrix for the first summand in (236) is

6 m & " r (4_238)
c1b1 °2b2

the trace of which is
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& , ., &, =2 %2 (4-239)
ooy %1% 039

two factors of two. In contrast, the spin matrix of the second summand
is

8 v w B 4 u (4-240)
0'20' 010'2

with the trace

: &, ., & =2 =12 ' (4-241)

T
of,oj 9594

just one factor of two. This explains why in combining (234) and (236)

into
ng? EpEgEnEy = agl @i ol Gy

1) 2wy (1) 2,2,
"7 (ryfiry') ng 7 (™)

(4-242)

the factor of 1/2 appears, Its physical significance is obvious: this
factor expresses the fact, that only half of the electron pairs have
their spins parallel.

(2)

The approximation for n to be used in (230) for the evalu-

ation of E is then
ee

n(2) (—El' _I->"; ;[, ;“) = n-‘§2) (rI, —r)."; —x).ll ;ll)
. (4-243)
C a0 @y Eal) @i - 2alD @ Enl) @t

or with Egs. (233) and (2-423) combined to

nl FuEn = n@n (4-244)
simply

nt @G 2 a@EnEn) -5l @l @uE . e-2es)
This inserted into (230) gives

E = B + E , (4-246)

where Ees is the electrostatic energy (227) and Eex the exchange energy
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(1) Zy.2u (1) AT
(£7;x")ng " (x";r') (4-247)

f@r') @

] -

E_ =-

ex l}l __r)'n& B

(1)

Note that it is ng not n(1)

, appearing in this definition of the ex-
change energy.

The equality in (246) is clearly approximate. The exchange
energy Eex takes into account the antisymmetry of the wave function. It
does this in a simple way by approximating the true wave function by a
Slater determinant, There is no doubt that the main effect of the anti-
symmetry is correctly incorporated this way. However, more subtle con-
sequences - such as the influence of a third electron, in the neighbor-
hood of two electrons, upon the interaction of these two - are certain-
ly not contained_in Eex’ All three, four, five,... particle contribu-
tions to the energy are usually called "correlation energy", a term that
seems to have as many definitions as there are investigators. For us,

it means no more than the difference between the two sides of Eqg.(246),

Eoorr % Fee ™ Fes 7 Fex * (4-248)

In particular, this E is not equal to the difference between the

true ground state ene§g§rand its HF approximation, because the HF po-
tential differs from the true effective potential V; the deviation bet-
ween Ecorr and this difference is, if course, small.
Self energy. In Chapter One there appeared, between Egs.(1-62) and (1-63),
the statement that one should not worry about the electron self-energy,
because "as soon as we shall have included the exchange interaction into
the picture, the electronic self energy will be exactly canceled by the
equally unphysical self-exchange energy." We are now able to justify
this remark.

The respective self-energies originate in the j=k terms of Eg.

(236), the first summand contributing to Ee , the second to Ee . Since

these terms cancel exactly in (236) the eleztrostatic self—ene?gy and
the exchange self-energy are identical, but differ in sign. Consequent-
ly, their sum vanishes. In other words: the errors introduced by inclu-
ding the self-energies into Ees and Eex compensate for each other per-
fectly. There is absolutely no room for explicit self-energy corrections,

once exchange is included into the description.13

(1)

Exchange IT (leading correction). The density matrix ng is easily re-

lated to the time transformation function of Eqg.(51) by means of
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a1 @R = 2 Fn(emmg) |E

o0
+'I

2 {ag' <f']6(—H—¢)|r >
z

fap o Y
E

(4-249)

It

00
[ B O TP
2 &d;‘ j%%; eI 2 giE, 05

or after denoting the difference between r* and r" by & and half their

>
sum by r',

nd V(@ 128 - 12)
- at' 3/2 -ie-ig't!
= 2 fac [ (mgp) /P T (4-250)
g

where ¢(7',3,t') and T(f’,g,t‘) are the phase and tyme of Eq.(51). Up
to corrections of relative size Z—2/3
(45), (47), and (48). The leading contribution to Eex is thus obtained

if we employ the TF approximations to ¢ and T, which are

they are approximately given in

o = V(EE' - fg; , Tt o, (4-251)
Consequently,
(1) (}:" +%§,f' —-;—g)
" fcod?;‘ J S ) 2 cHVE eSS 28y gy

which for s=0 gives the TF density
n@) = nlD @ = Lraw@Ena?? . (4-253)
3n

After changing the integration variables in (247) to the difference and

half the sum of ' and ?“,

> >
s, r'+=8) ,
(4-254)

E = -

—>l
ex = E (@

PN

the two-fold insertion of (252) draws our attention to the 8 integral

52

> . 1 1
f(if) exp (15 (gr+gw)) =
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w 2
2 s” f£'+t"
= 21 fodS exp( "3 e (4-255)
B . trem
= Amd grew
At this stage, we have
>
o >, at' 1 3/2 -iv(z')t’
Bex *°17 f(dr )Zj 21 (2nit‘) €
N
at"” 1 v 3/2  ~-iv(r')t"
x 2] 2n (2nit") € (4-256)
o . ot " -i(C't'+§"t") . tren
x [dg' fdz" e Ami g i
4 4
where the ' and " integrations result in
i tre" o . _i[;ltl o " —iC“t“
ani Fgwfar e [az" e (4-257)
+t
4 4
_ dn —ig (et +t") . -ig' (B +EY)
* TETeET © - dnfact e :
With this identity, Eq.(256) is simplified considerably:
. ot dt', 1 13/2 -iv(r")t'-g't',2
Bgy = -nf (dr')é’ ag! [2{7{(2““,) e _ 1, (4-258)
or with (253) and (252),
B =-nfladn) far (=2 n(#))2 (4-255)
ex v g’ :
Here the density
n(r*) = 2 <r'|n(-H-g') |T'>
(4-260)
= L2 1??
3

is still expressed in terms of the effective potential. The exchange
energy should, however, be given as a functional of the density itself.
In view of the simple TF relation between n and V this can be achieved
easily, as shown by

o

=) N 2
édc-[-a—g-, n(#12 =£dc'( -Tfj[—zw(r'm')]”z)
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= 2w @+ ¥? = Leefa@r? (4-261)
4n

4im

Thus -the leading contribution to Ee is given by

X

i} s 1 a2 71473
E, = - [(dr") —5n%n @) /3, (4-262)

which is known as the Dirac approximation to the exchange energy, a

choice of name that slightly distorts history (more about this shortly).
The density n is composed of the TF density (260) and correc-
tions to it referring to strongly bound electrons, gquantum effects,
exchange, and more. Consequently, to first order the exchange energy of
an atom is obtained by inserting the uncorrected TF density into (262),

with the outcome
b, B = - s @b 2w (4-263)
4n

where V and £ are the TF quantities corresponding to the atom in ques-

tion. This Aex E differs from the Aqu E of Eg.(102) only by a numerical

factor,
=3 -
By BE=gb, B (4-264)
so that the total 25/3 contribution to the binding energy of an atom is
S _ 1 . 4/2 _
- E - (BB AquE) = — [(dr) [-2(V+p)) ; (4-265)
361
in particular for a neutral atom, when =0 and V(r) = - (Z2/r)F(x),
5/3 @
-8 = I faxtF(x1? = 0.269900 2777 (4-266)
a“ o

We have seen this numerical factor before, in Eq.(103), and now we un-
derstand the reason for exhibiting the factor 2/11 there. Exchange supp-
lies the remaining 9/11 = (9/2)x(2/11).

The extended TF model that includes the corrections for the
strongly bound electrons, the quantum correction to E1, and the exchange
energy (to leading order) could be called the Thomas-Fermi-Scott-Weiz-
sdcker-Dirac model. As always, such a christening does not do justice
to all those other people who authored significant contributions as well.

We shall therefore simply use the name "statistical model", which has

the advantage of not distorting history, while at the same time sugges-
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ting a higher precision for a larger number of electrons. As we know,
this suggestion is right; one must not forget, however, that the appro-

ximations employed in developing and improving the description are not

0 25 50 75 100 125
zZ

Fig.4-6. Companison of the predictions for the neutral-atom binding
enengies made by the TF, the TFS, and the statistical model, as well
as by the HF approxdimation {crosses); see also Figs. 2-2 and 3-3.

at all statistical but semiclassical ones. The label "statistical" is
of historical origin; for instance, it occurs in the title of Gombéas'
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textbook of 1949 (see Footnote 1 to Chapter One).

The prediction of the statistical model for the neutral-
atom binding energies is obtained by adding the E of (266) to the TFS
prediction (3-33), the result being

Estat Epp ~ 32 E
(4-267)
- 0.768745 z7/3 - 122+ 0.269900 7°/3
In Fig.6, the quantity

_Estat 1/3 -1/3

—5—5 = 1.537 2 - 1 + 0.540 2 (4-268)
A
7

is plotted in addition to the corresponding TF and TFS curves. The
crosses for 2=1,2,3,6,9,...,120 are the HF predictions, which we have
seen earlier, in Figs.2-2 and 3-3. In this plot the remaining deviations
between the statistical and the HF predictions are indiscernable - a
great triumph for the semiclassical method, which at this stage is re-

cognized to have turned into a high-precision tool.

History. As mentioned repeatedly, the three terms of Eq. (267) are asso-
ciated with certain names, most of which have been reported already. In
order to do justice to the ones, not remakred upon specifically as yet,
here is a brief historical account. The subject started with Thomas'

14

paper of November, 1926, He could have, but did not derive the lea-

ding term of the binding. energy formula. The first to write down Eg.
(2-159) [that is the 7'/> term of (267)1, in July 1927,1°

who - being an astrophysicist - recognized the similarity of the TF

was Milne

equation (2~62) with Emden's equation for spheres of polytropic perfect
gases, held together by gravitation. Milne's numerical factor was about
twenty percent too small, which accidentally improved the agreement
with the then available experimental data. Fermi's first paper on the
statistical theory of atoms was published in December, 1927.14 It con-
tains a remarkably good numerical solution for F(x) [he calls it @(x)1;
for example, the initial slope B is given as 1.58. FPermi also noticed
the connection between the total binding energy and this comnstant, so
that he can claim fatherhood of Eg. (2-67). His numerical factor is, of
course, much better than Milne's - only half a percent short of the
modern value. We are told that:-Fermi was unaware of Thomas' work until
late in 1928, "when it was pointed out to him by one (now unidentified)

of the foreign theoreticians visiting Rome.“16 There are two probable
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candidates for this anonymous person: Bohr and Kramers, whose encour-
agement is acknowledged by Thomas in his paper.14
The credit for the first highly accurate calculation of F(x)
belongs to Baker.17 His work was published in 1930, long before the
age of high-speed computers, and contains a value for B which is exact
to 0.03%. We honor Baker by assigning his initial to this number. In-
cidentally, one of the first (if not the first) application of the
MIT Differential Analyzer, a mechanical device for solving ordinary
differential equations, was the computation of the neutral-atom TF

function by Bush and Caldwell in 1931.18 [A more accurate table of F(x)

19]

Now to the next term in (267), the correction for the strong-

was only given 24 years later by Kobayashi and co-workers.

ly bound electrons. While it has, of course, always been recognized
how badly the innermost electrons are represented by the TF model, it
would take the surprisingly long time of 25 years until Scott came up
with the energy correction of Eq.(3-32), in 1952.20 In Chapter Three,
we already mentioned that his derivation - recall the "boundary effect"
argument - has not been widely accepted. Let us quote March once more,
who expressed, in 1957,21 the general feeling concerning Scott's cor-
rection, in writing that "it seems difficult to give a completély clear-
cut demonstration of the case." As pointed out in Chapter Three, just
this was delivered by Schwinger in 1980,22 another 28 years later. The
more sophisticated treatment of the strongly bound electrons presented
in that Chapter was published in 1984.23

Scott, in the very same paper,20 was also the first to give
a 25/3 term in the energy formula. However, being unaware of the gquan-
tum corrections, he considered merely the exchange contribution to E,
thus accounting for nine eleventh of the last term of (267). Again it
took many years before, in 1981, the quantum correction -(103) was eva-
luated by Schwinger.7 From then on, the statistical energy formula
(267) was known. [Strictly speaking, Eg.(267) can already be found in
a 1978 paper by Plindov and Dmitrieva; for a comment see Footnote 11.]
Of course, there has been important work on extensions of the TF model
by other authors. The exchange interaction was first considered by
Dirac, as early as 1930,24 who was possibly reacting to a remark by
Fermi at the end of a talk presented at a 1928 conference in Leipzig,25
which Dirac also attended. But Dirac did not deal with exchange energy,
just with the implied modifications of the TF equation. An expression
for this energy, namely Eqg.(262), was first given by Jensen in 1934,26
who also on this occasion corrected for an inadvertance of Dirac, whose

exchange effect was too large by a factor of two. However, there is no
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doubt that it was Scott who for the first time evaluated the exchange
energy perturbatively, arriving at the neutral-atom version of (263).
Maybe both Dirac and Jensen were just thinking that one should not
talk about the second correction before the first one is known...

The first attempt at including the nonlocality of guantum
mechanics was preformed by von Weizsdcker in 1935.9 He derived a cor-
rection to the kinetic energy [nine times the second term of Eq.(115)1],
which, as we have observed above, has the serious drawback that it can-
not be evaluated in perturbation theory - the outcome would be infinite.
The derivation of (102) makes it clear that a consistent treatment re-
quires a simultaneous, correct handling of both the quantum corrections
and the corrections for the strongly bound electrons. Why didn't Scott
do exactly that? There are two reasons: First, Scott's "boundary effect"
theory of the vicinity of the nucieus cannot be directly implemented
into the energy functional. And second, the language used by von Weiz-
sidcker, Scott, and others is based on the electron density as the fun-
damental quantity, whereas these problems are most conveniently dis-
cussed by giving the fundamental role to the effective potential, as
we have emphasized repeatedly.

Energy correction for ions. For an ion with a degree of ionization

g=1-N/Z, the energy correction of order Z5 3 is, according to Eqg.
(265), given by

5/3 =

~ _ 11 2 4/2
-F = 5— ——""az gdx[fq(x)]
11 5/3 (4-269)
= %5 8(q),
3 a2

where fq is the corresponding TF function. Since fq turns negative at

x =X, (q), we have

Xq (q)
d@ = [ dx{fq(x)]2 . (4-270)
(o}

In the two situations of high ionization, N<<Z, and weak ionization,
g<<1, the analytic dependence of & on the degree of ionization can be
studied with the aid of the expansions (2-275) and (2-361), respective-
ly.

When switching from fq(x) to ¢A(t)' related to each other as
in (2-261) and (2-264),
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- =1
fq(X) =q ¢A(X/XO) ’ ¢A(t) 3 fq(txo) '
(4-271)
wa) = a2 @12,
Eg. (270) reads
- 2 1 2
e =g xg fdt[¢k(t)] . ‘ (4-272)
o
Here we can insert the expansion (2-275) to produce
1 [==]
é = q2 X jdt{(1—t)2 + 2(1-t)g;:Ak¢k(t)
° =1 (4-273)

2> e e (0]

Jrk=1

All ¢k(t) and their first derivatives vanish at t =1 [this is an
implication of the recurrence relation (2-278)], so that two partial
integrations establish the identity

1 1
fat 2(1-t)g, (&) = fat 2 (1-Dgp(t) . (4-274)
0] (]

In particular, differentiation of Eq. (2-277) gives

o5 (£) = £ 1/2 (1) 3/2

’ (4~-275)
with the conseguence
1 ! t,.3/2 3/2 _ 5n
fat 2(1-t)¢, (t) = fat(1 -t “(1-t) = =rx . (4-276)
1 3 256
o) o
[In terms of Euler's Beta function this is B[é §j —J-B(z-i) ] Thus
2’2 3 272"
~ 21, 5n 2
e—qxo[3+——256 A+ 0O )] , (4-277)

or with [Egs. (2-285) and (2-287)],
_16x
Alg) = - Z[1 +0(N/2)]
(4-278)

x@ = (BN 300w/,

finally



s = 1(18 %) :1 - (1—9—23—3—1)§+0((—1;-)2)] . (4-279)

1

w|—=

Naturally, one can determine the subsequent coefficients in this expan-

sion in powers of N/Z as well; we quote from Ref.27:

O[(%)Z) - _ (2883 524 _ 105 421_FZ}(§)2_+0((g)3) . (4-280)
20251 630m2
The corresponding numerical statement about E is then
- B = 0.4327 2 N2/3[1 -~ 0.3681 %—o.oozs(g)zw((g)?’)] . (4-281)

This series converges as well as the one for E does [Eg. (2-289) and
Problem 2-7}. In particular, Fig.2-5 shows that neglectlng the 0((N/Z)3\
terms does not result in a significant error for N=%/2. For this de-
gree of ionization the analog of the neutral-atom binding energy (267)

is, therefore,

_ 7/3 1,2 5/3 _
E o (2/N=2/2) = 0.7368 2 5 2°+0.2223 2 . (4-282)

E /1/222

| H

0 10 20 30 40
Z

0 {

Fig. 4-7. Comparison of the predictions for the binding energy of Lons
with N/zZ = 172 made by the TF, the TFS, and the statistical model, as
well as by the HF approximation (crcosses).
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‘In Fig.7, the successive approximations of

—Estat(Z,N=Z/2)
1 7.2

7/3 5/3

= 1.474 2 - 1 + 0.4445 7 ’ (4-283)

which are the TF, the TFS, and the statistical-model predictions, are
compared to the respective HF results,28 for Z=2N=2,3,6,...,36. The
agreement is just as impressive as for the neutral atoms 1in Fig.6.

We turn to weakly ionized systems now. Here it is useful to
look at the difference between &(q) and its neutral atom value

o0

8(0) = fax[F(x)1% = 0.615435 , (4-284)
[0}

the numerical value of which was obtained in Problem 2-3. This differ-

ence
o0 X6 (q)
80) - 8@ = [ axlreo1? ¢ [° Tax(re1? - (5 )1
o (g) o (4-285)
=Y

can be expanded in powers of B[xo(q)] , after the expansions (2-349)

‘and (2-361) are used to rewrite the integrands. The outcome is

&(0) - &l(q)

4 h
. _(12) 1,45 79 dt A )46
= T+h L9406 (1))

[x, (q)]° s af " gl

o h
-y, ki 1 5+k d dt A4 6
+ 25 c (Bx 1) [5+k¥+hq Y ({ :6.:]_{_;[1—( 35) 't @(t)wk(t))}

o0

-Y,j+k 1
+chck(BXo ) [.5+(j+k)y

J, k=1

. h
5+(j+k)y g at A .46
" hg " ey (-4 e wj(t)wk(t))}}
(4-286)

and

7

The known expansions of X, (g) and hq in powers of qY/3 Egs. (2-339)

(2--372), are now employed in identifying powers of qY/3 in (286). The
result is

O ~s@ = (Dt AP P
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5 € y y (4-287)
-2y/3 ¥/3 2vy/3
Grar do-2887 20 )q" 20?3 ]
where J, and J, denote the integrals
3, = %-+5 & (-5 %o 0)1%) = 0.844849,
ot (4-288)
S N f 8 (1- ) 4o 01y, (0)) = 0.078777
ST N 2 vy 0] = 0. '

Their numerical values are most precisely calculated by the technique
that produced A and a in Eq. (2-312) and (2-313); we recall that it is

1/2 and

based upon expanding the integrands in powers of at® and (1-t)
matching the results of term-by-term integration around t = 0.9 where
both expansions converge.

The numerical version of (287) is

8(0) -&(q) = 0.156210 g°/ 3[1+0.628951 q'/3

(4-289)
+0.414178 2V 3003V 31,
.. y/3 29
where we also report the coefficient of the second power of g .
When inserted into (269) this supplies
E(z,N) - E(z,2)
(4-290)
= 0.06851 (z-N) /3 (1+0.6290 q"/3+0.4142 *Y/3+..)
~which is the analog of Eq. (2-395),
ETF(Z'N) - ETF(Z,Z)
(4-291)

= 0.04731 (z-m) /3 (1+0.8259 q"/3+0.6676 g2V 34...) .
The main application of these results lies in predicting the ionization
energy of neutral atoms, when N=Z-1 and g=1/Z.

Ionization energies. Since the Scott correction-%z2 does not depend on

the number of electrons, N, the entire difference between the statis-
‘tical-model energy of an ion and the corresponding neutral atom is given
by the sum of the differences in (290) and (2971),
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(Z,N) - B (2,2)

Estat
= [ETF(Z,N) - ETF(Z,Z)] (4-292)

+ [E(2,N) - E(Z,2)]

In particular, when asking for the energy needed to remove just one

electron from the neutral atom - this is the ionization energy I(Z) -

we find
Istat(z) = Estat(z'z_1) - Estat(z’z)
= 0.04731(1+0.8259 27 Y3+ 0.6676 272Y/3 4 ...)
+0.06851(1+0.6290 273, 0. 4142 272YV/3 Lel), (4-293)
or,
T ap(2) = 0.1158(1+0.7094 273 40,5177 2723 4 ) . (4-204)
I | 1
J
—1
N ]
- Hg Rn |
— At
| .
!
|
Lu T ! 7
¥ Fr =
0.1158 2 315eV
0 1 I 1 ] ‘ 1 1
0 30 60 90

Fig.4-8. Compandison of experdimental Llondzation enengiles with the succes-

sdive approxdmations %o Istat(z) in Eq.(294).
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This statistical-model ionization energy makes no reference to
the shell structure of real atoms. The same is, of course, true for the
total energy Estat' where shell effects are insignificant because the
few most weakly bound electrons do not contribute a large amount to the
total energy. In contrast, when considering the ionization energy, it
is the one most weakly bound electron that we are interested in. The ex-
perimental ionization energies must reveal the atomic shells as a conse-

quence. The statistical-model contribution I is, therefore, expected

stat
to be a numerically reliable prediction only for those atoms in which

the one electron to be removed does not have partners in its shell.
These are the alkaline metals Li(Z=3), Na(11), K(19), Rb(37), Cs(55),

and Fr(87). Indeed, the successive approximations represented by Eg. (294)
agree quite well with the experimental data30 for the five lighter ones,
as illustrated in Fig.8. For francium the statistical model prediciton
of about 3.9 eV [using two or three terms of (294) yields 3.86 eV and
4,02 ev, respectively.]

An important remark ist the following. The contributions to the

ionization energy from E and E are of roughly the same magnitude; for

TF
instance, E supplies 59% to the large-Z ionization energy of 0.1158 2

3.15 eV, whereas E supplies 41%. How does this fit into the general

TF

picture of E being the second correction to E smaller by a factor of

-2/3 TF'
Z ? Indeed, Egs.(2-240) and (269) tell us that

EE(zéNlZI) - 3121a g=2/3 Q) /elq) . (2-205)
T (27
2/3

which is proportional to % for a given degree of jonization. If we,

however, compare the respective contributions not to the total energy

but to the energy required to remove a given number of electrons,

E(z,N) -E(Z,2) .1 Z—2/3 (0) -&(q) , (4-296)
ETF(Z,N) - Enp(2,2) 32a e(0) - el(q)
this ratio is proportional to Z_Z/3 q~2/3 =(Z—N)—2/3, which involves the

fixed common net charge Z-N of the ions under consideration. More preci-
sely, for weakly ionized systems, the numbers of Egs. (290) and (291)

produce

B(z,N) -E(2,2)
ETF(Z,N)-ETF(Z,Z)

= 1.448(z-M) "%/3 (10,1979 3-0.0914%Y/3+ . . )
(4-297)
In view of

/3 = (z-m¥/3 V3, (4-298)



239

this is an expansion in powers of Z—W3 for a given net charge Z-N. Such

is the situation when asking about the ionization energy, the net charge
being one then.
Since our derivation and evaluation of E made extensive use of

the fact that it is a small correction to E its application to circum-

TF'
stances in which the contributions of E and E are of comparable magni-

tude need not always produce reliable rgzults. Fortunately, nothing went
wrong when the ionization energies (294) were calculated, as we are re-
assured by Fig.8.

Here is a historical remark. Attempts at calculating ioniza-
tion energies in extended Thomas-Fermi theories have been made already
in the 1930's. Since the analytic treatment of the energy of weakly
ionized atoms was not available then, one had to rely upon rather crude
numerical solutions of the TF equation for various degrees of ionization.
The results thus obtained did not agree well with the experimental data,
unless some ad-hoc modifications of the description were introduced. The
discussion presented above shows that the essential ingredients are the
coefficients in the expansions (290) and (291). These are hard to get
by if one depends upon evaluating expressions like the integral (269)
by purely numerical means.31 From looking at the results reported by
'Gombés32 I get the definite impression that said ad-hoc modifications
were aimed at producing a statistical-model prediction that does not
primarily agree with the experimental ionization energies of the inert
gases, but would go through the oscillations of Fig.8 in a symmetrical
way, instead. Certainly, there is good intuitive reason to expect the
statistical-model prediction to average over the oscillations due to the
atomic shell structure. However, as pointed out above, the anticipation
of good agreement for the inert gases is supported by physical intuition
quite as well, if not more so. Anyway, now fifty years later, we do not
have to resort to guesswork any longer, because numerical solutions of
the TF equation ceased to be the main tool for the study of weakly ioni-
zed systems.

Minimal binding energies (chemical potentials). In the discussion of

ionization energies we were interested in the energy change due to the
removal of one atom, that is due to changing the number of electrons N
by unity from N=Z to N=Z-1. A related question concerns the energy change
caused by an infinitesimal variation of the number of electrons, which

exhibits the quantity g, the minimal binding energy of the electrons:

E(Z,N+6N) - E(Z,N) = 6N a_aﬁ E(Z,N) = =8N z(2Z,N) . (4-299)
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In thermodynamics, the derivative of the energy with respect to the par-
ticle number is called the chemical potential, usually denoted by pu.
Thus we have the simple relation

wi(z,N} = - ¢(2,N) , (4-300)

stating that the‘minimal binding energy and the chemical potential dif-
fer only by their sign, whereby ¢ (Z,N) is a non-negative gquantity (be-
cause the effective potential tends to zero at large distances).

In the statistical model, we have

o (

gstat = a—l\’f E) ’ (4_301)

+
ETF

since the Scott correction does not depend on N. For N<<Z, combining
Egs. (2-289) and (281) with Problem 2~7 produces

- 2 ~2/3 - N2
Lopar = 0-3816 2° N (1-1.6944 =+ 0.6360 ()" + ...)
+0.2885 2 N /3 (1 - 0.9203 §_0_0102(§)2+ 0. (4-302)

In the circumstance of weak ionization, g =1-N/Z<<1, the respective re-
suit is obtained from Egs.(291) and (290); it i533

4/3 3 2y/3
Lopar = 0-1104(2-N) /3(140.9170q"/ 3+0.8148¢2Y/ 34, . )

+0.1142 (2-M) 273 (140726197 3+0.542142 /34 ) . (4-303)

In the previous section, 1t was emphasized that our results ob-

tained by treating E as a small correction to E are only applicable

in situations where the dominant contribution ithhat of the TF part,
indeed. For Egs. (302) an¢ (303) this means that Z3/N or Z-N must (rough-
ly) exceed unity, respectively. As a consequence, Eq.(303) does not im-
ply Cstat =0 for neutral atoms. Knowledge of the chemical potential for
neutral atoms can only come from solving the new differential equation
for the effective potential. What we can gain here is some insight about
the relative size of r(%Z,Z). Since the neutral-atom value of 7 is zero
in the TF model, we have

Corat (2:2) = T(2,2) , | (4<304)

where Z denotes the contribution to ¢ due to the exchange energy and the
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guantum corrections. Now

£(z,2) < z(z,N) for N <2Z , (4-305)
. . . . . 2/3
where according to (303) the right-hand side is proportional to Z
for large % and a given degree of ionizations. We can therefore infer,
that the neutral-atom value of Z, and thus of Cstat’ is of a smaller

1/3

order in powers of 2 , presumably

1/3 0/3 -
Zstat(Z,Z) v 7 , or 7 . (4-306)
Note that this statement is nothing more than an educated guess. There

is some numerical support for the notion that g (2,Z) is constant in

%z, this constant being about 0.009; details wilitgz Supplied below,
when numerical solutions of the new differential eguation are discussed.
The minimal binding energy { (or the chemical potential u) is
a purely theoretical quantity. It cannot be measured experimentally,
and making contact with the concept of electronegativity34 does not
change this situation, it's only a different name. Furthermore, in view
of the discrete nature of the bound-state spectrum of the independent-
particle Hamilton operator, 7 is not a uniquely defined quantity; in an
exact treatment any value out of a (small) range is equally good. In
the models discussed so far, the energy depends continuously on the
(large) number of electrons, and since the formalism allows for non-in-
teger values of N, there is no difficulty in considering infinitesimal
variations 8N, as in (299). The physical situation that justifies such
a procedure is, of course, that of so many electrons that the change of

electron number by one can be regarded as a tiny change of N.

Shielding of the nuclear magnetic moment. In contrast to the N-deriva-

tive of the energy E(Z,N), the Z-derivative

2
92

E(Z,N) = - <%> , (4-307)

[see Eg. (1-96)] has an experimental manifestation. It determines the

magnetic shielding of the nuclear magnetic moment by the electrons. To

make this point, we repeat the argument given by Lamb.35
An external magnetic field go' described by a vector potential

>

Ao,

B, = Vx&, , (4-308)
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induces an electric current in the atomic electi‘ons, given by
F@ = - a A (H) 0@, (4-309)
where the minus sign reflects the negative charge of the electrons,
and the fine structure constant a = 1/137.036.. shows up because the

speed of light equals 1/a in our atomic units. The corresponding induced
magnetic field is

T, >
> > >, i(r?)
Bipg (F) = Vxa [(dz) —1-—+_+,
Ea (4-310)
= o [(@ENFF) x T =
| B
In particular, at the site of the .nucleus at T = 0, we have
> > T > 1
Big(®) =a [@)jE xv ¢ . (4-311)
Now, if ]—§O is constant (over the volume of the atom), we can use
£ (®) =3B xT , (4-312)
implying
B, (0) = -+ a® B _-[(dP) n(@ I 3 (4-313)
ind - 2 % 5 f r rr -

The electron density in an isolated atom is spherically symmetric,

n(¥) =n(r) , and therefore the replacement

< T T 2
T L9 (4~314)
rr 3

can be performed in the integrand. Thus

> >
Bind(o) = " %8s - (4-315)

with the shielding coefficient S, defined by36

o, =+ a [(@nm/r=3d <I> . (4-316)

The numerical value of the factor in front is 1.7750 x 10_5.

The total
magnetic field at the site of the nucleus being _ﬁo +§ind(0) , the inter-

action energy of the nuclear magnetic moment EN with this magnetic field
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is
— Gyt 1By + By 4 (001 = = L T(1 -0 B ]
(4-317)

> >
- (-0 dugl-B,
showing that due to the shielding by the electrons, the nuclear magne-
tic moment -appears to be smaller by a factor 1—om than its actual value.
For a neutral atom, the Z-derivative of the energy is to be

computed by

3
A E(Z,N) |

[t}

d 3

— E(%,2Z) - == E(Z,N) |

N=z 92 5N N=7Z

(4-318)

E(Z,2) + 0 (Z,2)

&le

In the statistical model, we know E(Z,Z) in Eq. (267), and the reasoning
of the preceding section taught us that 7 (Z,Z) is of higher order in
Z_1/3 than the terms of dE/dZ. Consequently,

4/3 5

= (3.1840 z%/3 - 1.7750 2+ 0.7985 22/3) x 107> , (4-319)

(Om)stat
for neutral atoms. Since highly precise measurements of nuclear magnetic
moments are performed on atomic beams, the neutral-atom predictions for
o, are the only ones of immediate interest. Of course, the corresponding
expressions for ions can also be produced, by differentiating the re-
spective energy formulae.

In these experiments one always deals with neutral atoms, so
that the magnetic shielding is present all the time. The magnetic mo-
ment of the bare nucleus cannot be measured independently. As a conse-
guence, the shielding factor 1—om itself is not available experimental-
ly. One must entirely rely upon theoretical predictions of its value.

In other words: the test of Eq.(319) is, once more, performed by com-
paring with another theoretical calculation, for which the HF method

is the natural choice. This is done in Table 1.37 The relative deviation
is noticed to be less than 1% for Z>10, less than %% for Z>25, less than
%% for Z>62. Concerning the shielding factor 1—om the two theoretical
values differ at most by 0.00003; a small amount, indeed. This happens
for mercury (z=80), for which the HF calculation yields 1—cm=0.99027,
whereas the statistical model gives 0.99030. Again the semiclassical
treatment has proven to not only supply an understanding of the analy-

tical dependence on the atomic number, as expressed in Eg. (319), but



244

Table 4-1. Comparison of HF and Statistical-Model predictions for
1050m.
Z  HF s z HF su
1 1.8 . 2.2 30 252.2 251.3
2 - 5.99 5.74 35 312.1 310.9
3 10.15 10.11 40 374.2 373.9
4 14.93 15.13 45 440.0 439.9
5 20.20 20.68 50 508.6 508.6
6 26.07 26.70 56 591.9 594.4
7 32.55 33.13 62 681.7 683.8
8 39.51 39.94 68 776.4 776.3
9 47.07 47.09 74 873.6 871.9
10 55.23 54.55 80 973.0 970.4
15 96.12 96.02 86 1072.8 1071.6
20 142.3 143.2 94 1210. 1210.5
25 194.2 195.2 102 1355. 1353.8

also to produce highly accurate numerical predictions, not inferior

to results obtained by the much more involved HF method.

Simplified new differential eguation (ES model). The evaluation of the

energy correction E as a small correction to the TFS energy has proven
quite successful. Let us now try to incorporate the exchange energy and

the quantum correction to E, into the energy functional itself. At the

present stage, we shall be ;atisfied by keeping only first order terms,
so that we get a simplified picture without the detail supplied by the

plethora of Airy functions that one meets, for instance, in the density
expression (210).

We are aiming at a description that enables us to study the
outer reaches of the atom. Consequently, one simplification will con-
sist of paying little attention to the details of the special treatment
of the innermost electrons. This is illustrated by combining the TF ver-

gion of E1(V+;) and the leading correction (97) into

B (ver) = (@) [~ oz -2 (v+5) 13+ -2 (ve)

1/2V2V}

+ CSBE , (4-320)
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where the initials CSBE are to remind us of the necessity of making
corrections for the strongly bound electrons eventually. The electron-
electron interaction energy Eee(n) includes the exchange energy in the
form of the Dirac approximation (262) (do not forget that it was Jensen
who actually found this expression); thus

1 > > n(;)n(f')
E__(n} = 5 f{dr) (dx') 50—
ee 2 j i;_r'l (4-321)
1
43

- [(dh) feian?n (@143

The stationary property of the energy functional (2-434),
= - [(a% z - -
E(V,n,5) = E,(V+g) - f(dr) (V+ QIn+E__(n) -¢N , (4-322)
under infinitesimal variations of both V and n implies

- L 2w+ lianemy /3 L 2
7 U (V+ = (3n2n) + 3

3/2 —1/2v2v

=n = gepl-2(ven) 172 - 2w ]
(4-323)
1 2 1/2
+ gV [-2(V+g) ] + CSBE .
What is subtracted from Vv on the left-hand side is, of course, the ex-

change potential Vex’ defined by

>
6, E, = [ldn)env__ , (4-324)

in the Dirac approximation, that is

. _ 1 2.,1/3
Vex = n(3n n) ’ (4-325)

as it results from the exchange energy term of (321).

Consistent with the strategy of keeping the corrections only
to first order, we bring the Laplacian on the right-hand side of (323)
to the left-hand one, where it supplements the exchange potential by
one sixth. At this stage, we have

_1 2 7 .2 .1/3 . 2
i v (V'FEE(3H n) -+E)

iwﬂv+5

_ 1 3/2 4n T 1 ~-1/2
= o [-2(v+g) 17751 + —[-2(V+7) ] }
3nZ 3%7[-2(V+€)]3/2 6T

+ CSBE : (4-326)

.
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The inclusion of Z/r into the Laplacian on the right-hand side does not
change anything,. because the resulting Delta function is multiplied by
an expression that vanishes at the origin. (Incidentally, one might re-
mark that this would refer to the domain of the strongly bound electrons
anyway.) Now, the second term in the curly brackets is already a correc-
tion to the unity to which it is added, so that the TF evaluation

1

2 Z, _ 1 3/2 -
- m v (V+'f) = 3}—2‘[_‘2(V+€)] (4-327)

is justified. Then we obtain

- j% vz(v-+é%(3n2n)1/3'+g]
_ (4-328)
= #[—2(%:.)]3/2[1 +6—11{[-2(V+€)] 1/2)
1 3/2 1 -1/2y3/2
g 3 [-2(V+g) ] / {1 +gnl=2(V+g) ] / ) ’

the last step once more being a consistent first order apbroximation,

or finally,

- L v (v+Lian2m /342
4n v (V'FGR(BH n) +r)
(4-329)
= —1—([-2-(V+ )1 +—1—[—2(v+ )]1/2]3/2+CSBE
T 3n? 5 91 & -
This equation invites the introduction of a pseudo-density p,
-1 1 1/2y3/2 -
p = g {1-2(V+0)] + gml-2(v+g) ] /) (4-330)
in terms of which the physical density appears as
n = p+§-;11;z vA[-2 (V+c)]1/2 + CSBE (4-331a)
- 1 2 2 .1/3
= p'ﬁizﬁg VT (3" p) + CSBE . (4-331Db)

When this is inserted into Eq. (321), Eee reads

> >y
[(@¥) @) eLlelz’)
r-r'|

N =

ee

.
g [(@F) 2EL g2 302,70y 1/3
|z-z°

1

[ (ax) 4_r1ﬁ (3n?0 (5143 + csB -
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= 1 f(ad) @3y 2lzle=])
r-1'|

(4-332)

1
4T

—191— (@) o 3n2p 3143 4 csBE
where a two-fold partial integration has been performed, and only first
order modifications are taken into account. Please note the factor of
11/9 that multiplies the pseudo exchange-energy term. It is, of course,
the same 11/9 factor that we have seen in Eq. (265),
£ = (A_E+A E) = (1+2)a_E
ex qu 9/ Tex
(4-333)
=11
= g AeyE
Infinitesimal variations of p in (332) exhibit a pseudo ex-

change-potential

Jony

U =-

1 (3n2p)1/3

= P (4-334)

4]
]
0

to be contrasted with the exchange potential Vex in Eq.(325). It is
thus fittingbto supplement the pseudo density p with a pseudo potential
U such that

1

2 7. _
- a5 VU-T T2 =0 . (4-335)

Comparison with (329) implies

_ - 7 2. .1/3 _
U Uex vV o+ = (3n"°n) , (4-336)
or (to first order, again)
S 1/2 -
U v T8m [-2(V+D) ] . (4-337)

We use this U and the p of (330) to rewrite the second term on
the right-hand side of (322) consistently,

- f@n v+

=-J@h wedo-f@d eln ' Sl vy s csee -



248

= -f@h +do- @ L 2w 1'%

(4-338)

2

- (@ e /3 v2y

-
24n°?

/3 + CSBE .

1 2
+ 2 g [3n7p(0)]
The term referring to r=0 is part of the CSBE, where we incorporate it.
Further, the second and third terms are already corrections to the first,
SO we can rewrite them by employing the TF relations (for r#0)

o1 3/2 _ 1 2 ' _
P E gz »[ 2(V+g)] = Im v'v . (4-339)

Then
- f@n w+dn = - f@hw+d,
> 1 1722
- jdr) g [-2(V+T)] Vv
/ Jer? (4-340)
+ CSBE .

Likewise, E1(V+;) of Eqg.(320) can be expressed in terms of U+g, the out-

come being

> 1 5/2
E; = [(ar) (- 557x) [-2(0+2) ] (4-341)

s (D) == [-2(V+D)]

1/2_2
36m:2 / v

V + CSBE .

After adding the contributions (332), (340), and (341) the new statio-
nary energy functional is (tentatively)

1

2 1 5/2
Bpg (U, 0,2) = 52° + [(AT) (= 1gz) [-2(U+) ]

Lo 1 gy gy LLE)p(E')

- J(@h) (U+ Do+ 5 [(dT) (dr') &Ef%T—
-3
(4-342)

e LE. f  BAN= I
The CSBE have here been made explicit by exhibiting the Scott term 1/2 z2,
It is, therefore, understood that (342) should not be employed for cal-
culating atomic properties which require an accurate density at small
distances.

The functional (342) plus the relations (331b) and (337) de-
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fine an extension of the TFS model which has agquired the name ES model,
reflecting the initials of the authors of Ref.38, where a variant of
(342) is derived.39 This model incorporates the quantum corrections to
E, and the exchange energy in the simplest, though accurate fashion. It
is particularly well fitted to studying such properties of atoms that
are sensitive to the outer reaches of the atom, inasmuch as in the vi-
cinity of the nucleus the pseudo density p has the characteristics of
the TF density. With the necessary changes,40 this is the first model
in the development that has a fair chance of predicting realistic elec-
tronic structures inmolecules; to my knowledge, no one has worked on
such an application as yet.

Before continuing the discussion of the ES model, I must offer
a remark on the Thomas-Fermi-Dirac (TFD) model. It is obtained by exten-
ding the TF picture by accounting for the exchange energy only, without

making CSBE or including the quantum corrections to E.. The stationary

1
TFD energy functional is therefore

1
1512

5/2

(V,n,z) = [(dF) (- ) [=2 (V+7)]

ETFD

- f(d;)(v-+%)n-+%j(d})(d;')zﬁ§;§i£Ll
r-r'|

(4-343)

- J@hH s or’n Y3 -
It looks quite similar to the ES functional (342). It is essential to
appreciate the enormous differences between the two models. It is not
only the factor of 11/9 and the Scott term %Zz that distinguish {343)
from (342); there are the additional relations (331b) and (337) which
state that U and p are not the effective potential and the physical den-
sity themselves, in contrast to the variables V and n in the TFD func-
tional. As the whole development shows, the TFD model is somewhat physi-
cally inconsistent because the leading correction is left out and only
part of the second correction is accounted for. Keeping the promise gi-
ven at the beginning of this Chapter, we shall not spend time on inves-
tigating the implications of the rather irrelevant TFD model.

The stationary property of the ES functional (342) is stated
above, but we still have to demonstrate it. The change in E due to in-

ES
finitesimal variations of U, p, and z is

8By = [(@B)6u{z-(-2(0+r) 132 0}
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+ f(df)&p{—(u-r%)+f(d?')T%éﬁé%-%%(3nzp)1/3}

" (4~344)
- sc{N - [@) 5y (-2 (U )12/ 2)
Now, Egs.{(330) and (337) can be combined into
p = shpl-2wee) 1Y%, (4-345)

so that the curly brackets multiplying &U vanish in (344). Further, Egs.
(334) and (335) imply that the contents of the curly brackets multiply-
ing 6p are a constant; and in view of the boundary condition obeyed by
Vv, and therefore also by U, at infinity, this constant equals zero. Fi-
nally, the Laplacian term in (331) integrates to a null result, with
the consequence that

1
3m?

N = [(@dD)p = [(@D)xipl-2(U+) 132 (4-346)

Therefore, EES is indeed stationary under infinitesimal variations of

U, p, and z.

Upon introducing an electrostatic pseudo-potential

- o _ 11 2 \1/3
Ueg ZU " U = U 911:(3Tt P
(4-347)
_ 11 1/2
= U+ gol-2(U+0)] '
the differential equation (335) reads
1 2 Zy _ -
- I v (Uesi-;) = p . (4-348)

This will be a useful equation determining U only if p can be expres-

es
sed in terms of Ues‘ In the first place, both UeS and pare given as al-
gebraic functions of U and 7, Egs.(345) and (347). Since Eq.(345) alrea-
dy presents p as a function of -2(U+;), we need to invert the relation

/2

v - _ _ 22, 1 _
- 2(Ue +7) = 2(U+7) 9n[ 2(u+g)] (4-349)

S

to exhibit -2(U+tz) in terms of —2(UeS+C). (Recall that, as always, square
roots of negative numbers are zero.) For -2(U+%) £0, we have simply

- 2(U+zg) = - 2(UeS+E) ’ (4-350)

whereas in the situation -2(U+%) >0 we obtain, after completing the
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square,
_ 1/2 1142 _ 11,2 _
- 2(u *t) = ([-2(U+e)] 77 - o) (3 (4-351)
11,2
2z - (_9E) ’
or
2012 = L /L2 2w st (2-352)

The left-hand side being positive, the lower sign is an option only for

(;1)2 <*2(Ues+g) < 0. For —2(U +C) <—(ll)2, the unique relation is

(350); for —2(Ues+;)> 0 we have equally unlquely

2
- 2(U+r) = [ +/(‘1 N [—2(Ues+g)]} ) (4-353)

However, in the range —(11)2 —2(Ues+;) <0 there is the choice between

(350), (353), and

2

- 2(U+z) = [;_ ,/(11 Z, [—2(Ues+§)]j . (4-354)

Thus, there is no unique relation between p and —2(Ues+;) in the first
place. This is troublesome. (The same difficulty occurs, of course, in
the TFD model.)We have noticed here that Egs.(342), (331b), and (337) do
not suffice to define the ES model. It has to be supplemented by an in-

junction for relating p to U in a unique way. The natural and usual

es
procedure is to pick a certain Uo in the range

(o)
N

Ys

N

BNof

(gl) = 0.0757 (4-355)

and to use (350) for Ues+;:>Uo and (353) for Ues+c<iUo, whereas (354) is
never employed. The new differential equation, obeyed by Ues’ is then

2 7y _
ViU g+ =0

&

3
1 11 2
-3——[ +/( +[2(U +?;)]] , for Ues+;<Uo ’
= (4-356)
0, for Ues+-;> UO ’
the two ranges being the interior and the exterior of the atom.
Just inside the edge of the atom, the value of o is

3
[, fA20 _
LS LTI (4-357)

El (9n
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just outside it is zero. Obviously, this model does not provide a reali-
stic description at the edge of the atom. Nevertheless, it represents an
enormous improvement over the TF model, as far as the outer regions of
the atom are concerned. (We shall report the results of a specific cal~-
culation shortly.)

For the two limiting values for Uo in (355) the corresponding

po's are the limits in the relation

1

1323, 11,3

2)320, 2 sirlgh)
gn’ = Po * 3m?Z'On '

v

( (4-358)
their decimal versions being 0.0159 and 0.0020, respectively. Thus °

is a small number that does not depend on Z, in contrast to the density
of the bulk of the electrons which is proportional to ZZ. This observa-
tion is reassuring, because it means that no prediction of the model will
be very sensitive to the particular choice made for for Or, turning the
argument around: any result sensitive to the value of o must not be
trusted.

The appearance of an additional parameter Uo (or, eqguivalently,
po) is, of course, annoying. The more so, since the model does not se-
lect an optimal value for Uo - there is none. The resolution of this
problem must come from an improvement of the description which removes
this deficiency. Just this was the motivation for developing the treat-
ment of the quantum corrections and of the exchange energy as presented
in the earlier sections of this Chapter, and as initially reported in
Ref.8. Readers familiar with the usual derivation of the TFD model will
recall that there the question of the value of the density at the boun-
dary (that is jdst inside of the edge of the atom) is positively ans-

wered by requiring

n = glg)" . (4-359)

The corresponding value of the pseudo density in the ES model is obtained

by supplying the necessary factors of 11/9,

-

1 71 53 _ _

0o = gmrlg x7z)” = 0.0039 . (4-360)
This needs some clarification in view of our insistence that there is no
best value for Por For this purpose, we review the argument, that is usu-
ally put forward in favor of the "optimal" ng in the TFD model, in the
context of the ES model. We begin with incorporating the parameter UO

into the energy functional, where it is now expedient to use a functio-
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nal of UeS and . It is given by

Bpg (U, ,0) = [(dF) [E(U +8)-E (U) In (U, - (U +T))

= @ +H1? - gz, (4-361)

where the energy density E(Ues+;) is

E(U__+1) =-—rp [/

es 1512

11,2
9n

+1=2(U__+0)] - o)

4
[ I 2w o] (4-362)

es

Since [cf. Eqg.(356)]

0
a0 [1E 0 #0) -E ) In (0, (0 +0))
(4-363)
e AT TR b A 3)
=0

the functional (361) is indeed the correct one. Note, in particular,
that the term E(Uo) must be subtracted from E(Ues+c) to ensure th21con—
tinuity of the energy density at the boundary. The usual argument is
now the reguirement that this term is absent in the energy functional,
under which circumstances the energy density will be continuous only if
E(Uo) =0, implying

-

_ 1 _
Uy = 32l5g)" (4-364)

which produces (360) when inserted into (357). Fine, but there is no phy-
sical reason behind this requirement of vanishing E(Uo); the uniqueness
of Uo is simply an illusion. Certainly, different values of UO will lead
to different values of the energy, and these energy differences must be
irrelevant if we want to take the ES model seriously. Indeed, they are.

To make this point, we consider the change of E resulting from an in-

ES

finitesimal variation of Uo by BUO. Since EES is stationary under vari-

ations of both Ues and ¢, their induced changes do not contribute. Con-
sequently,

L. 3E(U)
U_“ES T T 5Uof(dr)_7ﬁ2;_ n(Uo“(Ues"'C'))

o4
=
|

(4-365)

- &U_f (ar) o0 (U= (U +D)) -
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Under the circumstance of spherical symmetry, as is the situation in an
isoclated atom, the step function limits the domain of integration to a
sphere of some radius ry- For r>>ro, the pseudo density p vanishes so
that the Poisson equation (356) implies
= - &N -
Ueg = = for r>r, (4-366)
which in conjunction with the continuity of Ues’ at r=r., produces the

statement

Z-N
5 fu . (4-367)

E =

Incidentally, this identifies UO as the minimal binding energy of neu-
tral ES atoms. [Note that a Z-independent 7 (Z,Z) is consistent with
(306).] In terms of R and Lo Eg. (365) gives for an atom

a = - — —
30, "Es T 73 o %o - (4-368)
From the numerical solutions of Eqg. (356), reported in Ref. 38 and dis-
cussed to some extent in the next section, one can infer a slow Z depen-—
dence of rS% as expressed by
11.5 x ZO'3 for UO =0 ,
r3 = (4-369)

o 2
0.25 11
30. X Z for UO (—9—1:[—) ’

NIy

for neutral atoms. With the corresponding values for s in (358), this

says
~0.77 x 2% for w =0 ,
3 N -
0, e -0.25 x 225 ¢ v o= 12 e
: or o 2'9w/ !
implying

P A FARAE
Egg (Ug = 0) = Byg{ U, =3 (am) )

(4-371)

< 0.04 2'/3

This amount is utterly irrelevant at the present level of approximation,

where the significant contributions to the energy are proportional to
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Z7/3, Z6/3, 5/3

and 2 . The argument sgupporting (364) and (360) is thus
recognized to be quite artificial, indeed.

We have discussed the mathematical aspects of the troublesome
boundary problem in the ES (and the TFD) model to some extent. Its re-
solution requires the recognition of where we have stressed the physi-
cal approximation too far. We postpone the necessary remarks on this
point for a short while to the benefit of reporting an application of

the model first.

An application of the ES model. Diamagnetic susceptibilities. The differ-

ential equation for Ues’ Eg. (356), acquires a simpler appearance upon

adopting new scales for r and Ues’ defined by

2,1/2
/ Yy

_ 3n _ -
=) = 1.00468 y (4-372)
and 2 )
- _ Joan e 111y e ¥ly) -
U () = - 2+35(52) ~5(57) v (4-373)

where we have already expressed the spherical symmetry associated with
an isolated atom. The radial function ¥(y) obeys (see also Problem 9)

2

3
(;—y) ¥(y) =y[(ﬁ’(y)/y]1/2 + 13] (4-374)

for y £Y, F 0.99534 L and is subject to the boundary condition

¥(0) = 6n(Z)3/?

Z = 1.43136 z , (4-375)

which states UeS -+ = Z/r for r-+ 0. The known form of UeS in the exte-
rior of the atom, Eg.(366), appears as

7

yly) _ 1 2(3_1'&)2[] - 1_1
= ) qv(0) (=-=—)
¥ 117 "o Y Yo (4-376)

5
for yzyo ’
where g = 1-N/% is, as always, the degree of ionization, and Egs. (367) and
{375) have been used. In terms of boundary conditions on V¥(y) at Y =Ygr
this reads
2
v ) /v, = 5 - 2359 v, (4-377)

and
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¥iy,) -y a¢ (yo) =q Y(0)

o dy (4-378)

The range of Uo in (355) gives a corresponding range for \y(yo)/yO in
(377),

T2y )y, 20 (4-379)
where we, incidentally, remark that the value of UO in (364) implies
‘P(yo)/yo = 1/144.

The differential equation (374) can easily be solved numerical-
ly, whereby integrating inwards from y =Y, to y =0 using ¢y as the basic
variable is the recommended procedure. The values of Yor reported in

38 The numbers refer to the pure-

Table 2, have been calculated this way.
ly diamagnetic closed-shell neutral atoms Ne, Ar, Kr, and Xe, along with
the singly and doubly charged positive ions having those electronic con-
figurations. The neutral-atom results have been employed in establishing

Eq. (369) .

Table 4-2. Values of Yo for inert-gas atoms and related ions. The left-
and right-hand columns refer to the respective extreme values in (379).

N Z =N Z = N+1 Z =N+2

10 2,805 3.737 2.296 2.569 1.928 2.050
18 3.010 3.957 2.551 2.865 2.206 2.359
36 3.231 4.191 2.821 3.179 2.504 2.692
54 3.349 4.316 2.964 3.343 2.662 2.868

The merit of the ES model is the improved description of the
outer reaches of the atom. A quantity sensitive to this part of the atom

is the expectation value of the squared distance from the nucleus,

2 1
rr =

= 1 [@He?n . (4-380)

Experimental data are obtained from measurements of the molar diamagne-
tic susceptibility
=Xy T XONI ’ (4-381)

whose unit Xo is composed of the fine structure constant a, the Bohr
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radius ao, and Avogadro's number N, according to

A

_ 1.2 3 _ -6 3 _
Xo =8 & 3 N, = 0.7920x 10 cm . (4-382)

Table 3 displays the experimental values for r2, derived this way. It
should be appreciated that the entries for the neutral atoms are well
established,42 those for the ions43 are unavoidably uncertain owing to
the necessity of measuring them in ionic crystals. __

In order to express the ES prediction for r2 in terms of ¥(y),
we first recall the relation (331b) which, combined with the differen-
tial equation (356), reads

— vz(g)

1/3} - ;; E (4-383)

_2[ 1 7-N 1 2
n =1y { 4H(Ues-+—zrj * 577 (317 0)

In writing this structure we exploit the known form of UeS outside the
atom: the contents of the square brackets equal zero for r:>ro. A two-

fold partial integration, therefore, produces (Vzr2 =6)

i To 2 Z-N . 1 2 .1/3
Nr° =6 é dr r [-Ues -—;—-+€E(3n p) } , (4-384)

where we have made use of the observation that the second Laplacian in
(383) is N&(T) and does not contribute to r2. Now we employ such rela-
tions like

_ _ 1152wty YY)
Ues (1) * U (55) = 3lz) |55 52|
Z-N _ Z=N _ %-N 1,112 11
“U_{r) - = = - = =5 () qv(0) (5- (4-385)
es 'O r T, r 2 n) [y g !
Loa?a/? - 14° Ll ey +1]
3 P 23n 7Tty t3]
and 1/2 5
2 _ 9m,11 3n 2
6 dr r° = =£(5) 2(37) av vy (4-386)
to arrive at the final form for numerical integration:
2 1 9y 1/271 2 o g
< RO GEveg) - o)
(4-387)

+ fQ)dy y(W(Y)‘ff%VYW{Y))} .
o
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Table 4-3. Experimental data for ;E.
N Z =N Z=N+1 Z=N+2
10 0.852 0.768 0.546
18 1.373 1.023 0.750
36 1.010 0.772 0.632
54 1.027 0.821 0.678

Table 4-4. Predictions for r? by the ES model, for ¥(yo)/yo =1/9. In
parentheses, the deviations from the experimental values, in percent.

N Z =N =N+ 1 Z2=N+2

10 1.626 (91.) 1.050 (37.) 0.732 (34.)
18 1.413 (2.9) 1.013 (-1.0) 0.767 (2.3)
36 1.152 (14.) 0.903 (17.) 0.737 (17.)
54 1.001 (-2.5) 0.819 (-0.2) 0.691 (1.9)

The results are shown in Tables 4 and 5 for the two extreme
boundary values W(yo)/yo =1/9 and \P(yo)/yo =0, respectively. One gets
the distinct impression that the first boundary condition, correspon-
ding to Uo= 0, outperforms the other one. The agreement with experimen-
tal values is within 3% for Z =18 and 54 in Table 4. A larger error
for zZ =10 is understandable; Z = 36 exhibits a quantum oscillation. In-
deed, in each column of Table 3 we witness a succession of increase,
decrease, and increase with growing N. This oscillatory behavior is
clearly a manifestation of the atomic shell structure. As such it can-
not be reproduced by the ES model. The numbers reported in Tables 4 and
5 are, nevertheless, an enormous improvement over the predictions of the

TF model, in which we have, for neutral atoms,

Table 4-5. Like Table 4, for ¥(yy,)/y,=0.

N Z =N Z=N+1 Z=N+2

10 1.992 (134) 1.110 (45.) 0.744 (36.)
18 1.667 (21.) 1.063 (3.9) 0.783 (4.4)
36 1.305 (29.) 0.943 (22.) 0.752 (19.)

54 1.116 (8.7) 0.851 (3.7) 0.703 (3.7)
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(e = 2 @) 2 hl-2v (212
67y 2
= Z-gdr (Vi (1)) (4-388)

6a’ F
=573 dx x F{x) ,
2230

or with the numerical value of the integral of 9.194,44

() o = 43.2/2273 (4-389)

This gives 9.3, 6.3, 4.0, and 3.0 for Ne, Ar, Kr, and Xe, respectively
- too large by factors of 11., 4.6, 4.0, and 2.9 when compared with the
experimental numbers of Table 3. No doubt, the ES model improves matters
considerably. Incidentally, we remark that a slightly modified version
of the TF formula (389), namely,

") 43.2
(P)gs = 3732 (4-390)
) gs (217321732

(o]

reproduces the ES numbers for neutral atoms, if one choses Zo =20.

. So we found satisfactory agreement between the ES predictions
for r? and the experimental data. It is true, that a further refinement
of the theory is required in order to correctly reproduce the measure-
ments within the experimental uncertainties (of, typically, a few per-
cent) for all the atoms inTables 3,4, and 5. But already at the present
level of accuracy the ES model does not perform worse than HF calcula-
tions,45 which yield the numbers listed in Table 6. The rather large de-
viations from the experimental values, even for the neutral atoms, are
somewhat unexpected. Could it be that this is an artifact of the spuri-
ous nodes that always occur in the numerical HF wave functions at large
distances, where, as a consequence, the HF densities are too large ?46

Please observe further that the N =10 numbers do not fit into the gene-

Table 4-6. HF predictions for r2 and, in parentheses, their deviations
from the experimental values, in percent.

N Z=N Z =N+1 Z = N+2
10 0.937 (10.) 0.641 (-17.) 0.472 (-14.)
18 1.446 (5.3) 1.086 (6.1) 0.857 (14.)
36 1.098 (8.7) 0.584 (15.) 0.741 (17.)
54 1.160 (13.) €.973 (19.) 0.843 (24.)
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ral pattern in Table 6. This casts some doubt upon the reliability of
the corresponding experimental data.
_ Since we are at it, let us also report the predictions for
r2 obtained from the description which keeps all the structure offered
by the Airy functions in Eq. (210}, for instance, along with the necessa-
ry corrections for the innermost electrons. The corresponding new dif-
ferential equation will be given below [see Eq.(504)]. Here we just take
a look at Table 8 which displays the numbers obtained for r2 in Ref.47.
With the sole exception of argon (N=Z=18), these agree perfectly with
the experimental data, given that their uncertainties are larger for
the ions. Incidentally, owing to some numerical difficulties with the
new differential equation for neutral atoms (see below), the Z=N predic-
tions in Table 8 are less accurate than the ones for ions with Z=N+1 and
Z=N+2. Please note, in particular, that the oscillatory functions Fm in
Eg.(210) supply just the right amount of structure in the densities to
reproduce the quantum oscillation at N=36: there is a decrease ~ increase
phenomenon in Table 8 just like in Table 3 (experiment) and Table 6 (HF).
We leave the ES model here, being content with demonstrating
its usefulness.in just one simple application;48 but not yet quite, inas-
much as we still have to deliver the discussion concerning the trouble-
some boundary condition, as promised at the end of the preceding section.
We shall thereby be led to models that differ only slightly from the ES
model and offer a more realistic description of the edge of the atom
without employing a differential equation much more involved than Egs.
(356), or (374).

Table 4-7. Predicitons for r2 by the new theory (not simplified to the
ES model). The deviations from the experimental data are given in the
parentheses, in percent.

N Z=NX Z =N+1 Z = N+2

18 1.46 (6.3) 1.036 (1.3) 0.786 (4.8)
36 1.03 (2.0) 0.813 (5.3) 0.664 (5.1)
54 1.01 (-1.7) 0.831 (1.2) 0.704 (3.8)

Improved (?) ES model. Electric polarizabilities. We now return to the

discussion of the troublesome boundary problem in the ES model. What is
the origin of the unrealistic behavior of the pseudo density p, which

decreases continuously until it reaches the value of % at which point
it instantly drops to zero ? [By the way, the physical density n(r) is
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even less realistic, because the Laplacian in (331b) produces Delta func-
tions at the location of the discontinuity of p(;).] Clearly we are pay-
ing a price for the simplicity of the model whose main feature is the in-

clusion of the exchange energy in form of the Dirac approximation (262),

1
4m3

B (n) = - (@) p3nfn@d3 . (4-391)

ex
This is a good approximation in the dense interior of the atom. In em-
ploying it without modification for calculating the contribution from
the outer regions of the atom, where the density is small, we have stres-
sed (391) too far. In other words: where the density is sufficiently
large to ensure that the Dirac approximation of the exchange energy den-
sity (wn4/3) is small compared to, for instance, the kinetic energy den-

sity (mn5/3), that approximation is reliable; in low density regions it
is not good enough. Since (391) comes from inserting the TF density into

the more generally valid expression (259),

20y (a0 p (212
Eex(n) = -1 f(dr ) gdc [§ET n(r')l (4-392)
where the relation
n(z') = 2<z'|n(-E-g"|T" > (4-393)

is to be used both to evaluate the integrals of (392) and to express E oy
as a functional of the actual density (for which ¢'=g) after these inte-
grations. Golng through this procedure with the TF approximation for the
right-hand side of (393) gives (391). This TF density is unrealistic at
the edge of the atom where V+zz0. There the corrections for the strongly
bound electrons are irrelevant and the gradient of the potential is prac-
tically constant, so that higher derivatives do not matter. Consequently,
at the edge the density is well approximated by [cf. Eq.(219)]49

n(@) = - 2@ |F, (v () (4-394)

with N
y(#) = 2y@Eee] (4-395)

129v (%) |23

Now observe that replacing the gradient here by its value at the edge

|2$V(f)|2/3 —~ V_ = const. , (4-396)
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results in an expression for the density

n@ =5 v E 2 /v) (4-397)

which is equivalent to (394) at the edge and reduces to the TF approxi-
mation when applied to the dense interior of the atom, where V+z is a
large negative number and the asymptotic form of Fz(y), namely [Eqg. (161)]

_ 2, ..3/2
F,(y) = 2(-y)

for -y>»1 , (4-398)
is available.

We are thus invited to insert (397) into (392), thereby thin-
king of VO as a parameter somewhat related to the gradient at the edge -
of the atom - not, of course, meaning that (396) becomes an identity at
this edge, but merely concerning the order of magnitude of Vg- Just as
for the Uo of the ES model, there is no best value for VO. To some ex-
tent it can be regarded as an adjustable parameter. There is, again,

a price to be paid for the simplicity gained in the transition from Eg.
(210) [or (219)] to (397).

The differentiation of Fz(y) produces F1(y), see Eq. (154), so
that the new approximation for the exchange energy is (see also Problem
10)

- - > 1 2 . 12 _
E  (n) = {(ar) 55 Vg y{})dy [Fly")] (4-399)

where y(?) is given in terms of the density n(T) by means of

> _ 1 3/2 > -
n(r) = 5=V '% F,(y(x)) . (4-400)
This reduces to the Dirac expression (391) where (398) is applicable,
which is the situation for y <-3/2 accoxrding to (171). Since Fz(-3/2)

= 0.371 this requires
nz (015 v )32 | (4-401)

In particular, for Vo—+0, Eqg. (391) is regained for all values of n(T).
The exchange potential that corresponds to (399) is obtained
by considering infinitesimal variations of the density. They cause a
change of y by 8y, given by
1 3/2

én = -5=V

5= VS E () &y (4-402)
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with the consequence

- . _ > 1 2 2
6, Egye(n) = [(dY) 8y = V' [F (¥)]
(4-403)
- [@% eni-v /% ()]
¢} 1
This identifies the new exchange potential [cf. Eqg. (324)]
- 1/2
Vex(n) = -V, F1(y(n))
(4-404)
- _yl/2 -1 -3/2
= VO F1(F2 (2nVO n)) ,

where we have, for once, inverted Eq. (400) formally. For densities that
are large in the sense of (401) this reduces to the Dirac expression
{325), as it must do.

So much about an improved local treatment of the exchange cor-
rection. Before discussing the corresponding improvement of the indepen-
dent-particle energy E1—CN, it is necessary to establish a criterion for
our judgement whether a modified, local relation between the (pseudo)
density and the electrostatic (pseudo) potential is more realistic at
the edge of the atom. A guantity that is very sensitive to the depen-
dence of the density upon the potential is the electric polarizability
ap of the atom.50 It measures the effectiveness of a weak external elec-
tric field E in inducing a dipole moment

d = {(ar) T n(¥) (4-405)

of the charge distribution inside the atom. We shall confine the present
discussion to the circumstance of no permanent electric dipole moment in
the absence of external electric field. In isolated atoms, this is the
actual situation, since the density is spherically symmetric as long as
there are no external fields.

The induced dipole moment is proportional to the applied elec~
tric field, if this field is sufficiently weak, and the factor expressing
this linear relation is the polarizability ap,

d=oa E . (4-406)
p
It is available experimentally from measurements of the static dielec-

tric constant € of (not too dense) gases. With ngas being the density

of atoms in the gas, the Clausius-Mosotti formula connects ¢ to ap accor-
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ding to

€-1 _ 4m _
-E—_’_'-z‘—-—:;—n o . (4 407)

The polarizability of a conducting sphere is simply the radius of the

sphere cubed, so that we can interpret

r. =z a3

4-408
o P { )

as an "effective polarization radius" of the atom. Experimental values
of rp (in atomic units) are listed in Tabl§18 for those neutral atoms,
for which a_ is known somewhat accurately. Also reported are HF pre-
dictions,45pwhich occasionally agree very well with the experimental da-
ta, but deviate substantially for many Z values in the Table.

Let us now discuss o_ in the context of ES-type models, in
which the physical density is calculated from a pseudo density as in Eq.
(331), which more generally reads

=, - 112 -
n=p 54 v Ugy (p) +CSBE (4-409)

and p is an (algebraic) function of Ugg t 41 as in Eg. (356),

Table 4-8. Experimental values for polarization radii r (EXP), com-
pared with HF predictions. P
2 EXP il Z EXP _HF_
2 1.114 1.14 16 2.6 2.85
3 5.45 4.76 17 2.4 2.60
4 3.36 3.74 18 2.23 2.37
5 2.7 2.85 19 6.62 6.33
6 2.28 2.27 20 5.54 6.11
7 1.96 1.89 21 5.37 5.65
8 1.75 1.70 36 2.56 2.76
9 1.56 1.53 37 6.84 6.77
10 1.39 1.38 38 5.7 6.72
11 5.45 5.01 54 3.00 3.31
12 4.2 4.57 55 7.4 7.61
13 3.9 4.20 56 6.5 7.70
14 3.3 3.58 80 3.24 4.34
15 2.9 3.10 82 3.66 4.29
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p () = p{U g (B)+e) . (4-410)

where UeS and r are determined by Poisson's equation

1 2
—4—TEV(U v

es ext) =P (4-411)

subject to the usual boundary conditions, and by the normalization
f@dp =n . (4-412)

Now, in performing the CSBE in (409), the density is modified by terms
that are spherically symmetric and do not contribute in (405). Further,
the Laplacian of (409), when inserted into (405), integrates to a null
result. Thus, n can be equivalently replaced by p in Eq. (405),

i = [@ze(® . (4-413)

Considering a weak constant electric field E in addition to the Coulomb
field of the nucleus, we have

-~ R.7 (4-414)

HxN

Vext

as the external potential in (411). Consequently, UeS consists of the

(0) (1) . (2)

§==0 texrm U and contributions U _; U 77 ... which are linear, qua-
es es es
dratic, ... in E:
_ +(0) (1) (2) -

Ues = Ues + Ues + Ues + iee (4-415)
Quite analogously, one has

o= M 2 (4-416)
and

r = Q(O) + C(1) + 5(2) oL (4-417)

In view of Eq.(410), we have

(0)

P = oY 4 (0

es (4~418)

and

3 0
p(1) - SUZS(Ués) +C(O)]X(Ué;) +C(1)} =
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=o' @ (v @My (4-419)

Since p(o) already integrates to N, the spatial integral of p(T) must
vanish. This implies 5(1) =0, so that

oM@ = D@ . (4-420)
If we measure Ué;) in multiples of E-;,

(1)~ _ - _

Ugs (r) = Eer v(xr) , (4-421)
where, of course,

v(ir) >1 for r-e« , (4-422)

then the induced dipole moment is, to first order in the applied field,

given by

d=1@n? oM@ =2 [@H -0 Ive) (4-423)
where T T can be equivalently replaced by % rz'qt so that we find

o, = 47“ (j;ir P (n) v . (4-424)

Because of the large - r behavior of v(r), displayed in (422), p'(r)
must tend toward zero faster than 1/r3 as r +w. Further observe that
o' (r) is negative, provided that the function of (410) is reasonable
and gives a smaller density for larger values of Ues(f)-+g. Then ap is
ensured to be positive, as it must be.

The radial function v(r) is determined by the first order terms
in the Poisson equation (411), which are

A2 L3 - _

o VUG,  +Eer) = , (4-425)

and produce, after inserting Egs. (420) and (421), the differential equa-
tion

42 4 4 :
2+ 2L apmive) =0 . (4~426)

The corresponding integral equation
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(£) = 1 -1 far ¢3 i:—5[—4—TL “(r')lviz') (4-427)
v(r) = r(J; 72 3P

incorporates the boundary condition (422). Here r, and r, stand for the
smaller and the larger one of r and r', respectively. Upon using the
identity

= e (4-428)
>

in conjunction with Eq. (424), this integral equation appears as
o ©
r',3 4n
vir) =1 - £+ Jj;dr‘ e () -1 L=t (x) dv (x?) (4-429)

Since p'(r) approaches zero faster than 1/r5, the remaining integral

tends to zero. faster than 1/r3, with the consequence

a,
vi{r) =1 - -@ for large r , (4-430)

2]

or, with (421) and (406),

(1) . > -
Uy = - BT+ 3.2_3 s (4-431)
which correctly exhibits the dipole potential. At short distances, it

is fitting to use the identity

-5 - F2 - Dntery (4-432)

instead of (428), in (427), which gives

r '
v(r) = v, + cj) ar' v (1-E0%) - Lo @nivie (4-433)
where
v, =v(0) =1 - fwdr r[—4—n—p'(r)]v(r) (4-434)
o o 3 :

In particular, if the connection (410) between the potential UeS and the
density p has the TF form for r+0, then

4n .4

' 27
- 3P (r) = AR

X

1/2

) for r=0 , (4-435)

which, inserted into (433), implies the small-r form
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v(r) = v 1 +-217—6T~£(2Zr3)1/2

L (4-436)
After picking an arbitrary (positive) value Go as a guess

for Vs One can then use this initial behavior of v(r) to start the nu~

merical integration of the differential equation (426). Since this equa-

tion is linear in v(r), the solution v(r) thus obtained will be a multi-

ple of the actual v(r), which has the definite asymptotic form (430),

approaching unity for r-»e«. Inasmuch as

Go SE
vi(r) = ;;(1- ra)
 3a for roe , (4-437)
4 5 =_°_ P
tdr vix) vy r?

we employ the scale invariant expression

a_ = lim {r3[1+m—)—/—r—]_11 (4-438)
P roo av(r) /dr

to extract the polarizability. In practice, this limiting process simply
means that we have to pick a distance r so large that p'(r) is essenti-
ally zero.

Now, after this preparatory general discussion, let us see
what requirements emerge on the (U__+r)-dependence of p. First observe

that Ues+c tends to ¢ as r *,

es

Ues + T > T 20(Z,Z) = to 7 (4~439)

while p tends to zero. This implies
-> >
oU  (x)+c)= 0 for U (r)+zzt (4-440)

which condition is satisfied both by the TF and by the ES relation,
where §O=0 and CO=UO, respectively. As a consequence of (440), atomic
ions have an edge at r=r, with

s %N = -
Ues(ro) +€(Z,N) - ro + ;(ZIN) CO r (4 441)

beyond which the density equals zero, whereas neutral atom may extend to
infinity, as is the situation in the TF model, or be limited to a finite
volume as well, as realized in the ES model. Then consider, as a genera-

lization of the TF relation, power laws
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U D) = ulg-(U_+0)1°"

tg
es {4-442)

for Ues+ LS 0o v
with constants p and v. This produces, in conjunction with the Poisson
equation (411),

)v+1

(4-443)
s

42 _ -
I b—rUeS) = 4mp r rUe

as the differential equation governing the large-r asymptotic form of
the neutral-atom pseudo-potential Ues(r). For 0 <v< 2, this asymptotic
form is algebraic,

Ugg (1) — —(l%ﬁég>1/“ 2/ , (4~444)

and for v=0 it is exponential,
e /AT (4-445)
Ues(r) - - exp (~ /3T ¥)

with an undetermined constant Ux.The corresponding asymptotic forms of
p' (r) emerge from

=o' (x) % p(v+1) [-U ()17 (4-446)
for these neutral atoms, with the outcome
12%1%%15;121 a é% , for 0 ;v <2,
-p'(r) — (4-447)

L = const. ;, for v =0

Such p'(r)'s result in infinite polarizabilities for neutral atoms, be-
cause p' (r) must tend to zero faster than 1/r5 in order to produce a fi-
nite ap. This we observed at Eg. (424); a different argument, based upon
(426) and (438), is the subject of Problem 11.

We thus conclude, that the power-law form (442) cannot be the
correct potential-dependence of the density, at least for ¢ <v< 2. The
range v < 0 is immediately disposed of, because there Eg. (446) implies
a growth of ~p'(r) at large distances. On the other hand, for v 22 the
potential Ues itself decreases slower than 1/r, certainly an unrealistic
behavior. The inference is therefore, that p must approach zero faster
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than any power of co—(UeS+g) as this quantity tends to zero (from posi-
tive values, of course). In the ES model, the step function in (356)

[or (363)] ensures this. But here the transition through the atomic edge
is too rapid. In p'(r) we meet a term

=o' (x) = ... + p, 8(U_ - (U_+T)} (4-448)

e}
which in the differential equation (426) gives rise to a discontinuity
of dv(r)/dr where Ues+c = Uo' For ions, this is at the edge at r=r on-
ly, for neutral atoms, however, Ute= U, in the entire exterior of the
atom, that is for all rz r,- No sensible interpretation can be given to
such a p'(r). The only way out is to insist that p*(r) =0 for r>rg al-
so for neutral ES atoms. Then, in view of Uesm (ro—r)2 just inside of

the edge of a neutral atom, the Delta function in (448) implies v(r=ro)
=0, so that ap=r2, or with (408) and (369):

2.2x2% 7 ¢ T =T, 5 3.1 X 20-08 (4-449)
which - surprisingly enough - roughly reproduces the numbers of Table 8
order-of-magnitude wise. Of course, we are not going to take (449) seri-
ously.

In search for a density-potential relation (410) that is de-
creasing, at the edge, more rapidly than the power law (characteristic,
for instance, for the TF model) but not guite as sudden as the step func-
tion present in the ES model, one naturally recalls the smooth transition
associated with the Airy functions in Egs. (210) or (219). With the em-
phasis on the vicinity of the atomic edge, an improved treatment of the
exchange energy was achieved above by replacing the TF relation by (397).
In striving for an improved version of the ES model, we shall use this
insight about exchange and perform the replacement

2

[*]

2
3, 1 ah) R de'[F1(y')]2 (4-450)
y ()

11 1 2
-5 [0 g (o) 7

in the energy functional (342), where y(;) is determined by

o(B) = = v, (y(@D) (4-451)
This is, of course, simply the exchange energy of (399), supplied with
the - by now familiar - factor of 11/9 and treated as a functional of
the pseudo density p(;).

Concerning the corresponding modification of the first integral
on the right-hand side of (342), the observation of
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1 5/2 5/2 _
- In VO F3(2(U+C)/Vo] > - 15n2[ 2(U+z)] ' (4-452)
for VO—rO ,
invites the replacement
5/2
j@ar) (- 5 o) [-2(Ur2) 1772 5 [ (@) ( —4n o P, (2(Ug) /v ) (4-453)
with the consequence
1 3/2
= 5=V 2{2(U+c)/vo) . (4-454)

Although this looks gquite natural, it is simply not good, because p(?)
does not approach zero at large distances, where U+ 0 and FZ(...) >
F2(2g/Vo)>O. Instead of (453), I would therefore like to propose

[@8) (- 7=) [-2(0+0) 1772 5 [(at) & v 2 [r, ) -F () /B, ()]

(4-455)
with the understanding that y is determined by

-(sg) = 3V, F, (¥)/F, (¥) (4-456)

in the classically allowed regime where -(U+g)>0, whereas the integrand
in (455) is set equal to zero for -(U+z)<0. Note that this is also a pro-
perty of the original integrand with its TF structure. In view of this
consequence of (456):
3 Fy(9IF () _
8U = 7 V 1-——s——1 &y , (4-457)

the response of (455) to infinitesimal variations of U is

5 - - - - - -
@) & o2 1m, () + 28, (D) - FADIE (D) /FE )] 6
= @ £ v @ s, (4-458)

which identifies p as a function of U+g,
1 3/2 -
=V R (), for -(uez)>0
p = (4-459)
0 , for -{U+g)<0 ,

with § from (456), of course.
Before continuing the study of the implications of Egs. (455)
and (456), it seems necessary to offer some motivation for these rela-

tions. Consider the elimination of the pseudo potential U from the ES
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energy functional. It amounts to

5/3

J @) { = 557 0-2(0+2) 1%/ - (@r2) 0} > [ (@F) iy (302p) (4-460)

in (342}, quite analogous to the transition from ETF(V,n,E) of Eq. (2-435)
to the TF density functional (2-95). The same procedure performed after
the replacement (455) gives

> 13 .5/2 - 2 - -
f(dr>{8—n V) CIF5(y) - Fy (¥)/F (¥)] - (U+g) o}
(4-~461)
3 .,5/2 -
> [(dD) = v, / Fy(¥)
where now y is determined by the pseudo density through (459). For large
p (on the scale set by vy 3/2 ), ¥ is large negative, so that with (161)

P = 3r1c2 V3/2( 7>/ (4~462)
and
3 5/2 = . 1 5/2, -.5/2
B Vo F3(y) ® Tomz Vo (V)
(4-463)
= 10 2(373 o) 5/3

Thus we recognize (461) plus (459) as the natural modification of the
right-hand side of (460). Translated into the potential language this
produces (455) plus (456), where (459) becomes an implied statement.

We shall now put things together. The modifications (450) and
(455) turn the ES energy functional (342) into that of the Modified ES
model,

Eygs (Urpr2) = 327+ [(@h) g v2/ 215, () - F2(9)/F, ()]
- @ w+Lo+d [ @F) ﬁ)—L(’:’T (4-464)
|T-T
V2 e

> 2
lglf(dr)ﬁif]dy'[b](y')] - N,

where v and y are related to U+z and p by Egs. (451) and (456). In the
limit vo+o,theES functional (342) is reproduced. The stationary property
of this new functional with respect to infinitesimal variations of U im-

plies (459), and the consideration of 8p produces

- w+d 4 [raE) |§‘f"| fU =0, (4-465)
Ir-r
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or in differential form

1 .2 Z e
- _ 4y 2 4-466
el (U Uex+r) olxr) ( 66)

where the new pseudo exchange-potential

S I N V0 4-467
Uey = 5 Vo E1(y) ( )

reflects the induced modification of (334). In order to establish the
potential-density relation (410), first note that Egs. (451) and (459)
vield y=y, then conclude that for U+;>0 the vanishing of UeX is implied,
so that the electrostatic pseudo-potential Ues’ defined as in the ES mo-
del, by

U =U ~-U (4-468)
es ex

agrees with U in the classically forbidden region. For U+r<0, we have,
after combining (467), (456), and (468),
Fo 0 qq 472

-5V

3
- (Oggte) = 3 Vg F, ) 5 ‘o F1(y)

s (4-469)

The trouble of the ES model, namely the not unique relation between (U+g)
and (Ues+§), which prompted the present discussion, is only avoided if
the right-hand side in this equation is (i) positive for all values of
y, and (ii) monotically decreasing as y increases. The first requirement
is satisfied if

27 1/2 | 2
vl P/ryy) . forally (4-470)

the second one if

2
27 v1/2 Fo (y)F1 (y)
44 "o

5 , for all y . (4-471)
Fily) -Fy(y) Fo (y)

These two ratios of Fm functions acquire their maximal values of 0.4749
and 1.0929 at y=-1.42 and y=-0.50, respectively, so that both (470)
and (471) are obeyed if the latter one is, this being the situation for
1/2 44

> 5= x 1.0929 = 1.781 . (4-472)

Vo 27

Then (469) can be uniquely solved for y, which inserted into (451) pro-
duces the value of p corresponding to the given Ues+c, to be used in
Poisson's equation (411). Let us further recall that the physical den-
sity n is then to be computed with the aid of (409), where (467) is needed.
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It remains to be demonstrated that this new model is, indeed,
more realistic than the previous unmodified ES model, in the sense that
the description of the atomic edge is improved. Let us begin with consi-
dering the dense interior of the atom, where p is large [according to
(401) this means nothing more than p > (0.15 V ) 3/2 ] and both y and U es*t
are large negative numbers. If we employ the asymptotlc forms (161) of
the Fn(y)'s, then Egs. (469) and (451) read

I B A B e L I (4-473)
orx

- 2z 11 N2, - -

(=Vo¥) Sah2e2w o, (4-474)
and

p = 3%7(_Voy)3/2 r (4-475)

which combine to reproduce the ES relation (356). Thus, the MES density
agrees with the ES one as long as one stays away from the edge of the
atom. Near the edge, y is large positive, and the asymptotic forms (165)
apply. In (469) and (451) they yield

- =3 -1/2 -
(U *t) =3V, ¥ (4-476)
and
-3/2 4
b = mpmy V2 2 e -2 (4-477)
so that we have
_ _ v172,3 9 Vo 3 4-478
p = 27“2[ (U +C) V exp { Tjg[:Tﬁ;;:ET] P (4~ )

Here it is: "a density~potential relation (410) that is decreasing, at
the edge, more rapidly than the power law ... but not quite as sudden as
the step function ...", which we have been looking for. There is a price
for the intrinsic simplicity of the MES model: it contains a parameter, Vg,
for which we do not know a reasonable value beforehand, except for the
restriction (472), where one should expect sensible values to be conside-
rably larger than this absolute bound. Such an additional parameter, U,
was already present in the ES model. That U, could be identified as the
minimal binding energy of neutral atoms, about which we have no indepen-
dent accurate knowledge [notwithstanding the vague statement (306)]. The
new parameter VO can be given a hand-waving interpretation in terms of
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the gradient of the potential near the atomic edge, as suggested by (396).
Therefore, the details of the shape of the density, for instance, will
depend sensitively on Vo’ and so will the polarizabilities. This offers
the possibility of adjusting VO by comparison with some experimentally,
or for this matter independently theoretically, known quantity.

The MES model just proposed has not yet been tested numerical-
ly, except for some preliminary results that look encouraging. An exten-
sive study is certainly necessary, and possibly very rewarding. In doing
so, one should not forget the possibility of further modifications, such
as choosing two different values for V, in (450), (451}, and (455), (456),
with the consequence that y and y are no longer identical. For the sake

of simplicity, we opted for just one Vo, and this should suffice.

Exchange III. (Exchange potential). In order to go finally beyond the
simplified description of the ES model, we need a more realistic ex-

change potential in the Poisson equation

- L viv-v +%) =n . (4-479)

where we recall that the task of expressing the density n in terms of
the effective potential V has already been performed. The result is the

sum of the density of the innermost electrons, and the remaining

n
IME’
ones, 1,

n = + 1, (4-480)

rME

which are reported in Egs. (198) and (210) [or (219)].

It is true that the derivation of the exchange energy (259)
employed the TF approximations (251), so that upon inserting the gquantum
corrected density we shall not obtain the correct quantum corrections to
the exchange energy. These, however, are corrections of a correction; at
the level of accuracy presently considered they are irrelevant. We feel,
therefore, justified in using (259) to find the exchange potential needed
in (279). With this in mind, let us change ¢ infinitesimally, which leads
to

_ > oan, 2
8B, = n[(dr)ﬁg(gz) , (4-481)
the corresponding change of the density being
én = 67 (4-482)
oz °

Since variations of Egyx identify the exchange potential,
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-
8Eq, = [(Ar)6n v, (4-483)
the combination of Egs. (481) and (482) tells us
v =g 22 (4-484)

where n is thought to be expressed in terms of V+f, so that the inser-
tion of (484) into (479) supplies the desired differential equation for
V.

Before proceeding, let us briefly illustrate Egq. (484) in the

context of Dirac's approximation to Ee ’

X

Eoy = - J @) 75 m@*? (4-485)

for which Vex is given in (325),

(3n2n) /3, (4-486)

A=

Vex =~

Since (485) is wvalid in the TF regime, we have to use the TF expression
for the density in (484), with the result

1

_ 2
Vex =T 5_(3n2

3/2
ox z (g2 v 1777)

(4-487)

- L2 = - L3

indeed.
As a preparation for applying (484) to (480), let us consider

the dependence of the functions Fm’ as given in Eq. {(181),

J
5
a3V =5 W, I7 (9) Fp (y3) = (v5=Y) By (v3)] (4-488)
3=1

upon their arguments V and |VV|, which enter via

-2/3 -2/3

y = 2(V+g) |2VV| PoYy = 2(V4y) |2Vv | . (4-489)

Changing the potential and its gradient ({(locally) induces
sy = 220|723 sv - 32|72 y & ()2 (4-490)

and the corresponding variation of Yq- Consequently,
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J
&F = § wj{—[Fm_1(y)+Fm_1(yj)]6y+(yj—y)Fm_2(yj)ﬁyj}
357
= 202873 ke (4-491)

m-1

4,2 -2 > .2
+ 31207 s () °S Wi {vE, o (0) -yF (v -y Y v E e}
3=1

or, after utilizing the recurrence relation (157},

6F = - 220|723 F___ v
m m-1
(4-492)
e 22 r - e B2,

m-3

where, as the derivation implies, it is understood that z and the ¢.'s

- J
are meant to be unchanged. With the standard factor of ]2$V|(2m 1)/3,
Eqg. (492) reads, more compactly,
s(|2tv | 2m71)/3
(4-493)
ooy 2m/3-1 1,02, (2m=7)/3 2
= -2|2vv| Fn18V * 3120V F_38 (W)

Another preparatory remark concerns Eg. (484) itself. There n
is to be inserted as a (local) function of V+g, Vv, and possibly higher
derivatives. Note in particular the fundamental dependence on the sum
V+g, which has the consequence that the derivative with respect to 7 can
be equivalently replaced by 5/3V with the implicit understanding that

the derivatives of the potential are kept constant,

= O b -
Vex =T oag n(v+g,VwW,...) . (4-494)
In applying this statement to the Scott- and quantum-corrected density
(480) we shall disregard the contributions from the innermost electrons,
so that we do not take into account the Scott correction to exchange;
further we shall be content with the first term of (219). Thus we get

- d 1 2
Ve = T 57 (5[2VWW[F,)
(4-495)
= - |2%v|'/3 Fov, W),

where (493) for m=2 has been used for variations of V only. Inasmuch as
F1 is constructed according to Eqg. (488), it contains the typical strong
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cancellations in the vicinity of the nucleus, and the compensating term
referring to. the innermost electrons is missing. Conseguently, this ex-
change potential is partly corrected for the strongly bound electrons,
but not in a fully consistent way. Here applies the same argument that
is valid for the quantum corrections [partly manifest in (495) because
of the dependence on the gradient of V], namely that we need not be con-
cerned with corrections to exchange. In other words: for the main body
of the atom, where exchange effects make themselves feel, the approxi-
mation (495) suffices.

In a certain sense, even tﬁe simple expression (495) is still
too complicated for our purposes. When inserted into (479), the Laplacian
of this Vex exhibits third derivatives of the potential V, whereas the
density contains only first and second derivatives, as we observed in
the discussion of Eq. (210). If one wants, as we do, to maintain the ba-
sic simplicity of the TF approach, one ingredient of which is the low
order of the differential equation, then one should aim at a second-or-
der differential equation and look for a sensible approximation of Vzvex.

Since we must preserve the divergence property of VZVeX in or-
der to not destroy the boundary conditions of V, we really need an ap-
proximation of the gradient of the exchange potential. This is achieved

r

by treating Vv like a constant when evaluating gvex

3V _
Wy & —5on W = 2[20Y| /3

> >
ex Fov, v . (4-496)

In passing we remark that one can do slightly better if V is spherically
symmetric, details being discussed in Ref.47; here we are satisfied with
(496) . Upon taking the divergence of this equation we get, with the aid
of (493) for m=0,

20 . oo =1/3 200 _ (5@
VIV, = 2|27V vV E - [20VF_,
(4-497)
+ % 123|773 . 3wy Foy o

which is by construction an exact total divergence and contains only

first and second derivatives of the effective potential.

New differential equation. With this Laplacian of the exchange potential
and with the density of (198) and (210), the Poisson equation (479) ap-

pears as
-rﬁ-—jL vy =
T ex

1 g2 Zy -
- v (V-FE) = Niye
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_ 1 o 2 52, m1/3,2
= nIME-+2n|2vv1F2 3n|zvv| VIV E
+ 20V F
In) I
(4-498)
1 *.1-5/3 2,2 2> o
- TEE'ZVV| [(VV)T-VVV - VWVIF_,

* é%!23V1_7/3[v2v(vv)2—4$v-$$v-$v]F_3

3
27

-11/3

- [2%v] [v2y W3RV Sv-Tv. TV 39V Tv] F

-5

This second-order differential equation for V is as a matter of fact
linear in the second derivative if one adopts a coordinate system such
that V depends only on one of the (orthogonal) coordinates. We illus-
trate this for the situation of spherical symmetry, V=V (r), as is fit-
ting for the application to an isolated atom for which (498) is actually

written.

In spherical coordinates, we have for V=V (r),

N
Ty = IV I
W =3FE T v
a2 _ W ITT, gr LI, 10V
VWoeesm Tttt U9 £3¢
(4-499)
2.7 ¥ < T T, 1 vV
=vvIis (F-385 18
r r rYr r r gr
2. _ 9%V . 2 3V _ 1 3%
vV = 35T T T 3r T 3r? (xv)
from which we deduce
2,2 2 s _ 43V 20 1 5V,2
(VEV)© = VWV« VUV = s V-2 507,
2. > 2 T BTy Ty = _ 2OV, 2.2 8 ,98V,3
VoV (vv) 4VV-VYVVeVV = 3%9 vv+;§p ’
(4-500)

V2V VTV - TV TV TOve TV

_ 239,342, _ 4 3v,4
- r(ar) vy rz(ar)
Indeed, these right-hand sides are linear in VZV.

At this stage, we have

_ Z, _ o7 Ao
aw U V) = Anpp Rl 2V F, 2V F_) -
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11 11,52
togem 72 2V gy 2120V YT

11 ,.3,1/3
* o8 77 2V T gl

(4-501)
1 2., 8 /31 =4 1,520,-2/3
s o= Vv {82ty T3 e 5 4 Lavy 23
1ioa0=1/3 0 -1 1, -2/3
|29V | Fy¥as o |20V Fel o

where the upper (lower) sign refers to 3V/d3r > 0(<0) and originates in

oot (4-502)
(Under the standard circumstances only the upper sign will occur. Since,
however, these equations could be applied to negative ions, where 3V/3r
changes sign beyond the atomic edge, we keep the two signs for the sake
of completeness.) The factor multiplying V2V on the right-hand side of
(501) vanishes thoroughly at r=0 which permits the replacement

vy - vz(v+-%) ) (4-503)

After solving for this Laplacian, the new differential equation is ob-

tained in its final form:
2 Z
-V (VWb;) = Num / Den ’ (4-504a)
where the numerator and denominator are

5
Num = dnnpo + [2VV](2F + F )

M
+ oo é;|2?v|1/3(3 o+ Fo) (4-504b)
: % % 12§V12/3 Foy o+
and
ven = 1 -+ 120|738+ 7o)
(4-504c)
A L

One must certainly admit that this, although being an extension of the
TF differential equation (2-48), no longer has any striking resemblance

to it. However, there are common features: first, it is a second-order
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differential equation; second, it is one equation for all systems, as
compared to HF formulations, where going from N to N+1 changes the num-
ber of functions to be found; third, different N and Z enter the problem
via the boundary conditions, without direct effect on the differential
equation.

There are enormous differences, too. But they are of a more
technical natur. In the case of the TF equation, the numerical challenge
was merely to find V and g such that the differential equation along

with the boundary conditions

-2 as r+0
rv > (4-505)
-(Z-N) as r+>e

was satisfied. Now, we encounter additional complications because of the
special treatment of the strongly bound electrons. The new parameters ¢.

J

and Qj, that are implicit in n are given in terms of integrals in-

A
veolving the potential. These aiﬁEEqs.(3—50) and (197), respectively. The
numerical procedure for handling these parameters was already described
in Chapter Three in the context of the TFS model where the same compli-
cation is present. The main change from what is done there comes from
the abundance of Airy functions in the new differential equation (504).
That makes it numerically more involved (and more expensive), but again
this is not a fundamental departure from the TF equation.

Before proceeding with the discussion of Eq.(504) and its im-
plications, I must point out that this equation is not identical with
the one obtained and studied in Ref.47, which produced the numbers of
Table 7. The differences between these two equations arise primarily
from the use of the energy functional (186) instead of (183) in Ref.8.

A minor change originated in additional terms in the approximation to
%Vex' Eg. (496), that are made use of in Ref.47. The numerical results
obtained with Eg. (504) do not differ substantially from the ones of Ref.
47 (the diamagnetic susceptibilities are somewhat larger here), but the
time needed for the numerical computation is about one third less for
the new differential eguation than it is for the older one of Ref.47.
[Since from the numerical point of view the main difference consists in
the reduction of the number of Fm‘s from 14 in Ref.47 to 9 in (504), one
can safely infer that a substantial amount of the computation time is
spent on the evaluation of the Fm functions.] The following discussion
will focus upon the new differential equation (504); the reader inter-
ested in a comparison with the older one is referred to Ref.47 for de-
tails.
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Small distances. When approaching the site of the nucleus at r=0, we

encounter the strong cancellations that are inherent in the structure

(488) . In the Fm's, y and the yj's are for small r given by

2,-2/3 _ _

2
Yiyy % 20 —%) (& (221) /3 (4-506)

[cf. Eg.(173)], their difference being

_ 27, -2/3
Ay. = . =2 Piaad —
Yy = ¥57Y (t4-2) (Z2)
) o (zzr)4/3 (4-507)
T 282
This implies that the Fm's, for r—+ 0, behave like
F =z .| F ~Ay.) -F _(Y.) - . .
n = w][ m(yj y]) ¢ J) AyJFm_1(yj)]
-5 W, [ Ly by )+ T (v (ayg) s
jLe! 3 3 3t
J (4-508)
o1 8/3 Y
=z §(2Zr) Fm—2(0) ? wj( w3 )

We insert this into (504b) and (504c) and learn that the denominator ap-

proaches unity as r~» 0, whereas the numerator has contributions from

NME and from the term which possesses the factor (1/r2){2$v[1/3nJr_8/3.
Thus
v+
(4-509)
o Zz,3
= Annpe(0)+(3)7 (3F_4 (0)+F_, (0)) § W, ( ) '

for r+ 0. This tells us that the potential is perfectly well behaved in
the vicinity of the nucleus.

Correspondingly, the density at r=0 has contributions from

NovE and from the term in (210) involving F_2 and F_4. These are
n, = n(r=0}) = nIME(O) + 1(0)
(4-510)
3 [Fs
(27) 1 2
npyg (0) + =g (77 F_4(0) + 545 F_7(0)] A (=)

Clearly, the (small) term fi(0) represents the s-electrons in the outer
atomic shells. Here, nIME(O) is given by the expression found in Eq.
(3-77),
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3 n Q.
o (2z) [s- 1,3 3 -
npyg (0) = [Z.(E' *oE vy 2nj5} ’ (4=511)

and in #(0) we can employ the recurrence relation (157) for y=0,

Fo_3(0) = (4m-2)F (0) (4-512)

m-3

to establish the identity

1 1 _ 5 _ 5/3
73 F_40) + g F_5(0) = 55 F_,(0) = 35
(4-513)
= 0.1326... y
which use552
F_1(0) = 2[A1(0)Ix[-Ai" (0)]
-1/6 1/6
=23 (-2 3 1
N 2[ i 3)!][ 7 | 3)!]
(4-514)
2 1
R LA LA
T 2n T T 2n sin(n/3)
= 1
/3
Upon inserting (511) and (513) into (510), we have
s - J 0 cs
223 _ 1.3 3 .5/3 2
/ 'E () +ij[2nj5 3k 5 ] '
nt=1 j=1 (4—515)

which is the statistical-model prediction for the electron density at
the site of the nucleus.

One could now improve the TFS prediction (3-166) by inserting
into (515) what here replaces Egs.(3-135) and (3-139). This has not been
done as yet.

Large distances. We turn to the region of large distances where all terms

that refer to the innermost electrons are effectively zero. Thus, all

Fm's are now just Fm(y)'s, and n is absent. By "large r" we mean dis-

IME
tances sufficiently far beyond the edge. That becomes more concrete by

stating that the potential V is small compared to ¢, allowing the appro-



284

ximation
y = 2(v+z) [20v| 723 = 2p |28 72/3 (4-516)
In conjunction with the asymptotic form (166), this produces
- ] -(m+1)/2 52, (m+1)/3
Foly) = 5—(87) |[2vv |
(4-517)
3/2
2 (2
X exp (-3. _(_E)
||

The large-r behavior of V, as enforced by (505), implies that, for ions,
|$V] approaches zero like 1/r? and even faster for neutral atoms. Conse-
quently, in a sum of Fm's the one with the most negative subscript domi-
nates.

When applying this observation to the new differential equa-
tion (504), we find that, for r-+«, the numerator and denominator are,

respectively, given by

. 32 2 1 1,21 2 3/2 2
Num = === ETIZVVi exp ﬂ-§(2c) /1)
(4-518)
Den = 1 ,
so that the asymptotic shape of the potential is determined by
2. . 32 21 = =1 2 3/2 2
=V'V = TT: z r—Z[ZVV[ exp ("?(ZC) /1VV1) . (4_519)

For an ionized system, where V(r)» -(Z-N)/r, the additional information
thus obtainted is

2
Vir) = —@-{1 P exp [—%(2;)3/2 L)] , (4-520)

Z-N

which is not particularly remarkable. For a neutral atom, the unknown
asymptotic behavior of V(r) emerges from (519), at least in principle,
if not in practice. To see what is involved, let us write

Bv] = 2200%2 hip)/e® . o = 6mcr (4-521)

wln

with the consequences

2 1 95, 2 5/2 1 3
V'V = Fg}‘(r I—V)Vl) = 2n(2g) / Fﬁh(p) 4
(4-522)
32,2 1 =1 5/2 1
39 & 77 j2vv| = 2n(2%) o) '
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which turn (519) into

- __p* -
i h(p) = B (o) exp ( h(p)) . (4-523)

What we need to know is: How does the solution of (523), obeying the
boundary condition h(p»«)=0, approach zero as p—+«? This would tell us
the asymptotic shape of the neutral-atom effective potential in the sta-
tistical model. Unfortunately, I have not been able to extract this valu-
able information. Without this knowledge, however, the differential equa-
tion cannot be easily integrated for neutral atoms. The standard inward
integration is not feasible because of this lack of initial values. [This
is different from the situation in the TFS model, where one knew that
the neutral-atom potential at large distances is a rescaled TF potential;
see Eg. (3-171).] On the other hand, a simple outward integration, be-
ginning with a trial value for the additive constant in

vV o+ - % + const , for r-0 , (4-524)

is unstable due to its sensitivity to round-off errors; and a mixed stra-
tegy of integrating in both directions from an intermediate point would
introduce two more numerical parameters (such as the value of the poten~
tial and its gradient at the intermediate point). Therefore, we resort
to extrapolating the N=Z data from results obtained for ions in the man-
ner described in Chapter Three. For this extrapolation we use the three

ions which have fixed N and these values of Z-N:

, f%, = v, vy, vy | (4-525)

U=

r

N —

v = Z2-N =

Suppose the gquantity to be calculated is denoted by u(v) and we possess
the three numbers uj =u(vj). A reliable procedure for the extrapolation
to v=0 is, as experience indicates, supplied by representing the data in
terms of an algebraic function,
po+ALV
_ o ™M

p(v) = Ty (4-526)

The extrapolated value o = pn(v=0) is then

_ Hqvovg iyl ) Fuyvavg (g ) +pgva vy (g -py)
o v2v3(u3—u3) *oVavy (u3-u1) + v1v2(u1-u2) (4-527)

ox
! Shqly + 3koug = Bugpy

- 4-52
Mo T BT e, (4-528)
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when the vj of (525) are inserted.

This discussion of the asymptotic shape of the effective po-
tential assumed implicitly that 7 < 0 for neutral atoms. We now demon-
strate why it cannot be zerxro for N=Z. Suppose it were. Then y would

certainly be negative for large r, with two possible limits:

N

0, (4~529a)
as r >«
® 4 (4-529Db)

- Y
vy = 2v]2wv|"2/3 . { °

The exchange potential (495) is, outside the region of the strongly
bound electrons, given by

1/3

2 1
Foly) =V T—____7§ (-PF ) . (4-530)

V__ = -|2W|
2%y |

ex
Since F1(y) is positive for all y, the realization of (529a) would imply
that VeX becomes an arbitrarily large multiple of V as r+«., This is
physically unacceptable, so that (529a) cannot be the situation. If how-
ever, (529b) happens, then the asymptotic form of Fo(y), (Eq.167), in-
serted into (496) produces

-1/2

W, = (-2 [1+sin(3-y) /%1 . (4-531)

ex
Here we see that %vex is arbitrarily larcer than VWV, as r-e; again we
encounter an unphysical behavior. Se (529b) is egqually discredited.

The lesson learned here is that, indeed, ¢ is positive for
neutral atoms; and V, %V, and V2V exceed Vex’ $Vex’ and VZV by amounts
that are basically controlled by the exponential factor in (517), as r»e,.
Further, we observe that =0 applies to a negative ion, one with an ex-
cess of electrons. Here, for instance, Eq.(530) immediately predicts
]Vex1<<]V| for large r, because y is now a large positive number under
these circumstances., Numerical solutions corresponding to this situation
of negative ions have not been calculated as yet. Of course, the excess
of charge must be at least eqgual to one for ¢=0; otherwise the solutions
with 7 <z (2=N) are physically meaningless. This is, indeed, what seems
to happen, when the extrapolation to find 7 (z=N) is extended to yield
N-Z when g=0. For example, one gets N-Z = 0,035 for N=36 .and ¢=0. We in-
fer that negative ions very probably do not exist in the statistical mo-
del, as they do not in the TF and TFS models,

Numerical results. We shall now report numerical results for the inert
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gases %Z=N=18,36,54, and for the related ions with Z=N+1 and Z=N+2,.

The numerical procedure described in Chapter Three requires a
choice to be made for the number n_ of Bohr shells of strongly bound
electrons which we want to treat in the special way. Going with it is
the number J of representative ;j‘s and the weights wj. As in the nume-
rical study of the TFS model we are content with the simplest choice J=2,
w1=w2=1/2. In principle, the value of ng should be such that Ns’ the
number of specially handeled innermost electrons, obeys the relation
(3-14)

1 << Ns << Z . (4-532)

We are, however, now dealing with realistic, and therefore rather modest
values of Z and N, and it is quite impossible to take (532) very seri-
ously. The best one can do is to opt for that Ns which, on a logarith-
mic scale, is halfway between 1 and Z. Another way of stating this is
to say that we choose that N which is closest to the square root of
Z(=N). For N=18 and N=54, the answer is unambiguous: NS=1 and 2, respec-
tively. In the N=36 systems, both NS=2 and NS=10 are equally distant
from 6, the square root of N (or 2); we vote for ns=1, Ns=2 in order to
avoid the danger of overcorrecting for the strongly bound electrons.

The results thus obtained are displayed in Table 9. The num-
bers in the column IS are the initial slopes (V+Z/r)/z2essentially the

additive constant of (524). It is not necessary to comment on these num~

Table 4-9. Values of the parameters z, ;1, EZ’ Q1, Q2, and of the ini-
tial slope (IS) as obtained for N=18, 36, and 54, Z=N, N+1, and N+2
in the statistical model.

Nz & &1 L2 L4 LD IS
18 0.0095 106.8 7.24 0.745 3.25 0.2239
18 19 0.35901 121.14 9.164 0.7517 3.316 0.21513

20 0.84605 136.56 11.379 0.7582 3.375 0.20691

36 0.0094 498.6 61.12 0.823 4.10 0.1430
36 37 0.33467 529.42 66.103 0.8251 4.137 0.14027

38 0.76868 561.29 71.377 0.8276 4.168 0.13761

54 0.0093 152.1 14.96 4.42 10.5 0.1176
54 55 0.31170 160.14 16.871 4.441 10.55 0.11598

56 0.70229 168.50 18.939 4.463 10.62 0.11444
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bers, so we only remind the reader of the fact that entries referring
to neutral atoms are the outcome of the extrapolation procedure discus-
sed above, and are therefore less reliable.

Next, we look at various plots of radial densities
_ 2
D{(r) = 4nr” n(xr) , (4-533)

which are always presented with the abscissa linear in the square root
of r, in order to stretch the small-r region where the density curves
have most of their structure. We begin, in Fig.9, with the radial den-
sities of the potassium (N=18=Z-1), the rubidium (N=36=Z-1), and the

cesium (N=54=Z-1}) ions. We see that the statistical model yields a va-

riety of shapes for the electronic densities of systems with different

120 1 1 T i 1§
Cs'

100 |-

]
1

80r 7

D(r)
3

20 7

O 1 1 !
0 02 05 1 2 [A

Fig.4-9. Radial electron densities of X', Rb', and Cs'. Abscissa is
Lineanr in the square nroct of r.
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N and Z; in contrast, the TF model gives a uniform look - now there is
a lot of individuality. The K" ion has an almost structureless density
spread out over a large volume. The density of Rb' is much more loca-
lized and has somewhat more structure. For Cs' we get a smooth, well-
concentrated main peak accompanied by a smaller one which is farther
away from the nucleus. The obvious question is now: How do these densi-

ties compare with those obtained by HF calculations?

60 T 7 T T
H
SM §

Lo+ SM -y .
=t _
o

20+ N

O 1 | l |
0 0.2 05 1 2 4

Fig.4-10. Radial electron density Lin Rb' . Comparnison of HF prediction
with that of the statistical model (SM). Abscissa s Linear in the
square root o4 r.

For the comparison with the HF prediction, we pick the Rb' ion
- it is the most striking example. Figure 10 shows the differences.53
The two densities agree only in the domain of the strongly bound elec-
trons. We observe gquite different peak structures and notice that at
large distances the HF density is significantly larger. Unfortunately,
there is no simple way of telling which one is closer to reality be-
cause electron densities cannot be measured directly. One can, of course,
compare derived gquantities, such as r2, the expectation value of the
square distance. We refer to Tables 3,6, and 7 (the latter reports the
numbers obtained in Ref.47, but no matter).

One should not take the detailed structure of this statisti-
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cal-model Rb' density too literally. In particular, it certainly con-
tains some residual Bohr-shell artifacts that are not removed by the
simple average over (48 employed in the computation. This is confirmed
by Fig.11. It shows the decompositions

D = dnr’n . + 4nr’h = Diyg * B (4-534)
and
D = (-r’v4y) - (—rzvzvex) =Dy - Dy (4-535)
60 1 T 60 T T T T
Lot L0} 1
o =)
20 20 7
i i _
DVEX
0
20 S :
0 0.2 05 1 2 4

Fig.4-11. Radiat ekectron density of Rb . Left~hand side:decomposition

D = Dryg
Linear Lin the square root of x.

+ D; ndight-hand side: decomposition D = D, = D, - Abscissa L4
ex

We note that the "fine structure" of the minimum between the two main

peaks may well be spurious. Both DIM and D are much smoother, and only

E
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the rapid decrease of D on top of the equally rapid increase of D

IME
produces the wiggles. Likewise said fine structure is made by the inter-

play of D_, and DV which are both smoother, though oscillating.

ex
Figure 11 offers a remarkable observation. Near the edge of

the atom (V+7=0 at r=3.34, see below) the magnitudes of D

v

v and DVex are

almost equal. Sufficiently beyond this edge, D, is, of course, much lar-

v
ger than DVex’ inasmuch as we find, analogously to the derivation of

(519),
2

ﬁ_i
v Vex a In ©

3/2

exp( - 2200 %/ W) (4-536)

1
r

for large r. This is smaller than VZV by a factor of

Z-N
r2

’ (4-537)

[ou ko)
Hl=

9 r .2
1_6 'c—z'I2VVl =

so that DV exceeds DVex substantially in the exterior of the atom.

V., (r)

Fig.4-12. Exchange potential §on Rb' as a gunction of the distance r
from the nucleus.

This compensation of Dy by DVex at the edge is a manifesta-
tion of the attractive nature of the exchange potential: the density of
electrons in the outer reaches of the atom is reduced to the benefit of

the interior. Since we are at it, why not take a look at VeX itself ?
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In Fig.12, the exchange potential of Rb' is pletted as a function of r.
It is, indeed, attractive. The dashed curve is the corresponding Dirac-
Jensen exchange potential (486). It agrees with the actual one in the
range 0.3 sr <1, which is the TF regime; at larger distances, it signi-
ficantly exceeds the real Vex’ which, as we recall, is the origin of the
trouble in the TFD and ES models. At small distances, we observe that Véx
tends to zero; this is very likely not a realistic behavior but a conse-
gquence of the way the strongly bound electrons are handled here. Follow-
ing Eq.(495) there is the remark that our VeX contains the typical can-
cellations near r=0 [cf. Eq.(508)], whereas the compensating term refer-
ring to the innermost electrons is missing. Future developments will tell
to which extend a modification of Vex is actually necessary.

A last plot is that of v, Yqr and Y, for Rb* in Fig.13, which

A T T T T T
- y‘ |
Y2
2r J
>¢:\1 B 4
>
X 0
|
|
i y | Telas= 334
|
|
_2 1 1 ! 1 I i
0 0046 03 1 2 5 8
r

Fig.4-13. vy, Yq and Y, 4or RbY as a function of r. Abscdssa Ls Lineaxr

in the cubdie roof of r.

should be compared with Fig.3. What was observed then, is confirmed here:
y does not become a large negative number. We recall that one needs y <
~1.5 for the asymptotic forms of the F's to be valid. From this point
of view, the TF limit is not expected to be particularly accurate for
real atoms; but it is, as the evidence of Fig.6 shows.

The sign change of V+i, or equivalently of y, marks the edge
of the atom. In Rb* it occurs at the distance 3.34 which we call the
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classical radius r of this atomic system. Of course, ¥4 and Yy turn

positive far insidzliie atom, at 0.055 and 0.26, respectively. Outside
the domain of the strongly bound electrons, they are very large positive.
In Fig.13, the abscissa is chosen linear in the cubic root of r, so that
the y(r) functions are straight lines in the plot for r+0, as is implied
by (506). As a consequence, the region of small r is enormously stretched
in the plot, which creates the misleading impression, that the sign
change of Y, and Y, happens at a distance that is a good fraction of

Tolas® This is an optical illusion.

Problems

4-1. Derive the normalized wave-functions (143) of the constant-force
potential from the known time transformation function <§',t|;“,0>. [Re-
call that the approximations (45), (47), and (50) are exact for a linear
potential.]

4-2. Pind recurrence relations for the polynomials that are mentioned
in connection with Egs. (158) and (159).

4-3. Show that Fm(y) obeys the differential equation

43 d _
(a—§-§ 4yd—y + 4m_2] Fm (y) =0 ’

and demonstrate that it is consistent with the asymptotic forms (166),
(161), and (170).

4-4. For which complex values of the integration variable x in Eq. (140)
is the phase of the integrand stationary? Use this insight to deform the
path of integration to contours appropriate for a stationary phase eva-
luation of the integral for y »1 and y «-1, respectively. Confirm Egs.
(163) and (164).

-2/3

-
4-5. Find the minimum of y =2V |2VV| for the neutral-atom Tietz po-~

tential (222). Compare with the corresponding TF result (174).

4-6. Derive Eq.(109) from Eq.(219).

(1)

4-7. Demonstrate that ny and néz)

, given explicitly in Egs.(234) and
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(236), and related to each other through (242), obey Eg.(231).

4-8. Confirm Eq. (280).

4-9, Expand the right-hand side of Eq. (374) in powers of (W(y)/y)1/2.
What do you get if you keep only the leading term? Now, keep also the
next-to-leading contribution. What is then the asymptotic form of ¥ (y)
as y»« for a neutral atom? [More about this in Ref.54.]

4-10, Show that

2 d
(n+1)Fn+1(y) - a§ [ ) n+1(y)F (y) * F (y)-+2yFn+1(y)]

For n=-1, this has the special implication that the contents of the
square brackets is a constant. Find this constant. Then use the state-
ment for n=0 to perform the integration over y' in Eq.(399). Demonstrate

that the resulting exchange-energy density

V?_
2 (~im WE @ L) vl @)

[with y determined by n through Eg.(400)] is egual to the Dirac-Jensen
result

- 4;3(3n2n)4/3

if n is sufficiently large, or Vo sufficiently small.

4-11. Show that a p'(r) of the form (447), inserted into (426), produces

a v(r), for which the scale invariant expression (438) gives ap==m.



Chaptexr Five

SHELL STRUCTURE

In the preceding Chapter we obtained, in Eq. (4-267), the sta-
tistical~model prediction
7/3

--EStat = 0.768745 Z -

2

z2 + 0.269900 z°/3

(5-1)

N —

for the binding energy of neutral atoms; it is compared with the corre-
sponding integer-Z HF numbers in Fig.4-6. The deviations between Estat
and Eupr indiscernible in that plot, shall be the subject of this Chap-
ter.

We begin with a look at the relative deviation between the HF

and the statistical-model predictions, presented in Fig.1 for 6 £Z £ 120

06 i
04F i
gg - -
= 02
L
E‘]U‘) -
« O
w
02} :
-OL L 1 L Y
0 25 50 75 100 125
Z

Fig.5-1. Relative deviation, in %, between HF binding energies and the
statistical-model prediction (1), as a function of Z, for 2=6,7,8,..,
120.
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(for 2=1,2,3,4, and 5 the respective deviations are -7.2, 4.8, 3.8,
2.3, and 0.98). One sees that the relative difference between EHF and
Estat is less than one percent for Zz 5, less than one-fifth of a per-
cent for Zz 22, and less than one-tenth of a percent for Z3z56. We fur-
ther observe that this deviation is oscillatory with a period that in-
creases slowly with Z. Denoting the difference between the actual ener-

gy and E therefore, by Eos

stat’ c’
E=EBoat ¥ Bose 7 (5-2)
we expect that E is an oscillatory function of Z1/3 with an ampli-

4/3

tude proportional to 2 , so as to fit into the pattern laid out by

Eg. (1). The HF prediction for Eosc’ that is:

E ) = B, -E , (5-3)
( osc HF HE stat

exhibits this anticipated Z-dependence, as demonstrated by Fig.2, which

0.06F .

0.04

0.02 r

-0.02 .

- (Epe ~Estat) 12 %73
o

-0.04, 2 3 4 5

/3
21

Fig.5-2. Absclfute deviation between HF binding energies and Zhe statd-
sticat-model prediction (1), divided by /3, as a function of z'/3.

Stans mank Anerit-gas atoms.
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/3 1/3 1

4 .
shows a plot of -<EOSC>HF/Z as a function of Z

These atomic-binding-energy oscillations possess some very re-
markable features. Certainly, their extremely high regularity is surpri-
sing; there is no essential difference between small and large values of

2173 1/3

; even hydrogen (Z =1) is no exception. Another particularly in-

teresting property of E is that the minima in Fig.2 are sharp and

osc
structureless in contrast to the broad maxima with their evolving double-

peak structure.

Experimental evidence. When plotting Figs.1 and 2, the HF numbers are,

of course, taken seriously. One can, I think, trust these numbers to the
necessary five or six significant digits, but there is the possibility
that the oscillations of Fig.2 are nothing more than a HF artifact.2 To
make sure that these binding-energy oscillations are a real physical
phenomenon, we need the comparison with experimental neutral-atom bin-

ding energies. This knowledge has to be extracted from spectroscopic

0.20 . . .
0.16 | ]
I b ]
012} ]
¢ i exp. ]
N 008} ]
§ ! a i
A J
TNV VU]
-004 ]
1 2 3 % 5

7 1/3

Fig.5~3. Bindding enengy oscillatdions. Stars are experimental values for
Z=1,...,20. Curve a shows the nonrelativisitic HF oscillations of Fig.Z.
Curve b connects HF values with relativistic corrections.
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data, the analysis of which supplies step~by-step ionization energies.3
Unfortunately, this has produced binding energies only up to Z = 20. For
more massive atoms, the ionization potentials after the first 20 elec-
trons are rarely known. In short, we can compare EStat of (1) with rea-
lity only for the first 20 members of the Periodic Table. This is done
in Fig.3, which displays, in addition to the experimental data, also the
nonrelativistic HF oscillations of Fig.2 and, for Z <31, the results of
HF calculations with relativistic corrections.4 Please observe two
things. First, the experimental values do confirm the existence of bin-
ding-energy oscillations. Second, there is, on this scale, a significant
discrepancy between experiment and the HF values, even after including
relativistic effects. This is a reminder that the HF model is not exact,
the lion's share of the missing binding energy being the correlation
energy of Eq. (4-248). In Fig.3 the difference between curve b and the
stars representing experimental data is roughly a constant, implying the

estimate

E ., = -0.013z%3 (5-4)
which somehow supports the widespread remark that the inclusion of cor-
relation effects would change HF energies by an amount proportional to
Z4/3 (for small values of Z).

The general trend of the experimental data in Fig.3 is quite
well reproduced by the relativistic HF results, which, in conjunction
with the fact that the relativistic correction itself depends smoothly
on Z, tells us that these binding-energy oscillations are of nonrelati-
vistic origin. It will, therefore, be appropriate to compare the out-
come of our nonrelativistic semiclassical calculation with the HF oscil-
lations of Fig.2.

For large values of Z, the relativistic corrections are, evi-
dently, more important than the nonrelativistic oscillations that we
are addressing in this Chapter. These are, however, totally different
problems. It is certainly possible to consider these binding-energy
oscillations independent of the relativistic corrections. We shall there-
fore at this moment be content with fighting the wrong impression which
Fig.3 might create, namely that relativistic effects dominate the total
binding energy for large values of Z. As a matter of fact, even in ura-
nium the relativistic correction amounts to less than 10% of the total
binding energy;4 more generally, a rule of thumb, given by Scott,5 says
that "the error in the total binding energy resulting from neglecting
relativity is roughly (Z/30)2g."
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Qualitative arguments. There is a common reaction to Fig.2 that these

oscillations have something to do with the filling of the atomic shells.
This notion does, however, not explain a sincgle quantitative detail. In
fact, as a class, the inert-gas atoms [He(Z=2),Ne(10),Ar(18),Kr(36) ,Xe
(54) ,Rn(86), and another one with Z=118, for which the chemists have not
invented a name as yet] do not reside on prominent sites of the HF curve
in Fig.2. They are, on the other hand, not randomly distributed over the
oscillatory curve either, but show a clear tendency toward the maxima
and away from the minima. We infer, therefore, that there is a connec-
tion between the energy oscillations and the existence of closed atomic
shells, notwithstanding that their Z values cannot be predicted by simp-
ly looking at Fig.2. These two phenomena are manifestations of one phy-
sical effect.

To answer the question what effect that is, let us recall the
origin of atomic shells. The reason for their being is the existence of
quantum numbers in a spherically symmetric potential: angular guantum
number £, and radial quantum number n.. But £ and n_ alone would not
account for shells; we also need the fact of energetic degeneracy. States
of differing quantum numbers may have almost the same binding energy.
This is, of course, familiar for the Coulomb potential where the ener-
gies depend only on the principal guantum number m’ =nr+£+1 [a circum-
stance that we have made use of in Chapter One, see Eq.{(1-10)] leading

to the well-known 2m'2

-fold degeneracy. Thus, in Bohr atoms the maximal
radial quantum number equals the maximal angular quantum number. Such is
the situation in a highly ionized atom where dynamics is dominated by
the nucleus-electron interaction, the interelectronic forces being com-
paratively small. Not so for neutral atoms, where the ratio of the maxi-
mal values of n. and £ is roughly 2:1, provided that Z is sufficiently
large. For example, uranium possesses 7s electrons (nr=6, £=0) and 5f
electrons (nr=1,£=3). The degeneracy of the weakly bound outermost elec-
trons is certainly not of Coulombic type. We can learn more about it
from another look at the Periodic Table, this time at the last row.
There the 7s, 7p, 6d, and 5f electrons are filled in, but not in a given
order, instead they compete with each other - a sure sign of degeneracy.
In an K—nr diagram, Fig.4, these 4 states do not lie on a straight line;
degenerate states are connected by bent curves which are the steeper,
the larger £ is. Deep inside the atom, we expect Coulombic degeneracy
for the strongly bound electrons. In this situation, states with the
same binding energy do lie on a straight line in the E—nr diagram. In
Fig.4 this is illustrated by the 2s and the 2p state.

It is clear that a theoretical description of the binding-
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fig.5—4. Enengetdic degeneracy in a Large aiom.

energy oscillations in Fig.2 must be based upon a detailed energetic
treatment of those few electrons with least binding energy. This view
is supported by the relative size of the effect we are looking for,
which is of order 24/3/Z7/3
(1), or, like a few electrons compared to the totality of Z electrons

=1/Z as compared to the leading TF term in

in the neutral atom. This should be contrasted with the relative size

of the corrections to the TF energy discussed in Chapters Three and

Four, namely Z6/3/Z7/3 =z2/3/z and Z5/3/Z7/3 =Z1/3/Z, respectively,

which we now interpret as showing that large fractions of the total num-

ber of electrons contribute to these corrections.

Bohr atoms. As a first step toward a computation of the binding-energy

oscillations, we study Eo in the simple situation of NIE. In Chapter

sc
One we found that the total binding energy of a Bohr atom is given by

2 1 2 1 3”'23‘(-‘1’>
R =7 {Y'j" (<y> —Z}———HZ (5-5)
(y-<y>)
[this is Eq. (1-20)], where y=y(N) is the solution of (1-12),
y3 - ‘}y = %N ’ (5-6)

and we recall that <y> differs from y by the integer part of y + 1/2 [Eq.
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(1-14)7],

<y> =y - [y+1/2] , (5-7)

so that [Eq. (1-15)]

A

<3 . (5-8)

N -

The two-term approximation of (1-21),

y = B3 e 273 (5-9)

-4/3

is actually exact up to order N {(see Problem 1). Consequently, we

can exhibit the contributions to E in Eg.(5) up to this order. This cal-

culation employs the identity
2 m
-z k
Z__éfZi_ = 1 E k+3 <§ZZ\ (5-10)
(Y“<Y>)2 Y /

and results in

522 = (w13 - (5-11)

with

oscC

(5-12)

where y, as given in (9), is to be inserted. In <y> one must not neglect
the second term of (9) because that would produce a wrong phase of the
oscillations at smaller values of N.
In Fig.5 the exact amount of
-E
osc_ _ N1/3<_E/Z2 —(EN)1/3-+%> (5-13)

Z2/N1 3 2
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FLg.?;;. Binding-energy oscillation of Bohn atoms as a function of
(%N) . Thick curve is the actual amount. Thinner curves are the

successdive approximations of Eq.(14): (a) Leading ferm only; (b) texms
up £o crden N"1/3; (e) teams up Zo orden N_2/3; (d) ternms up to oxndex
-3/3

N .

is compared to the successive approximations that result from the expan-

sion (12),

-E
osc _  (2y1/3 2 1
23T (5) (<Y> 'E)
13 / (5-14)
128 3,.y=1/3 2 1
+ (Tﬁ_] N) <y><<y> -Z>

During the filling of the first shell, that is (an)'/%<3"/3=1.44, tne
exact EOSC naturally does not yet show the shape of the large-N oscil-
lations. Note, in particular, how good already is the leading term of

(14). Three terms are sufficient to make the difference between the two
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curves indiscernible for N3: 1, that is (%N]1/33 1.14.

So far we have been filling the Coulomb potential with a cer-
tain number of electrons. Let us now shift our attention to a different,
though related, problem. Consider the Coulombic potential

vir) = L+ g (5-15)

with the constant Eo determined such that the TF count of negative ener-
gy states,

=z 1 3/2
Npp = (@8 b [-2v(e 132 (5-16)

equals a certain, given multiple of 2,

NTF =xZ , x>0 . (5-17)
The integral in (16) is of the structure encountered in (1-34), so that,
as in (1-35),

N =

2.,3/2
TF <§‘E‘> ! (5-18)

Z
o

(WIS

which produces

E

. = 243/ (1823

’ (5-19)

showing that Eo is proportional to Z4/3.

The Z-dependence of the poten-

tial is, therefore, somewhat more complicated now. It is reminiscent of

that of the small-r TF potential; actually both (15) and the TF potenti-
al are of the form "Z4/3 1/3r
Problem 2.

Let us now study the Z-dependence of the energy when all nega-

times a function of Z ." More about this in

tive energy states are occupied in the Coulombic potential (15). In this

situation, the number of electrons is

2
I IPHE
m'=1 ©

2m’
- Y01 +3) - M1 +d)

where we have introduced

A= L =<%Kz>1/3 i (5-21)

(5-20)
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Obviously, the principal guantum number of the last Bohr shell with ne-
gative energy is the integer part [Ao] of AO. Likewise, the binding

-E =sz (——m—.z E ) <2m'2'Eo>

m' =1

energy is

5 .
270l - EN (5-22)

il

2 1
z27{Ix] - v N}
o
Smooth and oscillatory contributions are exhibited after employing

- 3l 1 -
[AO] = Ay T3 T <At (5-23)

in Egs. (20) and (22). The outcome is

2.2, _1._ 2 -
E/Z° = 3A, =35 = E g /% . (5-24)
where
2. .21 1,21
Eosc/? = AO<<AO‘+2> 12>
(5-25)
1/3 1 1.2 _ 1
+K;r <AO-+§><<A -+§> 4>
. . . 1/3 . , . 5/3
Since Ao is proportional to 7 , this Eosc is proportional to Z .

Before proceeding, a remark concerning partly filled shells
is in order. Whenever Xo is an integer, say Ao=m6, the energy of this
mé—th Bohr shell equals zero. We can describe it as partly filled if
we assign the whole range of values between mé—1 and m, to [AO], when
Ao=mé. Equivalently, the step function n(x) equals any number between 0
and 1 for x=0. This way the number of occupied states, as calculated in
(20), can equal any desired amount. As far as the binding energy (22)
is concerned, these subtleties do not matter, because the step function
is multiplied by its argument; this product, xn(x), equals zero for x=0
independent of the value given to n(x). Indeed, the resulting energy,
displayed in Egs. (24) and (25), is a continuous function of Ao.

Let us be somewhat more specific and consider k=1, that is
neutral atoms in the TF limit. Then focusing on the 1eading term, Eqg.
(25) gives

/z5/3=— ]1/3( (3)1/3 + 1> _%2>
(5-26)
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which we contrast with the N=Z version of (14),

5/3 2y1/3(_2,31/3 . 1 ¢2,7-1/3,2 _1
~E_ /% /3 . 5) / <<(§Z) +13(32) > _5> (5-27)

+

These oscillations are markedly different, in particular in sign and

phase, as illustrated by Fig.6. As a consequence, the closed-shell values

01
0
o -0
w
N
3
[]
L 0 7
i
_.0.1 | .
-02 I 1 1 1 i
0 4 6
3 173
(52Z)
Fig.5-6. Binding-energy oscillations of Eq.(26) (upper curve) and Eq.
(27) [Lower curve), as functions of [%Z)1/3. Stars mark the Z values of

closed Bohn shells.

of 2((32)"/3=1.44, 2.47, 4.38, 4.48, and 5.48] mark the sharp maxima

on the lower curve of Fig.6, which refers to Eg.(27), whereas they sit
close to the tops of broad maxima on the upper curve referring to Eqg.
(26) . The latter situation is reminiscent of Fig.2. This is, of course,
not accidental, as we shall learn in the sequel. Despite this similarity,
there are essential differences which one must not forget: in Fig.2, the
oscillations are of orxder Z4/3, not 25/3 as in Fig.6; and the Z values
of closed-shell atoms, as a rule, do not coincide with the maxima of

the energy oscillations plotted in Fig.2. One can state that the closing
of a shell in real atoms is a much less dramatic event than in Bohr

atoms.

TF guantization. The gqualitative discussion given above and the study

of energy oscillations in Bohr atoms indicate that a gquantitative treat-

ment of EO has to proceed from an improved evaluation of

sSC
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E1 = tr(H+g)n (~-H-7) ’ (5-28)
an evaluation that goes beyond the phase space integrals that we have
been using so far. In particular, the discreteness of the (relevant
part of the) spectrum of H must be taken into account.

The effective potential V(1) is spherically symmetric, V=V(r),
in the situation of an isolated atom. We confine the discussion to po-
tentials with this property. The e;genvalues El,nr of H are then label-
led by the angular quantum number % and the radial gquantum number n,.,
both being non-negative integers. The trace in (28), computed as a sum

over ¢ and n,, now reads

r

E, = 25 (22+1) (E +z)n (-E -z} (5~29)
! £,0,=0 Loy L

where the factors of 2 and 248+1 reflect the spin multiplicity and the
angular multiplieity, respectively. The latter one is, of course, due
to the independence, of the energy eigenvalues, of the magnetic guantum
number m=%,2-1,...,-%.

The functional dependence of (29) upon V(r) and z can only be
investigated if we have an explicit expression that relates Ez,nr to
both the guantum numbers and the potential. At the present stage V(r)
is quite arbitrary, and therefore such a relation can obviously be only
an approximate one. Such an approximation is supplied by a semiclassical
argument of remarkable simplicity.

For a start, consider a one-dimensional Hamilton operator

H1D(x,px), for which the time independent Schrddinger equation
T __1_ ) v = ' (5—30)
Hip (%' 1 537) X (x') = B Xp(x")

tells us the eigenvalues E =EO,E1,E2,... . About H we shall only as-

1D

sume that its spectrum contains a discrete part —w<EO<E1<E2<... and that

a possible continuous part consists of E values larger than the discrete

eigenvalues. In other words: is supposed to belong to a reasonable

H
1D

physical system which possesses a ground state, some excited bound states,

and, possibly but not necessarily, scattering states. We are only inter-

ested, here, in the discrete part, so that the wavefunctions XE(x') are

normalizable,

[2

fax'" X (x)[" =1 . (5-31)

The guantity
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ng = tr n(E-H1D(x,pX))
= E-E.
E%:n( E])

is the count of eigenvalues of Hip less than E; or: ng equals the num-

(5-32)

ber of bound states with energy below E. Thus, np is piece-wise constant,

ng = n for En < Ex En . (5-33)

=1

In a plot of n_ versus E, Fig.7, we see its staircase character. Obvi-

E
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6 > ]
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= /|
e
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17
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E, E, E, E, E, E, E, E, E,
£

Fig.5-7. Sketech o4 n; (s0Lid-Zine staincase) and v_ [(dashed smooth curve)

E
as a function of E.

ously, ng can be regarded as consisting of a continuous smooth part Ve
plus an oscillatory (and discontinuous) supplement Np=Ve. We can find
Ve by evaluating the trace in (32) TF wise,
dx'dpé
vp = f—5= n(E-Hpx',p0)) (5-34)

as in Eq. (1-43). (Again, we use primed guantities x',pé to distinguish
numbers from operators x,px.) Now, if vE does indeed smooth out ne, it
will equal some number between n and n+1 for E= Ep. It is natural to ex-
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pect this number to be about n+1/2. Consequently, an implicit and appro-
ximate way of calculating E, is to find the value of E for which Ve
equals n+1/2. In short:

vp = n+1/2 (5-35)
n

is the TF quantization condition in one dimension. In particular, if

H1D has the standard structure

21 .2
H1D(lex) = '2' pX + V(X) ' (5-36)

this is
n (5-37)
21 ' - ;
== fdx V2(E_-VI{x')] ,

where the range of integration extends over the classically allowed re-
gion inside which the argument of the square root is non-negative. (As
always, we use the convention that vz =0 if z <0.)

The reader, so I trust, recognizes that (37) is identical with

the familiar WKB quantization rule, and also notices that our derivation

of (37) i1s much simpler than the WKB reasoning, which makes extensive
use of approximate wave functions.

Now we turn to the three-dimensional spherically symmetric
Hamilton operator

1 »2

H = p-+Vv(r) . (5-38)

N

The radial and angular dependence of the wave functions can be separated,
Fr|E> = LR, (') Y, (816") (5-39)
r'“L,E m !

with the aid of the spherical harmonics Yzm' The Schrddinger equation

then implies a differential equation for R(xr'),

2
[-% %ﬂ Vir') +-&§(—]-:’Q—T-;—)]R2,E(r') =R, ('), (5-40)

which determines the energy eigenvalues E.

This differential eqguation cannot, as it stands, be read as
the Schrddinger equation associated with a one-dimensional Hamilton
operator Hqp(x,py). The identification of r' with x and -id/dr' with py
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does not work, because the range of r' is restricted to positive values,
as is illustrated by the normalization integral

oo

fdr'|R(x"){" =1 . (5-41)
o

12
Therefore, we must, during an intermediate stage, introduce a new vari-
able, x', that ranges from -« to =. The physical distance r' is now ex-
pressed as a function of this auxiliary variable: r'=r'(x'). It is cer-
tainly reasonable to restrict ourselves do such transformations for

which dr*/dx' >0 and r'(x"'+®) =0, r'(x' +») =, In other words: as x
grows from - to =, r'(x') increases monotonically from 0 to «. The nor-

malization integral (41) is then

faxt L) r(rrx))? - (5-42)
so that
Viery11/2
X(x') = [drd;i( )] R(_r'(x')) (5-43)

is going to be the wave function in the new variable x'. The differenti-

al equation for X(x') is

ar' /27 1/dx' d \? L)1 der T2
G A E &) v HHERES) e
' dx' (5-44)

= E X(x")

Now we can identify x'~»x and —id/dx'—+pX as coordinate and momentum of

an effective one-dimensional description. The associated Hamilton opera-

tor is
2
1 Yr(®)[s? (%) s (x) L(2+1)
Hipxipy) = 3 s(x)<_r(x) x) = +V(r(x)) tarrgmy o (6745
where s(x) is defined by
1/2
- T (x)
s(x) = [dr(x) dx] : (5-46)

The identity

/r]xi(sz(x) )2 s (x)
X

s(x)\ r(x)
/r x) (5-47)

_s?2(x) _2s%(x) 1 d?*s (x)
T Tr(x) fx Tr(x) +4r2(x)[1+4s(x) dx? ]
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simplifies (45) to

-1 -1
1{dr (x) 2 fdr(
mpter,) = 3 TRl [ vl

(5-48)

(r1/2)% | s®(x)_ d%s(x)
2r2 (x) 2r? (x) dx?2

If we insert this H1D into the TF quantization rule (35), we find that
the radial motion is (approximately) quantized according to
dx'dp!
LY - '
np*3 f 21 n[EZ,nr H1D(X ,pé))
(5-49)
- lqax EE 1 /on2(m,  —v)) - (a+1/2)%-83 L8
T dx' r 'Q”nr J ax'e !
or since dax!' izﬁ-=dr,
dx
_ 1 dr ] _ _ 2__3 d¥s _
n.+1/2 = - [SE Vor (By o ~V@))-(2+1/2)%-s” 5 . (5-50)

r

We compare this with what we would have obtained by wrongly taking (40)
as a one-dimensional Schrédinger equation and observe that 2(2+1) is

replaced by (Q+1/2)2 +s3 d2s/dx'2. The latter term is dimensionless by
construction, inasmuch as (46) shows that s2 has the dimension of x.

Consequently, as a function of r this term has to be a constant because
elsewise we would be forced to introduce an artificial scale for r. The
functions s(x'), for which s3 dzs/dx‘2

by

is independent of x', are given

2
s(x') = [so+s1(x'—xo)2}1/ , (5-51)

where so >0, s1 20, and X, are constants. Now recall that r' -+ 0; « for
X'+ ~2;0, gso that logr'—++te for x' ++w, In terms of s(x') this means

o

1 L} | —_ -~ 1 1 2
w0 = LFX logr' (x') = ;de [§T§TT]

(5-52)
o[
Y~ Y2 *
Jw Sotsq (X xo)
The latter integral, however, results in a finite number unless S4
equals zero. Then s(x') = const., and (46) implies
r(x) = r_ eX/%0 r >0 (5-53)
o ! o} -
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The term s3 dzs/dx2 in H of (48) vanishes accordingly.

1D
The particular choice for Ty and Sq is irrelevant, we can put

both equal to unity. Then

1 1[.2 1,271 _ x _
Hiylapl) =5 ;[px (L +3) ];+V(r), r =e . (5-54)
and the resulting TF quantization rule
2 41/2
1_1 - _ (8+1/2) -
n +5 = njdr[Z(Ellnr Vir) - ) (5-55)
has the familiar WKB form. This is how we shall relate E to both

2,n
the guantum numbers and the potential, for eventual use in Eq.(29).

Before proceeding with this development, I would like to offer
a remark. The necessity of replacing the naively expected "centrifugal
barrier" 2(2+1)/(2r2) by (£+1/2)2/(2r2) is, of course, well-known since
Kramers6 observed, in 1926, that the correct behavior of the WKB wave-
functions near r=0 is not obtained otherwise. The reasoning given above,
however, is quite different from Kramers' argument. Instead, it is in
the spiritof Langer's7 derivation in 1937. The main difference is that
Langer settles for r=e¥ right away, whereas it is shown above that this
is, in some sense, the only reasonable mapping of 0 Sr<ew to =< X<,
So much about the justification of 2(2+1)-+(2+1/2)2. But this is not
the only reason for being so explicit. It is clear that in evaluating
the trace of n(E-H1D(x,pX)J one wants eventually to go beyond the TF
approximation (34) by, for instance, introducing the relevant Airy ave-

rages. For that purpose, one must deal with the H D given in (54). No-

thing of this has been worked out as yet, and it ;ould certainly be in-
teresting to find the resulting modifications of the quantization rules
(37) and (55). For our present objective of studying EOSc it suffices
to employ Eq. (55).

For large gquantum numbers £ and n. quantization according to
the TF (or WKB) rule (55) is highly accurate by construction. What can
we say about the small guantum numbers associated with the strongly
bound electrons? For these the potential is basically a Coulombic po-
tential (15) with a (small) additive constant Eo' Inserted into (55) it
produces (see Problem 4)

n +a4=— % _ (4+1/2) (5-56)
r 2
V2 (E_-E )
o z,nr

or
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2
E = E Z

%,n o~ 2(n +1+1)2 (5-57)

This is the exact answer with its well-known dependence on the princi-
pal guantum number (nr+1/2)-+(£+1/2) =nr+£+1. Thus, TF quantization (55)
is also very good for small quantum numbers.

Here i1s an additional pay-off. Since (55) gives the correct
energies for the strongly bound electrons, the special treatment dis-
cussed in Chapter Three is no longer asked for. In particular, when the

EZ n values of (55) are used to evaluate the spectral sum of E1 in Eq.
7
(29)? the Scott correction to the energy is there without further ado.

More about this later in this Chapter.

Fourier formulation. The new expression for E1(V+c), Eg. (29), which is

a sum over the quantum numbers ¢ and n, with E approximated by (55),

2,n
is not well suited for a practical calculation as’it stands. We there-
fore rewrite (29) in a few steps.

First, we recall that we can shift the emphasis from the ener-

gy E1 to N{E), the count of states with energy less than E,
N{E) = tr n(E-H) , (5-58)
because [see Egs. (209) and (2-20), and note that N(E)=N(z=-E)]

-z
E, = tr(H+g)n(-B-g) = - [ aE N(E) , (5-59)

—-co

so that information about N(E) is immediately turned into knowledge of
Eq-
Then, instead of summing over 2 and n., we equivalently inte-

grate over X and v, given by
A= e+1/2 , v = nr-+1/2 ’ (5-60)

and introduce

Ex,v = Ez,n , (5-61)
r
which, according to (55), is related to A and v by
_ 1 dr 2 2.1/2 _
v =[5 ler (Ehv-v(r)) AC1 . (5-62)

After the introduction of Delta functions to select the discrete quan-
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tum numbers, we arrive at

o

N(E) = 2 § (22+1)n(E-E )
Q,nr=0 l’nr
_ [+ Lol 1- _
=4 jdxx_E_ 6(L+5-2) (5-63)
o fm=oo
iy 5 1
x  fdv _ 6(nr~+§-v)n(E—Eklv)
o] nr—

Now, the twofold application of the Poisson identity

E S(K-F%-A) - E (_1)k eiank ,

Q=== k=~—c0 (5—64)
> s - =0 (-nF Y
n =-w j:—oo
X
produces - - -
k+7 i2mkA i2nyv
N(E) = 4 E (=1)"~% gdxxe édve J n(E-Ey ) - (5-65)
k,j=-w

So far we have been reading Eq. (62) [and likewise (55) before]
as implicitly defining EA v for given X and v. However, another view is
’
more useful. It understands v as a function of X and E, v=vE(A),
1/2

Li& e (evim)-2% 7, (5-66)

ve(d) =
which for each E defines a "line of degeneracy"” in a ),v-diagram. The
term degeneracy is appropriate here because such lines connect (A,v)
values belonging to the same energy E. If it should happen that several
(z,nr) pairs of (integer) quantum numbers refer to (i,v)'s on the same
line of degeneracy, then there is more than one (orbital) state with
the corresponding energy; these states are degenerate (in addition to
the general spin and angular momentum multiplicity). This is certainly
possible among the lines of degeneracy that are straight, but it can al-
so occur for bent ones.

The domain of integration in (65) consists of all A,v below
the line of degeneracy vE(A). For a fixed value of ), the step function
in (65) selects, therefore, vng(k),

n(E-E, ) =n{vg()-v) . (5-67)
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On the other hand, if ) exceeds A defined by

E’

1/2

Mg = Max [267 (E-V(r))] , (5-68)
r

then the argument of the square root in (66) is negative for all r, im-
plying
vE(Az AE) =0 . (5-69)

Consequently, we now have

o e . A
NE) = 4> (nFT e et qay o2y (5-70)
k, == © o

which, inserted into (59), enables one to compute E,-

Isolating the TF contribution. The j=k=0 term in (70) gives the result

of integrating of X and v, without reference to the Delta functions that
enforce the integral nature of A-1/2 and v-1/2. Therefore, we expect it
to reproduce the TF version of N(E),

_ > 1 3/2
(N(E))TF = f@h) sz (-0 1372 (5-71)

Indeed, this happens when vE(A) of (66) is put into the j=k=0 term of

(70) « A

E
(38 )0 = 4 arave ()
e 1/2
_ 4 ,dr 2 r iy a2 -
= =f== g dxxl2r® (E-Vv)-1"] (5-72)
_ 4 ,dr 2 3/2
= 5 [ 7 Rr7(E-V)] '

which, in view of (d%) = 4nr2dr, agrees with (71).
This observation implies the decomposition of N(E) into its

TF part and a supplement that represents quantum corrections,

NE) = (NG )gp + NG E) (5-73)

where the term "quantum corrections" is used with the meaning given to
it in the paragraph after Eq. (1-43). In the present context we approxi-
mate Nqu(E) by the right~hand side of Eqg.(70) without the j=k=0 term.
Quite analogously, E1is split into the TF expression plus a quantum cor-
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rection8 (not to be confused with AquE of Chapter Four). We shall see

1
that this correction is usually small compared to the TF part, allowing
its perturbative evaluation. As a preparation we first collect informa-
tion about the lines of degeneracy vE(A) which are the basic ingredients

in (70).

Lines of degeneracy. The maximum of Eqg. (68) is located at the distance

X

EI
2 2. -
AE = 2rE[E V(rE)] . (5-74)
This maximum property implies that re obeys
Vi) + =5 (r_vir))) = 2t {5-75)
E drp VETE !
which has the consequence
2 _ 2/ d _1 _
\e = rE<d—r— . )[rEV(rE)] . (5-76)
t £
Another immediate implication is
da .2 _ 2 B
aE Mg < o (5-77)

This shows that if we were given AE for some range of £, we could cal-
culate T, and then employ (74) to find V(r) for r in the corresponding

range of r_. As an illustration hereof, consider

E
AE = Z//E(EO-EF r E <EO ’ (5-78)
for which (77) gives
2
r, - g/_E ;x>0 (5-79)
(o]
so that
2
e =224, 3= zr, (5-80)
E
and, using Eq. (74),
)\2
Virg) = E - ;E— = - B/r e (5-81)
r
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the Coulombic potential (15) emerges. Indeed, Eq.(56) is equivalent to

vE(A) = Z/VZIEO—EF - A = AE-A ’ (5-82)
with AE from (78), which is to be supplemented by
vE(A) =0 for A> XE (5~83)

as required by (69).
It is an important lesson that AE’ in its dependence on E,
contains a lot of information about the potential V{(r). Since the range

of AE is possibly limited  (short-range potentials do not bind states

with very large angular momenta), the corresponding range of re need not

extend to infinity. Then AE determines V(r) within a sphere, of finite
radius, around r=0.
For values of ) close to AE’ the domain of integration in (66)

is a small neighborhood of r There one can approximate the argument

£
of the square root by a quadratic polynomial in r-r

E,
2, _ 22 . ,2_,2.1 2, 2 _
2r” (E-vi(x) )= A" = Ap - AT sup (rmr) T (5-84)
with
2 _ a2 2
wp = 35z 27 (V(r)-E)] 1r=rE
(5-85)
g2 d 1
= 2[r, 7= +5—-—]lr vir.)]
E drE drE e E E
The relations
2
ug = d4r§dE R (5-86)
gl d® (x%) /aE*
indicate that, again, knowledge of AE is sufficient.
The integral that results from inserting (84) into (66),
_1,dr .2 2 1 2 2,1/2 _
Ve = = == DA -5 e (r-rg) 7] ' (5-87)

has the structure of the one producing the vE(A) associated with the
Coulomb potential:

2.1/2 z

FE 20 (Erz/r)-221 7 = - . (5-88)
V=

1
T

|

™|

The evaluation of (87) is, therefore, immediate. We find, for A sXE,
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A
£ - 5-89
VE() = /2 O (5-89)

n

In the limit xe-xE this is exact, so that

= i

Ve ax VE

(5-90)

Please note that, via Egs. (77) and (86), the E dependence of AE deter-
mines the ) dependence of vE(A) near A=ip.

Higher derivatives of vE(x) at A=AE can be calculated by a me-
thod (described in the Appendix to Ref.9) which improves upon the appro-

ximation (84).. For example, the second derivative

R L 5-91
vp o= 7 vE(A)|_ ( )
A=A
£
equals
\)I
v oo CE(qo(yr) 243y, 215,23 i
vp = E[1 (vE) *EVIVy 8v3+2v4], (5-92)
where the coefficients
o= TS 2 Rk 2y ) (5-93)
k - k! A2''ETE d E E
E E
depend on E, and could be expressed in terms of £ derivatives of AE.

The recognition that, for a spherically symmetric potential,

(5-94)

enables one to rewrite the right-hand side of (90), the outcome being

vy = [1 kA ] "z (5-95)
.YV r=rg
The force ~-VV is towards the center at r=0, so that ;-$V is positive.
On the other hand, the Laplacian of an atomic potential is related to
the density (—v2V==4nn,j11the simplest approximation) and is therefore
negative. As a consequence, the contents of the square brackets in (95)
are less than one, implying

BvE(A)
\)E = _—EA— > 1. (5-96)
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The limit of unity is approached for large binding energies -E belon-
ging to strongly bound electrons for which V= -2Z/r. Note that (96) is
not true for any potential because V2V can be positive. An example is
the oscillator potential V=(|</2)r2 where v'=1/2 for all energies E > 0.

E
Our interest, however, is in atomic potentials which approach -Z/r as

r+ 0 and vanish for r-»>«. For these, Eq.(96) holds.
The derivation of (90) can also be done by using the general
expression

A
[2r? (e-v (r))—le

2
A E

f%f (5-97)

Q>
A=

172

together with the approximation (84) (see Problem 5). Let us now employ
(97) to find avE/BX for A+ 0. No, the answer is not zero, for in this
limit the integration reaches down to r=0 from which neighborhood a fi-
nite contribution arises. We isolate that part of the integral by intro-
ducing an upper limit ¥, independent of ) and so small that V= —Z/r‘al—
ready is a good approximation. At this stacge we have

- :
{ar —Ar (5-98)
A% (22) V2ZET-2T +0

avE(A)
E 3A

=

Now the substitution 2Zr==A2(1+x2) yields

_ 2 ¢ odx L -
'VE—E£W—1 . (5~99)

This statement holds for all E,except E=0, where there is the possibili-
ty of an additional contribution from the upper limit of the integral.
This is the situation if VA r © for r—+e, with m>2. Potentials with
m £ 2 are long-range potentials, of which the important example is the
effective potential of an ion where V= -(2-N)/r for large r. In such a
long-range potential there is no limit to the quantum numbers, and the
entire line of degeneracy vo(k) is infinitely distant from the origin
in the A,v-diagram. On the other hand, for m> 2, we have a short-range
potential with a 1limit to the possible gquantum numbers.

Again we isolate this upper part of the integral, now by a
A-independent lower limit ¥, large enough to justify V(r) = —c/rm
(c>0,m> 2):

1/ (m-2) /
A x
dr
[2cr2_m—A2]1/2

(2¢/2%)

dl=
Ml

A0
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1
m-2 T+xZ  m=2 ' (5-100)

where the substitution 2cr2-m =A2(1+x2) has been made. Thus, for poten-
tials with V(r > =) fv-1/rm, m> 2 we have

3vg (A) | -{ 1 for E<O0 ,
Ty m e = _ (5-101)
E R 1+ =811 gor £=0.
m-2 m-2

For given 2, vE(X) increases continuously with growing E.
Therefore, the sudden increase of the initial slope at E=0 for short-
range potentials must be accompanied by a rapid change of vg(Ai=0) as
t approaches zero. This is confirmed by the evaluation of

xr

_ 1 -
5z VeV = 3 fdr 2]1/2 (5-102)

[2r? (£-v) -

for 1=0, verformed analogously to Eg. (100), which produces

. - 2
vE(O) = 5% vE(O)
(5-103)
- c1/m (1/m-1/2) ! _L_(2+m)/(2m)
/in (1/m-1)1 ‘-E
for E g 0. This has the conseguence
1/m

. (1/m-3/2)! (m-2)/(2m)

v (0) = v_(0) +E— (=€) (5-104)

for £ 5 0. Please note that, because m> 2, the numerical coefficient in
(103) 1is positive, whereas it is negative in (104), and that the expo-
nent of (-E) in {104) is a positive number less than 1/2. Indeed, vE(O)
grows rapidly as E -~ 0.

Egquations (103) and (104) are illustrations of the fact that
vE(O) for E< 0 tests the outer reaches of the potential. However, the
tE-dependence of vE(O) is not converted into knowledge about V(r) as
easily as the E-dependence of AE [recall the remark aftgr Eg. (83)].

In Eq.(103) we introduced a dot symbolizing the derivative
with respect to E. This notational simplification will prove useful in
the sequel. With this convention, Egs.(77) and (86) can be written as

= Agre o

al

. . v ey (5-105)
4rE/rE = 8>\E>\E/()\E)\E+}\E) ’

£
R MmN
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and (90) implies
AEAE
2
e

Differentiation of (85) gives

- 4(vé)2 -1 . (5-106)

4a 2 _ > a 2 _ —i~r d 2
aeve £ drEwE T Wi Tedr,
(5-107)
8 [ 2 d3 gz d 1}
= — 7+ 2r 5= +— |l Vir)]
Wel, E drE E drE drE T E E
of which a more useful form is
14 2 ry d \.2 2
T3 Vg T 2 E§<3+rE azg)V V(rE)— (vé) . (5-108)
This will later be needed in
Apv!
EYE _ 4 _ 02 _1,,,2 4 2 _
T 1 2(vE) 4(vE) 3 Yg (5-109)
E'E

the derivation of which I leave to the reader.

Classical orbits. Some of the equations of the preceding section pos-

sess an elementary significance when interpreted as referring to classi-
cal orbits of a particle in the spherically symmetric, attractive po-
tential V(r). For instance, the velocity in a circular orbit of energy

E and radius re is determined by the kinetic energy

1 2
5 Vo= E-—V(rE) ’ (5-110)

which combined with the statement that the gradient of V must supply

the necessary centripal force,

d v 2
- Vir.) = -=— {5-111)
drE E re

reproduces (75). In other words: r_, as obtained from (75), is the ra-

E
dius of the classical circular orbit with energy E. Further, insertion
of (110) into (74) identifies AE

this circular orbit. It is, indeed, well known that of all orbits to a

as the classical angular momentum in

certain energy the circular one has the maximal angular momentum.10

If the angular momentum ) is less than )., the classical or-

E
bit is of the kind sketched in Fig.8. The radial motion is an oscilla-
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tion between two distances r, and r, which define the classically al-
lowed domain. These distances are the limits of integration in Egs. (66),
(97), and (102). The differential equation of the orbit is (the sign
changes whenever r=r, or r=r2)

(5-112)

_.dr A
d¢ == =

v2r? (E-V(r) ) =22
it determines r as a function of the azimuth ¢. In particular, the angu-

lar period ¢ of the orbit, r(¢+®) =r(¢), is twice the difference in

Fig.5-8: Sketch of typical classical trafectory in a spherically symme-
tnic, attrnactive potential,

azimuth corresponding to r=r, > r=r_:

1 2
r I,
2
¢ =2 [%dgp =2 ] %; _:::222:::::— (5-113)
r, r, V2r{E-v)-)2
Comparison with (97) establishes
o/2m = - = v () (5-114)
ox E !

the slope of the lines of degeneracy is the angular period of the cor-
responding classical orbit, measured in units of 2n.

This insight can be used to find vE(A) for both the Coulomb
potential and the harmonic oscillator potential. For the first ¢ is 2m,

for the second it is mn. Accordingly, we have



3 1 for vV = -Z/r ,
- = v_{(A) = (5~115)
9 B 1/2 for vV = %Krz ,
or,
AE -A for vV = -2/r ,
vE(A) = 1 2 {5~116)

1 _
E(AE-X) for Vv = K .

In conjunction with

Z/V-2E for v
AL = 5 (5-117)
E/x for V = zkr ,

]
|
o3
~
R

~

this leads to the corresponding energy spectra

- 322/ (a_+2+1)? for V= -z/r.,
E = (5-118)
r K(an+l+3/2) for V = =«kr ,

demonstrating once more that the TF (or WKB) quantization is exact for
these potentials.

The orbital motion is also periodic in time t, the period T
being related to ¢ through ¢ (t+T) = ¢ (t) + . Since

at = E?d¢ = +dr £ , (5-119)

v2r? (E-v(r))-a2

we find
) r
T =2 f dr ———————— ’ (5-120)
v2r? (E-V)-)?

so that, in view of Eq. (102), the analog to (113) is

2

NE () . (5-121)

T/2n = v

E
The energy derivative of vE(A), multiplied by 2mn, equals the orbit's
period in time. Note how Egs. (113) and (121) pair angular momentum and
angle as well as energy and time.

Applying (121) to (116) with (117), we obtain

anz/ (-26)3/%2  for v = -z/r
T = (5-122)
n/k for V = z«r ’

which are familiar results.
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Degeneracy in the TF potential. After this excursion into the realm of

classical mechanics we now return to the guantum world of atomic phy-
sics.
Inserting the neutral-atom TF potential V=-(Z/r)F(x) into

(66) produces
1/2
v (X) 2
% - %J’%—:E{Zax(li‘(x) +Z—4%-§ax] —(#) ] . (5-123)

This way of writing it makes explicit that \JE(>\)/Z1/3 is a Z-indepen-
dent function of both A/z'/3 and £/z%/3

plotted in Fig.9, for the binding energies -E/Z

. These lines of degeneracy are
43 Jq0,1,107, ... ,1070,
0. Please observe that vE(A) is steeper for larger values of X; in par-

ticular, note that the slope is -1 for A=0 (and E < 0) whereas it exceeds

V/Z1I3

Fig.5-9. Lines o4 degeneracy for the neutral-atom TF potential.
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unity, in magnitude, for A=)_, where v_=0., This is the message of Egs.

E t
(96) and (101). The latter states in addition, that

= 3 -
'vo = 3 (5-124)
for the TF potential [m=4 in (101)]. Indeed, this is the initial slope
of the E=0 curve in Fig.9. Further, this figure confirms Eq.(104) (here
with m=4 and c=144a>=81n%/8),

-3/4
g%vE(A=0)/z"3/3 ¢ 0.4263 (-£/2%/3) , (5-125)

for £ < 0, inasmuch as vE(O) does change very rapidly as E+0. The maximum

of vE(A) is
1 1/3
vo(O) == v2a 2 fdx VE(X) /X
°© (5-126)
= 1.65865 7'/3

which uses the numerical value of the integral established in Problem

2--3.11 The deviation of vE(O) from vO(O) is given by (104),

1/4
vE(O)/Z1/3 = 1.65865 - 1.70528 (~£/2%/3)

(5-127)
(1+v) /4
+ 0.33172(-E/z4/3)

for £50, where we also report the next term with the exponent (1+Y)/4 =
0.443000 [recall that y=(¥73-7)/2]; for detail consult Ref.9.

Some other important numbers, referring to E=0, can be com-
puted starting from the knowledge that the function xF (x) has its maxi-
mum at

X, = 2.10403 (5-128)

where
F(xo) = 0.231151 ,

dr _ - _
a;(xo) = F(xo)/xo 0.109862 , (5-129)

azr
dx?2

(x,) = [F(xo)]3/2/x;/2 = 0.0766160 ;
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see Problem 2-4. We express r, and AO in terms of X, and F(xo),

r = ax 3z /3 ,
o o
(5-130)
A= Y/Zax_F(x) Z1/3
o o e}
Next, Eg.(85) appears as
2 _2 d . d _ 1y, 4/3
Yo T 3 b<dx2_+dx x}( F(x))2 ‘x=x
o (5-131)
-2 F(XO) [1-lx VX F(x_ )] Z‘]‘/3
T a X, 270" 0" Yo '
so that (90) provides
T - __1_ -1/2 -
vy = U1 Zxowonlxoi] . (5-132)

With the aid of the differential equation obeyed by the TF potential

for r>0, V2V = (-4/3m) (-2v) /2, Eq.(108) is simplified to
14 2 8 't d 3/2 2
- F= W, = =% —3{3+r ———}[—ZV(r )) - (v})
4 dE “E 3n wE{ E drE E E (5-133)
2
_8 e 1/2,1 . 4 - 2
=5 oz PV e ) (rv ) ) - )
E E E
Now Egs. (74) and (75) are employed to arrive at
14 2 _16 . TE2 THE — (yt) 2 -
Z3F Y E(wE) V(XE7rEi2 2E (vE) ; (5-134)
which inserted into (109) produces
Apv!
EE - (wn?-11? + 18 2 TETIE -
P [(vE) 117 + - ( E)(rE/wE) Ae/Te Z-2E . (5-135)
AEVE

In particular, for E=0 we get

2\2/x?
o« _ 1y 2 - _ o’ 7o
Wy = Z(Vo) /wo 4 ™
(5-136)
1 -3/2 _-2/3
= VAR /TR [1 -5 x_/X_FR_T
ax F X, [1 5 Xg XOF X ] Z ,
and )\{),
oo _ 2 .2 _ 1.3 1 -2 _
T = [(vo) 117 = 8 xOF(xo)[1 5 XO/on(xoi] . (5-137)
oo
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The corresponding numerical statements are

ro/z'”3 = 1.86278
AO/Z1/3 0.927992 ,
wo/zz/3 = 0.363593 , (5-138)
1
L - ~ — —
v = 1.93768 (2-7%)
—&0/2"2/3 = 20.6527 ,
A vt
2.2 = 7.58781 .
1
ono

In addition, from Egs. (105) and (106) we obtain

s ,=3/3 _ -1/3,2 173, _
Ao /% = (r,/z ) /(A /2 ) = 3.73920 ,

. (5-139)
AA

90 - g4(v)?-1 = 14.0184

02 O

A

@]

and (92) leads to (see Problem 7)
| - 1 [] |2 - _ 4 1 2_
Xovo = 5z vO[(vo )-111 5("5) +23(vo) 15]
(5-140)

0.193647

1]

These numbers will be used below.

For the purpose of illustration, we present, in Fig.10, vari-
4/3

large binding energies, that is —E:»Z4/3,vE(O) equals A

ous quantities as a function of E/Z Observe in particular that for

E* This is typi-
cal for Coulombic potentials, for which these relations hold:

1/3  _ 1/3
VE(O)/Z = AE/Z ’
2
r /23 = G2 (5-141)
/222 =z o)

see Egs. (78), (79), and (82). Of course, Coulombic degeneracy for strong-

ly bound electrons is not unexpected; recall the discussion around Egs.
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(56) and (57).

25
20
15
10
05
0 1 1 i
=20 -15 -10 05 0
e
Fig.5-10. As a function of E/2%/3 ane shown: (a) xp/z7'/3, (b) 2p/2'/3,
(e} vE(O)/Z1/3, (d) wE/ZZ/3; fjon the neutrnal-atom TF potential.

TF degeneracy and the systematics of the Periodic Table. Is there any

reality to the energetic degeneracy as predicted via the neutral-atom
TF potential?

Our affirmative answer begins with pointing out the similarity
between Figs.4 and 9. In quantitative terms we note that the curve con-
necting 7s with 5f in Fig.4 has terminal slopes of about -1 and -2,
which agrees with those of v (}) for Eg0; in particular, avE/BX at A=AE
for Eg0 is practically equal to —vé, which according to (138) differs
from -2 by a small amount. Further, the maximal values of v and ) in
the Periodic Table are v=6+1/2 and A =3+ 1/2, referring to nr=6 and

2=3 (7s and 5f, respectively), whose ratio

6+1/2 _ -
3¥172 1.86 (5-142)
does not differ much from the TF number
v_(0) 1/3
e - 1639 Z1/3 = 1.79 . (5-143)
o 0.928 2

Next, consider a certain value of Z, say Z =88, which is the atomic num-
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ber of radium. For this Z, the TF line of degeneracy vo(k) is plotted
in Fig.11, where the physical values of X and v are marked on the axes
and labelled by the corresponding values of the integer guantum num-
bers n. and 2. The lattice points thus defined mark the orbital states
specified by these quantum numbers. The line vo(k) separates those
available in the TF potential from the ones that are unavailable. For
the chosen value of Z we see that the TF prediction about the occupied
orbital states is in perfect agreement with spectroscopic observations.

! T T 1

T
1.8
7Lt % occupied

+ unoccupied

Fig.5~11. TF prediction for oceupied states in nadium (2=88).

Let us now imagine that we increase Z. Then the curve of v_(})
will move away from A=v=0 in Fig.11, thereby keeping its shape. It is
merely stretched proportional to z1/3. The next states that become avai-
lable are the 5f and the 6d states which are crossed by vo(k) for prac-
tically the same value of Z. For an even larger Z we obtain the 8s elec-
trons, and so on. Whenever a new pair of integer gquantum numbers £, n.
lies below the vo(A) curve, the TF potential can bind 2(22+1) electrons

more. Obviously, the total number of bound states does not always agree
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with Z; as a rule, it is a little bit less or more than Z. When picking
7Z=88 we made a lucky choice in Fig.11. However, this figure speaks in
favor of the TF potential not because the number of bound states agrees
with 7, but because the states selected by vo(k) are the ones that are
spectroscopically known to be occupied. No doubt, there is reality in
the TF potential. A precise statement is the following: the TF potential
reproduces the correct order in which the orbital states are filled as

Z increases. This order is, both as derived from the TF potential and as
known from the systematics of the Periodic Table: 1s, 2s, 2p, 3s, 3p,
4s, 34, 4p, 5s, 44, 5p, 6s, 4f, 54, 6p, 7s, 5f, 6d, ... . The corres-

1/3 are listed in Table 1 below. It is remarkable

ponding values of 2z
that the ratio of Z1/3 values of two successive orbital states in this
sequence differ the least for 4f and 54, and for 5f and 64 (differences:
1.5% and 1.7%, respectively). This is consistent with the strong compe-
tition between these states known from the electronic structure of the

lanthanides and the actinides.

General features of Nqu‘ We shall now learn more about Nqu(E) =N(E) -

{N(E))TF for the TF potential. For simplicity we confine ourselves to
E=0, for a start, and ask the question: how does N(E=0) depend on Z?
In other words: how many electrons can the TF potential bind for a given
value of Z? In the limit of Z +«, Nqu is small, so that N(E=0)E(N(E=OﬂTF

= Z. Consequently, N u(E=0) describes the deviation of N(E=0) from its

asymptotic value, Z.q
A detailed answer is somewhat elaborate, and we present it in
a later section. However, some general qualitative features of Nqu can
be demonstrated without great effort. This i1s our objective here.
Let us first consider the sequence of states 1s, 3p, 54,

which is characterized by the constant value of the ratio

- nr+1/2 2 0+1/2  1+1/2 | 2+1/2 = 1 (5-144)
>\ ,Q/+1/2 0+1/2 1 1+1/2 7 2+1]2 7 LR .

In the % ,nr-diagram Fig.11 these states are on the straight line
through v=X=0 with unit slope. Now observe that the respective distan-
ces from v=A=0 are in proportions of 1:3:5:... which is an immediate
consequence of the circumstance that the physical values of ) and v are
all odd multiples of l. Also recall that the line of degeneracy vo(k)

2
stretches proportional to Z1/3. This implies that the Z1/3

values at
which the successive states of this sequence become available are in

proportions of 1:3:5:... as well. The contribution to the number of
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available states made by said sequence of states is, therefore, given

by

0 for (z/2,0)"3 <1,
1/3
2 for 1< (Z/ZTS) <3 ,
2¢6  for 3<(z/z, ) /3¢5 (5-145)
N (2) 1s
(1s)

246410 for 5<(z/z1s)1/3<7 ,

2

2m for 2m-1 <(Z/Z1s)1/3

< 2m+t ,

where Z1s stands for the minimal value of Z required to bind the 1s

state, the first state in this sequence. In (145), m is the integer

part of —;—(Z/Z1s)1/3 +1/2, so that we can write, with the aid of Eq.(7),

2
(z)

1 1/3 _ 1 1/3
N1s) 2(318/815) 77 = <5(8/2,) 175)

(5-146)

2N(z/z1s) .

The function N thus defined is universal, which is to say: it is the
same for each such sequence of states characterized by a common ratio
v/ =(nr+1/2V(2+1/2). This is so because in each sequence the distances
from A=v=0 are in proportions of the odd integers, 1:3:5:... . And this
is the only ingredient in N. For any sequence we have accordingly

= 2(2£0+1)N(Z/Zm (5-147)

N(sequence)(z) in)
where 2(220+1) is the multiplicity of the initial state of the sequence,
and Zmin

Table 1 gives the essential numbers for the first fifteen sequences of

is the Z value at which this initial state becomes available.

states, ordered by increasing Zmin'
The total number of occupied states, N(E=0), is then given by

the sum over all sequences

N(E=0) = E multiplicity><N(Z/Zmin) . (5-148)

seqguences
It is technically impossible to perform this summation. Nevertheless,
we can certainly use it to study the structure of N(E=0) as a function
of Z. Note that for large Z, N(Z/Zmin) appears as
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Table 5-1. Initial state (IS), characterizing ratio v:), multipli~-
city (MULT) of initial state, and minimal Z1/3 of initial state,
for the first 15 sequences of states (ordered by increasing Z;{i).
The orbital states 3p, 54, and 6p do not initialize a new se-
guence.

is Vi MULT Z;{i

is 1:1 2 0.822

2s 321 2 1.41

2p 1:3 6 1.90

3s 5:1 2 2.00

[3p 1:1 (1s sequence) 3%x0.822=2,47]

4s 7:1 2 2.60

3d 1:5 10 2.97

4p 5:3 6 3.05

5s 9:1 2 3.19

4d 3:5 10 3.54

5p 7:3 6 3.63

6s 11:1 2 3.79

4f 1:7 14 4.05 _

[5d 1:1 (1s seguence) 5x0.822=4.11]

[6p 3:1 (2s sequence) 3x1.41 =4,23]

7s 13:1 2 4.39

5f 3:7 14 4.61

6d 7:5 10 4.69

N(Z/Zmin) - %(Z/Zmin)2/3
(5-149)
+(Z/Zmin)1/3 <%(Z/zmin)1/3 >+ ...

where the leading terms have been exhibited: a smooth term of order

Z2/3 1/3

. and an oscillatory term of order Z . The sum over sequences has

to turn the smooth term into the TF part (N(E=0))TF = Z. Thus this smooth

1/3

term gains a factor of Z when all sequences are summed. This will not

be equally true for the oscillatory terms. An individual one has the pe-
riodicity Z1/3-*Z1/3-+22$£i, but as Table 1 shows the various sequences
have what looks like randomly assigned values of ZA{i.
;{i in conjunction with the
multiplicity of the sequence. There is nothing regular about these ampli-
tudes as well. Therefore, we have to sum oscillatory functions that all

The amplitude of
each oscillatory term is also determined by 2
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have the same shape but irregular amplitudes and periods. The interfer-

ence 0Of these oscillations cannot be constructive. We conclude that

the resulting fluctuating function of Z1/3

Z1/3

has an amplitude factor of
as do the individual oscillations, no enhancement takes place.
What we have found is:

1/3

X {fluctuating function of Z

/34 (5-150)

N _ (E=0) = 2
qu

As a matter of fact, the periods of the oscillations of the various se-
quences are not really assigned randomly. They are all determined by
the shape of vO(A). Accordingly, there is a little bit of amplification

of the amplitude. The detailed analysis given below shows that the lea-
1/2 =Z1/3><Z1/6

1/3

mous value of 5x 1019 forz. In the small-Z range of physical interest,

ding oscillatory term in Nqu is of the order % However,

for it to really dominate the terms of order 2 , one needs the enor-
this "leading" oscillation is utterly insignificant.

Our algebraic results about N(E=0) and Nqu(E=O) as a function
of 7z are confirmed by the plots presented in Figs.12 and 13, of which
the first one shows the staircase shape of (145) and compares it to the

straight-line TF result, and the second one illustrates (150).

150 | I

0 150 300
Z

Fig.5-12. N(E=0) as a f4unction o4 2 for the neutral-atom TF potential.
The straight-Line i (N(E:O))TF =7,
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50 - - - . - . -

25 ¢t 1

0 NM\ (AN
\lw\l\]

Nqu/Z“3

-25

_.5.0 -4 L i H L L 1

1/3 1/3 1/3

Fig.5-13. Nqu(E=O)/Z = [N(E=0)-2]/2
neutral-atom TF potential.

as a funciion of Z forn the

General features of Equ; Armed with all this insight into the number of
available states, we can now employ Eg. (59) and gain related information
about the energy. What we have said about N(E=0) holds also for E <0 if

we keep the ratio E/Z4/3 fixed when changing Z. This is an implication

1/3 on t‘E/ZLl/3 and X/Z1/3, and
therefore a consequence of the scaling properties of the TF model.

This means that (N(E))

of the particular dependence of vE(A)/Z

equals Z times a smooth function of

TF
E/Z4/3 (for the TF potential, of course, or more generally for every
potential of the form "Z4/3 times a function of Z1/3r"). Indeed, we know
it does:
_ - 1 3/2
(N(E))pp = [(AT) 3= [2(E-Vpp(x))]
(5-151)

o 1/2 E 3/2
=7 dx x [F(x) + ax 1
) 173

The integration thereof over E,

-z
(B @) )pp = - [ GE (N(E))pp =

—00
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- 1 5/2
= 105 (- q55z) (2 (Vg (2) #2) ]
7/3 5/2 (5-152)
= -2z~ Z fdx X 1/2[‘=‘(x)-ax L] .
L 14
5 Z473
. 7/3 4/3 . . c s
results in (E1)TF/MZ so that a factor Z is acquired. This is not
surprising since the differential Af is of this order:
at = 23 a5 (5-153)
Z473 ‘

In addition to the smooth term (151), N(E) has the oscilla-

tory contribution Nq (E) . Generalizing (150) we state that it equals
Z1/3 times a fluctuating function, the argument of which is the product

of Z1/3 and a smooth function of E/Z4/3. An example for this structure

is provided by

N u(E)" = A Sin(AE) . (5~-154)

E

Upon performing successive partial integrations, this produces

=z
E_ (o))" = —wj; dE Nqu(E)
(5-155)
e d AE cos (\.)
= -] aF ggl-+ E
— >\E
+.—1—a°.1—(_—E)sin(AE)+...] ,
A A
E £

where the dot represents differentiation with respect to E, and the el-
lipsis indicates further terms. The contents of the square brackets,
evaluated at the upper 1limit, are oscillatory functions of 21/3. Their

respective amplitudes are of the orders

ae/hp s 3pm33 2 g3
(5-156)

1 4 E 1 4/3 _ _3/3

-E'[)'”—3/3ﬁ_z =z '

A Z

E E

. 2/3 1/3 .

then 2 , and so on. In short: when Nqusz , then the oscillatory
part of Equ is %Z4/3. Oscillatory terms merely gain by a factor of Z3/3.

We infer that the binding-energy oscillation “Eoge is, for
the TF potential, of amplitude Z4/3 and (in some sense) periodic in

Z1/3. Indeed, as promised, this is small compared to the leading TF

7/3

energy term (vZ ) if only Z is sufficiently large. A pertubative
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treatment of these oscillations is fully justified. We shall arrive at
quantitative statements about amplitude and period below, after a short
detour.

We did not identify Equ with Eosc’ because Equ also contains
nonoscillatory contributions. Since the semiclassical spectral sum (29)
handles the strongly bound electrons correctly, whereas they are mis-

represented in (E1) the Scott correction must be part of Equ' Accor-

’
dingly, Nqu pOSSeSSZE a related smooth term. The slight asymmetry in
Fig.13, somewhat larger negative peaks than positive ones, is consis-
tent with the presence of such a term. In the following section, we
shall exhibit the Scott correction explicitly. Further, Equ must con-
tain (at least part of) the guantum corrections to E1, that were dis-
cussed in Chapter Four. So far it has not been demonstrated how one can

isolate them in E_ .
gu

Linear degeneracy. Scott correction. Let us briefly look back at the
energy of Bohr atoms with filled shells, Egs.(24) and (25). There the
5/3. Why is the
chain of arguments that we applied to the TF potential not egqually va-

lid for a Coulombic potential? The reason is that for the TF potential
4/3

leading oscillatory term has an amplitude of order Z

the lines of degeneracy vE(A) are bent, for 0< -E/Z «1, not straight

as for Coulombic potentials. A straight line results in sequences of

states for which the respective N(Z/Z ) are perfectly in phase. The

min
random character of the periods, which we have observed for the TF po-

tential in Table 1, is absent in the situation of linear degeneracy,

that is when vE(A) is a linear function of X, a straight line in the
A,v-diagram. In other words: the existence of a principal (or energy)
quantum number is what distinguishes Coulombic potentials from the TF
potential. As a matter of fact, one can demonstrate12 that linear de-
generacy near E =-g always leads to an energy oscillation of order Z5/3.

The main example of a physical system displaying linear dege-
neracy throughout is a highly ionized atom, where the effective poten~
tial differs but little from a Coulombic potential. In neutral atoms,
one. has linear degeneracy for the strongly bound electrons. As in Chap-
ter Three, we isolate these electrons by introducing a separating bin-
ding energy [ =—Es that selects the part of the spectrum with Coulom-—
bic degeneracy. Thus we write

E (g) = [B(g) -BEj (g )1 +E () . (5~157)

According to (24) and (25), Eq(zg) is given by
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2
= —g2 2y _1_ 1 N _
Bg) = -2 [ B oo b 12)""'} ' (5-138)
s E s
s
where [Eq. (78)]
A = 2/V2(E_"E]) {5-159)
s
E being the additive constant of Eq. {15); for the TF potential it
equals Z4/3B/a"1.79374 Z4/3. The leading term of E1(;s) is, as always,
the TF contribution
2 .2 - _ 2,3 _
R T R /VZTE=EQ)
5/2
= [(d¥) (- ——71 [2 (g +—-E )1 (5-160)

n

(E,] (gs'_“Es))TF r

when we insert (15) into (152) [see also (1-36)]. It combines with the
TF part of the integral

-z
E,(2) -E (g ) = - _é dE N(E) (5-161)
s

to produce (E1(§))TF. More interesting is the next-to-leading term of
E1(cs). It equals %ZZ and does not depend on ES. Actually, being the
only part of E1(ts) independent of g =—Es, this term is the only visi-
ble contribution of the strongly bound electrons to E1(c). All the other
terms in (158) cannot themselves be present in E1(;) since E1(c) does
not depend on [

We have thus identified the two leading contributions to E1(cL

E (g) = (E, (g)]TF+%z2+... (5-162)

thereby rediscovering the Scott correction to which Chapter Three is

dedicated. Please note that at that earlier stage ECﬁ was evaluated TF
wise with the consequence that the Bohr shell osc1llatlons of (158) [or
(3-22)1 had to be removed explicitly. In (157) we compute EE;s with the
aid of the semiclassical sum (29), so that all Bohr shell artifacts are

taken care of automatically.

Perturbative approach to Egg.. After eliminating the density in favor
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of the effective potential from the energy functional (2-434) and sepa-
rating the electron-electron interaction energy Eee into its electrosta-
tic part and a remainder Eée, as in (2-36), the potential functional of

the energy (2-40)

> > 2
E(V,0) = By (Veg) =zN-g= [(@) [Tv+Z-v: )]

(5-163)

+ {El (n) = | (d7) nvl, (n) }n=n(V)

emerges, for V =-Z/r. We recall that the density is expressed in

ext ~
terms of the potential, symbolically: n=n(V), by solving Eqg.(2-432), in

which v_ =V _(n), for n. The potential V! is V minus the electrosta-
e ee ) ee ee

e
tic potential (2-28) [see (2-37)]; its lion's share is the exchange po-
tential.
We exhibit the TF part of (163) by splitting E, into (E1)TF
and E_ ,
qu
_ > 1 N 5/2
B, (V+g) = [(dT) (- 357) [-2(V+0)] * By (VFE)
(5-164)
[E1(V+C))TF + Equ(v+g) .
and by employing the identity
1 >, 2 Z . 2 _ > .
v f(dr)[V(V-FE-Vee)] f(dr)llvee
5 . (5-165)
= - (@ T DHIT L@ vy
Thus, )
_ 1 >, >
E(V,g) = (B, (VFD))pp — g [ (D) [V(V+D)] - N
' 1 Iy 1oy 2
* B, (veg) + {Ele () + 5= [@D) Vv (n)17)
n=n (V)
= ETF(V,E) + Equ(V+C) (5-166)
+ {B! (n) + 2= [(d%) (W' _(n)1%}
ee 8n ee |
n=n{Vv)

where we recognized the TF energy functional (2-45).
We evaluate

Equ = - ;& dE Nqu(E) (5-167)
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approximately by inserting

@) LA . v () sy
S B I P e L T A
qu k.3 o o}

,3=

where the primed sum does not include the j=k=0 term. This Nqu(E) is,
of course, the difference between N(E) of Eg. (70) and the TF term (71)
or (72). Now we recall, that for given Z and N, the energy functional
(166) is stationary for the actual potential V and the actual value of

z. Also, alone has a stationary property; it is optimized, for neu-

E
TF
tral atoms, by V=-(Z/r)F(x) and =0. Above we have observed that, with

the ¢ and V, the leading oscillation in E is relatively small at suf-

ficiently large Z. A1l this means that we agg justified in evaluating
EOsc perturbatively by simply inserting z=0 and V==V&F,=—(Z/r)F(x) in-
to Equ' In other words, we are going to extract Eosc out of (167) by
using the TF lines of degeneracy vE(A) in (168).

The terms in curly brackets in (166) are ignored in this pro-
cess. This contribution to the energy is mainly exchange energy, which
is smaller than the TF contribution by a factor of Z_2/3- Consequently,
the resulting modification of the effective potential is a small correc-
tion, and the energy oscillations that grow out of the exchange inter-
action are expected to be smaller than the leading oscillatory term by

~2/3

said factor of Z . They are, therefore, negligible at the present

level of accuracy.

- quantized TF model. Let us start our quantitative treatment of (168)

by picking out the j=0 terms. With the disappearance of exp(iz2njv) all
reference to the Delta functions, that initially enforced integral val-
ues for nr~=v—1/2, is gone. We are thus, in effect, integrating over

n. instead of summing. Consequently, we are considering now the improve-
ment obtained by quantization of angular motion only, without having
radial motion also quantized. We call this the {TF model, short for -
quantized Thomas-Fermi model.13

Equation (168) is here reduced to

_ A )
Mgu® ) gp = 42 (-1 % fEann eP2™hy )
o

k=0 (5-169)

k M
8 (-1)" [ Fax A v (M cos (2nkd) .
k=1 ©
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Repeated partial integrations provide the identity

AvE(A)cos(ank)

- 5-170)
-1 cos(anA-fﬁiln) ¢

9 3,
= = § ),
9A £ s (an)m+1 ER t

which, inserted into (169), supplies oscillatory terms from the upper
limit of integration. The smooth terms from the lower limit are of no

interest to us here. Thus we found

(Nosc(E))QTF =8

(2] o] k
3 ,m =1 m-1 -171
(53) (AVE(A))‘ E (2nk)m+1cos(2nkxg+ =), (5-171)

= k=1

=)

m=1
A=A

1/3

where, because vE(AE) =0, no m=0 term is present. Since A~ 32 and Ve

%21/3, the m—-th term in this series is of order Z(2—m)/3; we exhibit the
leading ones:
-5} k
(N oo (B)) yrp = =27 "éZ‘(‘T(Tﬁ‘;‘% cos (2rk) )

k=1

o K
" v -1) .
+ (Agvg+2ve) E CAE sin(2nki.)
k=1

. O(Z—1/3)
- - ' 2_1 -
= ZAEvE(<AE> 12) (5-172)
2 11 L} 2_1_
+ g(AEvE+2vE) <AE>(<AE> 4)
+ O(Z_1/3)

The notations introduced in Egs. (90) and (91) have been used; and the
sums have been recognized to be the ones of Egs. (3-29).

The corresponding LTF approximation to Eosc is obtained by
inserting (172) into (167) and pickinc out the contributions from the
upper limit (=0 for neutral atoms) of the E integration. For this pur-
pose, successive partial integrations are employed analogously to (155).
For instance,

(o]
- [ dEApvpcos(2nkig) =
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3 1}
i f;g é%{x . 51n(2nkAE)_F£L<AEvE \cos(2nkAE) +...]
CEE amkd, dE\onkt ./ 2mkd
£ [
A v! (5-173)
.1 00 1 .
=-3 : % 51n(2nkxo)
o
! A vt A
_% =2 <1+T°_9_—?-2_9.> (ik)zcos (2mk 2 )
A Ave A /T ©
o o’o o
+

where, once more, the dots symbolize differentiation with respect to E.

The terms displayed are of the orders Z4/3 and Z3/3, the ellipsis indi-
cates terms with amplitudes proportional to 22/3, Z1/3, and so on.

This way we find

A v! e k
- ___0o (-1) X
( EOSC) LTE 5\ § k) ? sin (2T[k>\o)

(5-174)
v' A VoA % A v"
_l,9_<3+ °o0_ oo, o ) (1)4cos(2nk)\)
2 A 5oye 5 VS (nk)
[e}de) o) k=1
v 02273
After supplementing (3-29) by
S ek cos (2mkhr ) = ——-Lian 5242 (5-175)
/R " o) T907 3 4 ’

k=1

and inserting the TF numbers reported in Egs. (138), (139), and (140),
this reads

0sC _ 1 _ 2
(__Z7§>£TF = 0.320 594 <Ao> (4 <AO> )

Z
-1/3.1 _ 1 _ 2.2 _
+ 0.287 660 z (35~ (7= <> 1 (5-176)
+ 0(z7%/3
1/3

with Ao = 0.927 992 %z . We see that A determines the periodicity of

1/3 1/3 1/3/A - Z1/3 +1.078,
which agrees quite well with the period of the HF osc1llations of Fig.

5-2.

the 4TF energy oscillations, namely Z
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In Fig.14 the leading &TF contribution to Eosc is compared

with the HF prediction. We see that the LTF model gives the correct pe-
riod and phase, but accounts only for about half the amplitude; the
other half is expected to be supplied by radial quantization. Also there
is no sign of the intriguing double peak structure that the HF curve
displays.

In plotting this figure, we extrapolated the laJ:ge—Z1/3 re-
sult

N

B . 4/3 /3,01 _ 1/3.2 _
(-Eog o) gpp = 0-32 2 <0.928 2 >(4 <0.928 277>} (5-177)

1/3

down to small values of Z This procedure needs justification. It is

provided by Fig.15, where the next-to-leading &TF oscillation, that is
the correction of relative size Z_1/3 in (176}, is recognized to be a
small correction to the leading one. The sum of both has the overall

characteristics of the leading RTF oscillation, the main difference ap-

0.06 1
—
0.04 ¢ 1
0.02¢ 1
:
W Ny
: 0
\b_/'
- 0.02 1
-0.04 . . :
1 2 3 4 5
Z 1713

Fig.5-14. Comparison of the binding-enengy osciflations as predicted
by the HF method (curve a] with the Leading LTF osciflation |curve b).
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Fig.5-15. Next-fo-Leading LTF cscillation [(curve a) and Leading plus
next-to-Leading LTF cscillation (curve b), compared to HF prediction
{curve c).

pearing at Z1/3 s 2.

It is reassuring that in this rance the agreement
with the HF predictions is somewhat better for curve b in Fig.15 than

in Fig.14.

j#0 terms. Leading energy oscillation. Having dealt with the j=0 term

in Nqu(E), we now turn to the j#0 terms in Eq. (168). It is expedient to

rewrite the relevant double sum according to

:ii:?:;i:(_1)k+j ol2m(kr+iv)

j == k=—co

o j(_1)k+j[ei2n(kx+jv)_keiZE(kA—jv)} (5-178)

j=1 k=—c

2 Re:§:: zz:3_1)k+j ei2n(k>\+jv)

§=1 k=-c
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The v integration in (168) then produces

k+3 )\ i2njv, (X)
_ ( 1) i2nki E _
ENqu(E)]j#O = 4 Re 5 § j dide (e 1)
=1 k=e (5-179)
With the aid of Poisson's identity (64), we establish
-1nJ<= k ME i2mk)
"EE'E (-1)" [ Far e
3o —— ) (5-180)

i = 1 1
=T—[(10g2)g (2+5)n()\E-5-£L) '

which - and this is the point -~ is purely imaginary. Therefore, the "-1"
in (179) does not contribute, so that

= (-1kI A . .

(Nqu(E)] o 4 ReZ 3 j Far A explizn(Kh+ivg (1)1

’ =1 ke (5-181)
The required A integration cannot be performed explicitly because of the
complicated A dependence of the exponent.

The integrals in (181) are largest for those j,k pairs for

which the phase is stationary at some value of A. For these values of j
and k, the equation

Q2

Ve _

kK + 3 550 =0 (5-182)
is obeyed by a X in the range 0< 73 g Ag- (For notational simplicity we
leave the dependence of X on E,j, and k implicit.) The possibility %=0

is only apparent because there is the weight ) in the integral. Now,
since Fig.9 tells us that

v

1 = . = — ——-——-E = = -

Ve X (A=0) < x (A) = ohY ()\-)\E) = \)E' ' (5-183)
such a X exists only if

3 '\:E<k§jv“'E . (5-184)
For E <O, 'vE equals unity, see Eqg. (101); and vE' does not exceed its

E=0 value, which is vo' =1.938=231/16, see Egs.(138). Thus, there is a
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point of stationary phase for the X integration only if

. 31 . o
J<ks3yg i<2) . (5-185)

That is for j=2, k=3; j=3, k=4,5; and so on. These constitute a small
fraction of all j,k pairs in (181)14, but the corresponding X integrals
are particularly large and promise compensation for their small number.

For j,k obeying (184) we expand the exponent in (181) around
the point of stationary phase,

32%
KA+ 3ve () = KX+ v (1) - $l-352e (01 (-X)

' (5-186)
and obtain (X = A-7%)

Mg

[Farexplizn(ka+iv (M))]

(o]

A exp[iZn(kA+jvE(A))]fdk exp[—in(-—EKTE(X))Azl

mn

(5-187)

P

= Mg O] exp[lZn[ijvE()\)]— in/4]
The corresponding contribution to NOSC(E) is then
L k+3 3%v -1/2
- — -1 - E =~
Moso B,y = =4 > o Mg (]

=2 K J (5-188)

x cos[2n(ki+jv () +n/41

where the range of the k summation is given by (184). The subscript A,v
stands for "mixed A,v oscillations," which name will become plausible in

the next section.

Since k’bZ1/3 and vE’bZ1/3, the amplitude of these oscilla-
1/2

tions is "N EZ They constitute the leading contribution to N How-—

osc’
ever, the difference between Z1/2 and Z1/3 is not large of Z £100; it
is at most a factor of about two. Therefore, the contribution to E

osc
that results from (188) does not dominate the LTF contribution (and

others to be found below) for the Z values of interest.

The dependence of the right-hand side of (188) upon E is com-
plicated because of the implicit E dependence of ). This is the techni-
cal reason for which we approximate vE(A) by

1 " 2
-2 -5 VE(AE‘X) . (5-189)

vo(x) = vl(x 3

E'E
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Used for the computation of the #TF contribution to Eosc’ this approxi-
mation reproduces the leading and the next-to-leading terms correctly,

as a glance at Egs.(172) and (174) demonstrates. This is the principal

justification for (189). In the present context, different from the &TF
calculation, the slope of vE(A) at A=0 is crucial. In order to maintain
its correct value,

BvE
-t = - = = L " -
1 = vp = 5 (A=0) = Vg VE £ v (5-190)
we have to set
"o L. —
VE (vE 1)/}\E (5-191)

in (189), insteat of the actual second )\-derivative of vE(x) at A=AE.
In particular, for £=0, we use

no_ v = _1/3 _
vy T (vo 1)/)\o 1.01044 2 , (5-192)

which is about five times the actual v_'=0.208674 2713 see Eq. (140).
contrary to the immediate expectation, this replacement does not cause
a significant error in Eosc: the coefficient of the next-to-leading 4TF
oscillation in (176) is changed from 0.287660 to 0.254497, which differ-
ence is indiscernible in Fig.15. We should further remark that 'v

equals 3/2 for the TF potential, whereas 'vE=1 for E<0. This abrupt
change of ‘vE, however, can hardly be taken seriously, since it refers

to the unrealistically slow decrease of the potential at large distances.
Any realistic potential has 'v0=1. With this justification we shall from
now on adopt the approximation (189) with v} from (191).

E
Then we find from Eqg. (182) that * is given by

3 o= ._.1_... ~Jy! = __1_ - T " _
A >‘E + j\)E(k j\)E) jv"t_'[k J(vE AEvE)] . (5-193)
In the latter version we recognize 'vp of (190), so that % and X—AE are
related to 'vE and vé, respectively, in an identical manner:
T o= e (k-i'v,)
jvg E !
(5-194)

>

—y = A (k=y?
AE = j\)g(k ]VE)

These equations translate the range 0 <KT§AE into the range for k given

in (184), which is, of course, the origin of our emphasis on correct
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terminal slopes of vE(A).
We integrate (188) over E once by parts, as required by (167),

and obtain the leading term of the corresponding contribution to Eo ’

scC
oo k+3 3%y

- = - 2 z (=1) - 0 VE = =172

( Eosc)x,v T oon? Zi 3 A 15z (A)]
j=2 k (5-195)

I -
x I3 KX+ 3v(0) ) 1 Sln[2n(kx+jvE(k)]+n/4]. ..

E=0
With (189) we have
—- = 1 2 0.2 .2
(kA+JvE(A)]’ = EE;W[((vO) ~1)3%+ (k=371 (5-196)
o
E=0

and .

T - Y5 . . 2 2 2

5§(kx+jvE(x))l = 73—(;g)—z—[[2\)0\10\)0/\)0—(\zo) +1)3%= (k-3) ]

E=0 ‘ (5-197)

Differentiation of (191) supplies

Swo= o1 - n3 . -5/3 _

v = vo/)\O voxo/ko = 59.7680 Z , (5-198)

so that the amplitude of an individual term of the double sum of (195)

is given by15
(\)“)1/2 2 -1
-——4—___.O~__.__.._ k+3_£__3_ T T 2 Lh _.2
nr ey =1 .3/2[(2vovovo/vo vg) +1)37- (k=307
v j
(o]
. L ,.3/2
o 3/2 .kt (k=3}/3
= - 0.006816 z°/% (~1) e LYELI =
(5-199)
0.000 687 2'/®  for 4=2,k=3 ,
0.000 144 2/ for 4=3,k=4 ,
~0.000 427 72'/®  for 4=3,k=5 ,
_ 43

0.000 050 z'/®  for 4=4,k=5 ,
-0.000 121 2"/ for 4=4,k=6 ,
0.000 283 z'/®  for 3=4,k=7 ,

Compared to the leading ATF oscillation, Eqg.(174) and Fig.14, which has
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an amplitude of

A_v!
120 . 9.015425 z%/3 (5-200)
18/3 A
o
the mixed ),v oscillation of (195) is very small in the small—z1/3 range

of interest. For large.values of 7, unphysically large values, (195) is
the dominant contribution, as anticipated, but it has practically no
1/6

<2.2.

For the sake of completeness, let us also report the periods

significance for Z <100, when Z

of the terms in (195). The argument of the sine function changes by 2n

if ZAI/3 increases by

23922 37102 2-1) 3%+ k=912

_ 2.021
= 2.75552+ (k=30 2

(5-201)
0.336 for j=2,k=3 ,
0.235 for j=3,k=4 ,
0.211 for j=3,k=5 ,

0.179  for  j=4,k=5 ,
0.168 for j=4,k=6 ,
0.152  for  j=4,k=7 ,

The amplitudes (199) and periods (201) are not well matched so that the
terms of (195) will tend to interfere destructively, thereby reducing
the size of these oscillations even more. We infer that what appears to
be the leading contribution to Eosc is rather irrelevant for the Z values
of physical interest.

Fresnel integrals. After utilizing ) and the approximation (189) in wri-
ting

, v Taan Ty e w2
k)\+jVE()\) k)d‘j\)E()\) ZJVE()\ A)

{(5-202)
= 1—' " = 2—_1... " - 2
= k)\E+23vE(AE 2) 2J\)E(A A) p

Eg. (181) becomes
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1 , —
( (E) =4 Re § E 1—1%5—~exp[12n(kkE-r%jvE(XE—A)Z)]
J=1 k=-w
AE — 5 (5-203)
x [Fax A expl-injvi (A-X)
O

The weight factor X in the integral can be equivalently replaced by

- 1 3
YT TangvE ax (5-204)

which allows an immediate partial integration. At this stage we have

(a8 540

exp(i2njvE(O)]—exp(ianAE)

= 4 Re E E (- 1in
] i2mjvy

j=1 k=—c (5-205)
- - v, [E -2
+ Aexp[izn(kx+jvE(A))] [7ax expl-injvy (A-1)°1}
o]
The remaining integral is of Fresnel type. Its standard form is16
Z
_ ) LT 2, .
E(z) = [ dt exp(-ixt?) = C(z)-is(z) , (5-206)
o]

where the letters E, C, and S refer to the exponential, the cosine, and
the sine functions that are integrated. C(z) and S(z) are, of course,
real functions.

In (205) we introduce E(z) through the identity

exp[-injvg(x—i)z] = 23w -1/2 5& (23v2) V2%, (5-207)

with the result

{Nqu(E))j#O

k+3 exp(i2njvE(O)]—exp(i2nkkE)

=4 ReZ Z (_13?.nj

j=1 k=-o

i 2njv£
(5-208)

+ T(Zjv%)_1/2 exp[i2n[k7+jvE(7))]

x (E(23v)) 2 0-T) s By P}
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In order to reveal the significance of the individual terms here, we
need to know some of the properties of E(z). Its oscillatory nature is

made explicit by writing, for z2z0,
_ 1 . . LT 2
E(z) = 5(1—1) + i h(z)exp(—ljz ) . (5-209)
The slowly varying function h(z) obeys the differential equation

h' (z) = diz h(z) = inzh(z) - i (5-210)

and is subject to

h{o) = z(1+1) . (5-211)

N =

In terms of the real and the imaginary parts of h(z) these two equations

are expressed by

h(z) = £(z) +ig(z) ’
; (5-212)
f'(z) = -nzgl(z) , g'(z) = nzf(z)-1 ,

=

£(0) = g(0) = 3

H

The asymptotic expansions of £(z) and g(z) can be obtained either by re-
peated partial integrations in (206) or, equivalently, by iterating

(210), which for this purpose has to be solved for h(z). The outcome is

f(z) ~ é% - Ré%y + ... for z>>1 ,
(5-213)
g(z) ~ "fLT -y for z >> 1
néz ntz7 e

The leading asymptotic forms represent highly accurate approximations

already for relatively small z. This is demonstrated in Fig.16, which

also illustrates our statement that h(z) {that is: f£(z) and g(z)] is a
slowly varying function compared to the exponential in Eq.(209).17

As defined in (206), E(z) is an odd function of z. Therefore,

we take h(z) to be an odd function,
h(z<0) = =h(~z) , (5~214)

which is consistent with (210) (for z#0). The extension of (209) to in-

clude negative values of z then reads

E(z) = + 2(1-1) +ih(z)exp(-if2£z2) , (5-215)
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Fig.5-16. Fresnel infeghrals C(z) and S(z); auxiliary functions £(z) and
g(z) togethern with thein Leading asymptotic forms.

where the lower sign applies for z<0. Note thaf h(z) is discontinuous
at z=0, where (210) does not apply. Of course, E(z) itself is perfectly
continuous.

The insertion of (215) into (208) now shows that Nqu(E) con-
sists of three distinct parts which are characterized by their oscilla-
tory behavior, that is by the argument of the exponential. First, we
have from the oscillatory part of the first E(...)

expli2n (kX+jvg V)~ %jvg(xE—X)Z]
(5-216)
= exp(2mikdg)

where Eq. (202) for A=AE
by the maximum value of )A; we call them ) oscillations. Second, analo-

is used. The periodicity of these terms is given

gously the second E(...) in (208) provides terms proportional to
. =, . = _ 1. w2
exp[lZn(kA+jvE(k)-—§jvEA ]l
(5-217)

= exp[i2njvE(0)]

[Eg. (202) for A=0 this time] which involve solely the maximum value of
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vE; these are v oscillations. Third, there are the constants of (215)
in the E(...)'s of (208); because of the two signs in {(215) these con-
stants add up to a null result, unless the arguments of the two E(...)'s

agree in sign. This is the situation if 0 éi'ékE, which is the require-
ment that ) lies within the range covered by the A integration. Not sur-

prisingly, we rediscover here the mixed A,v oscillations discussed in

the last section. Indeed, the sum of the E(...)'s is simply 1-1i=
V2 exp(-in/4) here, so that we are led immediately to (188).

Please note how the introduction of h(z) has enabled us to se-
parate the rapidly oscillating circular functions from the slowly vary-

ing amplitudes. With this achievement we can again integrate over E (re-

peatedly) by parts to produce the various contributions to Eosc' The
asymptotic forms of f£(z) and g(z) determine the order of the respective
1/6

contribution (since z~ 2 , see below), and the extrapolation down to
the small-Z range of interest is done by the full z dependence of these

auxiliary functions.

% oscillations. To obtain the A oscillations of Nqu(E), we have to add
the LTF oscillations (172) to those terms of (208) which exhibit the ex-
ponential (216). Thus

( osc(E)J (Nosc(E))lTF
(- 1)k+j 12nkAE _ (5-218)
+ 2Re ? E (nj)z [1+nA/23vE h(ZE)] ’
j=1 k#0
where Ze has the significance
= V2IVE Opma) = V27T3vEY (Gve-k) {5-219)

the last equality uses (194). The k=0 terms are omitted because they are
nonoscillatory and of no interest to us in the present context. As a
consequence of the jump of h(z) at z=0, the right-hand side of Eq. (218)

is discontinucus for those values of E for which \_ equals one of the X.

Since the whole Nqu(E) is certainly continuous, thEs discontinuity is
not a physical effect, but rather a product of the mathematical separa-
tion into the three types of oscillations. Indeed, there is also a dis-
continuity in the X,v oscillations (188), which exactly compensates for
the one in (218); see Problem 10. Therefore, we need not worry about
the discontinuity in (218), and shall pretend that all arcuments of h(z)
(and its derivatives) are nonzero for E s 0. ‘
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The identity

73T - 2 (5-220)

AVZjvg = A E E

E
and (212) are employed in establsihing
1+ mAY23V hizg)

= EAEVZjvE £(zp) + inTVZjvg g(zE)—(anf(zE)—1)
(5-221)

nAE/fiVE flzp) + ini/j?Vg g(ZE)-g'(ZE)

We use this decomposition for the evaluation of the real part in (218),

withk the outcome

()], (£)) o

( osc ( oscC

+ ZAEEE: =N - 1) /27( "5 f(z )c05(2nkx )
G=1 k#0

1
-2 zz: E = - A2 7(jv" g(z )Sln(2nkk )

i=1 k#0 (5 222)
:E::z HCelD B 1)k+j g' (z_.)cos (2nkr )
E 3=1 k#0 w3 E E

These three double sums have differing large-Z behavior. The

asymptotic forms of f£(z) and g(z), given in (213), combined with the Z

dependences
A, Al Z1/3
E /3
v nvoZ , (5-223)
E 1/6
Z¢ N7 ,

imply that these three terms describe ) oscillations with amplitudes pro-

portional to Z1/3 Zo, and 2_1/3

ces, however, hold only for very large Z; more precisely: they hold when

, respectively. These simple Z dependen-

the asymptotic forms of £(z) and g(z) can be used for all j and k to be
summed over. For the rather small values of % we are interested in, there
are j,k pairs (mainly the ones with k=23j) for which zE is not in the
asymptotic domain. In other words, while the asymptotics of f(z) and g(z)
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identify the double sums of (222) to belong to the leading X oscillation,
the next-to-leading one, ... , the extrapolation toc the small-—Z”3 range
is not done correctly if one sticks to these asymptotic forms. Instead,
as we stated already at the end of the preceding section, this extrapo-
lation is supplied by the use of the full f(zE) and g(zE).
An important observation is that the 4TF terms in (222) com-

bine naturally with the contribution from the asymptotic forms of f(ZE)
and g(zE). We illustrate this unification for the leading X oscillation.

The relevant terms are here

- 2) VE E (nk)z cos(anA )

+

=1 - 1) — 1
2X; E /27(3VE) EEE cos(2nkAE)

j=1 k#0 (5-224)
- - g Z‘” -nd 2
E ( 1 ) COS (2Tﬁk>\ ) { (T[.k TT,j Tﬁj\)é—nkf
k#0 3=1
— E ¥ cos {2nk A )4—— - E (- 1)j ! }
E k —nj T Tk/vi-ndg —nj !
k#0. j#0

where the invariance of the summands under j -+ -j, k= -k has been used

for rewriting the expressions. Now we can employ the identity

E 0 Zm =D I - g
x-nj X

J#O j:—co ) (5—'225)

0
et
=}
w
W=

twice and equate (224) to

_ (_1)k cos(ZHkAE)

E nk sin(nk/v!)
K#0 E
. (5-226)
B ® (_1)k cos (2nkiz)
E ik sin(nk/vé)
k=1

The leading X oscillation in (222) is therefore given by
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o k cos{(2nk) )
o {-1) E
(v osc(E)) - 2AE ik sin(nk/v%)
k=1 (5-227)
( 1)]\+:]
+ 2 § Z V273V £ (2 ) cos (2nkA )
k#0 j=1

where the ellipsis represents the nonleading A oscillations, and f(z)

equals f{z) without its leading asymptotic term

flz) = £(2) - ==, §(z) = glz) - =7 (5-228)

likewise for g(z) and g(z). In passing, we remark that in the situation
of linear degeﬁeracy [vE4+O, zE’bvg—1/2-+m, f(zE) nvoo- 223] the second
term in (227) vanishes, which identifies the first one as the leading
A oscillation for linear degeneracy. This can, of course, also be demon-
strated directly. For detail consult Ref.12.

A first partial E integration of (227) supplies the leading

A oscillation of E . It is given by

osc
4/3 _Z‘” . -
E sc/Z )A = Sy 51n(2nkxo) toaee 4 (5-229)
k=1
with the Z dependent coefficients A given by
o - (A /Z1/3 >{ C(=1) 1
k = \y , =373/ (nk)Z sin(nk/v'")
Aol % © {5-230)
(- 1) (- 1)j = .
+ E /27i]voi{f(w27ijv$i (jvé—k)}
~ £(V27 v (jvé+k))}]
Please note that, because v‘ =1.93..., very large values of j and k are

required to obtain a vanlshlng argument of f. These terms do not contri-
bute significantly to the Fourier sum of Eq.(229). Therefore, our dis-
regarding of the consequences of the discontinuity of h(z) at z =0 is,
for all practical purpoées, harmless (not to mention the possibility
that vé is irrational); see also Problem 11.

For very large %, the sum over j does not contribute to Ak in
(230), so that with the numbers from (138) and (139)
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(-1)%*1 0.02515 _
Sy 2 Sin(1.621K) for —z>»1 . (5-231)
The first few of the Ak's are thus

s, = 0.02518 , 5, = 0.06232
4, = -0.00283 , 5, = -0.00783 ,

3 4 (5-232)
5 = 0.00104 , s = 0.00234
55 = =0.00055 , 4g = =0.00100

These large-Z values cannot bé used for the small-Z range of physical
interest. The numbers listed in Table 2 show that the Ay
1/3, whereas those with odd k chance markedly and

(232).

(232) cannot be used in the small-Z range is the sub-

with even k do

not change much with Z
differ, for Z1/3=1...5, substantially from their asymptotic values
Another reason why
ject of Problem 12.

This essential difference between Airdgrdgre.. and 42'44’66"4
is understood upon recalling that £(z), the difference between f(z) and
its asymptotic form, is large only for small arguments z. In Eq. (230)
this requires jvé = k. Now, Vé =2-1/16, so that the term with 2j =k is
picked out, which happens only for even k, of course. Let us use this

k* If k is odd, (231) will do. If

k is even, we add the j=k/2 term of the sum in (230), where we evaluate

insight to find an approximation for 4

the relevant f(z) according to

E(/27TVIT Gvi-k)) = £(=/E/DT (2-v0))

J

= E£(=/E/VT (2-v)) 4 —— 1
o o’/ — ; .
nwk/v" (2-v')
o o
.. 1/3 _
Table 5-2. Coefficients 41,52,43, and 54 for Z =1, 1.5, ..., 5.
1/3
Z 5, 5, 54 5,
1 0.02467 0.00683 -0.00248 -0.00132
1.5 0.02490 0.00876 -0.00261 ~0.00166
2 0.02500 0.01035 -0.00268 ~0.00193
2.5 0.02506 0.01174 -0.00272 -0.00216
3 0.02509 0.01297 -0.00275 -0.00236
3.5 0.02511 0.01409 -0.00277 -0.00255
4 0.02513 0.01512 -0.00279 -0.00271
4.5 0.02514 0.01607 -0.00279 -0.00287
5 0.02515 0.01696 -0.00279 -0.00301
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[ l l n -
= = 5+ = VTR 5o (5-233)
o
In addition to the definition of %(z) in (228), we made use of
£(250) = - £+ 0(z%) =-1 (5-234)

which is an immediate consequence of Eqs.(212) and (214). The correction
to (231) for even k is, therefore, given by

1/3 ”
<>\0/Z V0 E 0k e [ 1,1 /% 1 l
WalE nk/2 7z T2 R X 2
/23 k2 (5-235)

- () e o )
AO/Z n kvg T Yo

We insert the numbers given in (138), (139), and {192), and summarize
in stating
1/sin(1.621k) for keven ,
. 0.02515 (5-236)
20.430 1.990z
k /K

Sk

1/6
-1/sin(1.621k)+(—1)k/2< )for k odd.

For most applications this approxiﬁation suffices. One must be aware of
its limitations, however. Evidently, the arguments that led us from (230)
to (236) are such that (236) is reliable only if neither k nor Z1/6 is
large. [The failure for large Z is also demonstrated by the fact that
the exact Ay become Z independent for Z >»>1, whereas the even-k ones do
not in {236).] Fortunately, the Z values of interest are not large (Z”6
ranges from 1 to about 2.2), and the sum over k in (229) convergés rapid-

ly, so that 4, is needed only for the first few k's. When keeping this

in mind, therz is little danger in using (236) instead of (230).

The first partial E integration of (227) produced the leading
A oscillation of Eosc’ given by Egs. (229) and (230). A second partial E
integration supplies a contribution to the next-to-leading A oscillation.
( osc(E))
which supplements (227). These two contributions combined lead to a re-
finement of (229),

( OSC) E 5 51n(2mkx ) + Z -1/3 E c cos(2nkx )

Another contribution comes from the next-to-leading term in

(5-237)
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Table 5-3. Coefficients c,, c,, c,, and c, for 2V/3 21, 1.5, ..,5; »1.

Z1/3 c1 QZ a3 (14
1 ~0.04584 0.00134 0.00098 ~0.00059
1.5 -0.04843 0.00792 0.00121 ~0.00176
2 ~0.04973 0.01601 0.00138 ~0.00311
2.5 ~0.05047 0.02518 0.00151 ~0.00459
3 ~0.05092 0.03519 0.00161 -0.00616
3.5 -0.05122 0.04588 0.00168 ~0.00780
4 ~0.05142 0.05712 0.00173 ~0.00948
4.5 -0.05157 0.06883 0.00178 ~0.01120
5 -0.05168 0.08094 0.00181 ~0.01294
> 1 -0.05218 4.06250 0.00200 ~0.25342

006 T i T 1 T 1 ! i 1

A AAAAAAMA

B L S —

2113

Fig.5~17. Contrnibutions %o —EOSC/Z‘l/3 grom kA oscillations, as a function
o4 21/3; {a) Leading A oscillation with exact LI grom (230); (a') Like
(a), but using approximate Ay grom (236); (b) next-to-Leading X oscilla-
tion with exact s {b") Zike (b) with approximate Cys {c) sum o4 (a)
and (b); (c') sum of (a') and (b'). In (a),{a'),(b), and (b') six feams
are summed.
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The coefficients ¢, are given by an expression analogous to (230) and

k
can be approximated in the fashion of (236). We shall not exhibit these
details, and refer the reader to the original publication.18 Here we
are content with the numbers listed in Table 3. We observe that these

1/3

ck's differ from their large-Z values as long és Z is not very large,
whereby the even-k ones are only a small fraction of their asymptotic
value. Further, we note that the_ék's and ak's are of roughly the same
size. Consequently, the next-to-leading ) oscillation is not dominated
by the leading one in the physical range of Z. This is also confirmed

by Fig.17, where, as in Tables 2 and 3, we notice the ¢rowing importance
of the even-k terms for increasing Zz. This is a consequence of vé = 2.
For example, when Z becomes very large, the ratio 52/41 is 2.48, so that
then the dominant period of the oscillations is halved. This effect is
even more pronounced for the next-to-leading ) oscillation, as is visi-
ble in Fig.17 and is numerically expressed by c2/c1= -77.9 for Z >»1.
However, being suppressed by a factor of Z1 3, it is nevertheless small

compared to the leading X oscillation for such enormous values of Z.

v oscillations. The v oscillations of Nqu(E) are those terms in (208)
which exhibit the exponential (217). Thus

2. B (_q)kHd 1 X -
(N (E)) =4Re E —— [ — + ih (V23] A)]
osc v in] 12njvE ST E
3=1 k=-= : IVE
ianvE(O) (5-238)
X € B

The discontinuity of h(z) at z=0 does not matter here, because we en-
counter the combination zh(z). Since according to (194) T=(k—j)/(jv§),

where we recall that 'v_=1, the 1=0 terms are given by k=j. For k#j, we

E
can employ the differential equation (210) that is obeyed by h(z) for

z#0, and write

LI L0 (/23 7)

i2njv} -

B /20vg (5-239)
— 1 (1} _ 1 Ty, 1 —
= T h' (/2IVE %) = vy h' (V27 GvD (k-3))

At this stage, we have

2 -nl lznj"E(O)
(™ osc(E)} =T Ug Re:z:: ™y 2z ' %
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x [(—1)3 O A teracrs) (k—j))] , (5-240)
k#3
which is further simplified upon setting m=k-j and using h' (-z)=h'(z):

- - _Z_Zw 1 -
[NOSC(E))v S ik cos (2mjv, (0))
j=1 (5-241)
- 12njvE(0) .
4 e . m, , |
- ;1'5_' Re E _T])Z— i (-1)"h [VZ?(]\)E) m)

m=1

In this form the first sum over j is immediately identified as the lea-
ding oscillation; since h' (z) %2_2 for z >»1, the double sum is smaller

-1/3 for large Z.

by a factor of vE’bZ
This leading v oscillation is built 1like the leading A4TF oscil-
lation in (172). We can therefore quickly write down the leading v oscil-

lation of the binding energy:

_ . 1 = 1 , . _
(“E o)y = NS § Tk sin(2njv_(0))+ ... . (5-242)
oo J=1

This is, of course, of the shape of the leading #TF oscillation in (174),

plotted in Fig.14, with the period shortened by the fraction

Ao Ao i 5 ) ]
v_(0) \ _1.2.w vi+'v_ ~ T.46884 '
[¢) ono Zono o) o)

(5-243)

where (189) and (190) are used, and the amplitude reduced by the factor

1 Ao 1

= . (5~-244)
" A !
vovo(O) oo

16.0256

Here one needs

O = _(_i_ v L ]
Vo (0) = g Opvp —7ApvE)
=0
=R vt o+ A vt - A d v = L2 (5-245)
[elfe) o o oo 0o 270 0
= .1_ ' ' 3 ~ -3/3
FIVEAS*+ (W rT) AT = 32.9806 2 ,

which utilizes (198) and the numbers in (138) and (139). The amplitude
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4/3

of the leading TF oscillation is 0.0152 , see Fig. (14) and Eq.(200),

so that the leading v oscillation has an amplitude of 0.001 Z4/3. This

is so small that we need not consider the next-to-leading v oscillation.

Semiclassical prediction for Eosc' The time has come to put things to-

gether. We have identified various contributions to the binding-energy

oscillations,

“Eose T (_Eosc)x,v * (_Eosc)x * (_Eosc)v : (5-246)
The separate calculations of the three types of oscillations resulted in
Egs. (195) - (199) for the mixed X,v oscillations, in Eg. (237) with (230)
for the X oscillations (which contain also the ATF terms), and in Eq.
(242) for the v oscillations. Figure 17 (c) tells us that the amplitude
of the ) oscillations is about 0.05 Z4/3, whereas the other two terms in
(246) both have an amplitude of about 0.001 Z4/3.

A,V oscillations are concerned, this statement is true for the small-Z

As far as the mixed

range of physical interest. In contrast, when Z >»1, this oscillation is

n0.001 Z3/2 and the )A-oscillation is msZZ4/3 = 0.06 Z4/3, so that one

1/65 60, or 7> SX1010, for the mixed A,v oscillations to

needs at least 2
be dominant. This is ridiculously far beyond the domain of physics. [In
passing we remark that we have just delivered the justification of the
statements following Eq. (150)].

Both the v and the A,v oscillations are very small, and we
shall neglect them completely. Inasmuch as the subsequent ) oscillations
in (237) are expected to be of larger amplitude, this is thouroughly
justified. We must also not forget that the approximation (189) with vg
from (191) introduces an error, in view of which it is quite unnecessa-
ry to pay attention to the small corrections that the v and the },v os-
cillations represent. Consequently, our semiclassical prediction for
E is given by the two terms on the right-hand side of Eq. (237), the

osc
sum of the leading and the next—to—leading A oscillation:

_E 00

[ “osc _ : -1/3 z -

\"5473 = E 4y sin(2nkr ) + 2 ok COS(anxo).(5 247)
sc k=1 k=1

It is plotted in Fig.17(c). We compare it with the HF prediction of Fig.2
in Fig.18.
Both curves agree in a number of details. First, they have the

same phase and period, which is given by Xo, the maximum value of the
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HF
006 | .

004 t 1

002 !

"'EOSC l ZLI3

-002 -

-004 ¢ )

-006 : : :

13
z

Fig.5-18. Companison of ourn semiclassical prediction (SC) forn the bin-
ding-enengy oscillations with the HF prediction. Ten Zeams are added Lin
each sum o4 (247).

angular quantum number in the TF limit. Then their amplitudes are about
- the same. Further, they both show rather sharp structureless minima, and
maxima with an evolving double structure. The latter phenomenon is some-
what more pronounced in the semiclassical curve. But since we cannot
really compare with experimental data, there is no way of judging which
one is right.

The main difference between the HF prediction for Eosc and the
semiclassical one is that the second curve is shifted down in Ref.18. A

4/3

smooth term of order Z is obviously missing in the binding-energy for-

mula. Our calculation of Eo concentrated on the oscillatory contribu-

sC
tions and consistently disregarded all smooth contributions, so that this
missing term could not be found. As we have remarked around Eqg. (4), there

are indications that the correlation energy (4-248) must be included into
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the description in order to be able to find the correct smooth term of
4/3
order Z .
Although the HF method produces the curve of Fig.2 [strictly

speaking, not even that, since E of (1) is not a HF result], it pro-

vides no insight whatsoever for i;gtorigin of these oscillations. In
contrast, the semiclassical calculation supplies us with an understan-
ding of the over—-all amplitude factor Z4/3 [recall that this is a conse-
quence of both the scaling properties of the TF potential and the bent
shape of the TF line of degeneracy vo(x)] and of the period (given by
the largest angular momentum in TF atoms); it also gives an explanation
for the intriguing double structure of the maxima. It is the beginning
of an effective halving of the period: the even-k coefficients in (247)

/3 increases; look again at Tables 2 and 3 as

change enormously as Z
well as at Eg.(236). To see how this effects the evolving double-peak

structure of the maxima, we decompose (247) into

006 ' .

004

Q02 |-

o

-002 }

-004 7

3
z

Fig.5-19. Thick curve: HF; thin curve; SC, odd; dashed curve; SC, even.
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( Zzsg) : E (Ak sin(2nkko)*’Z 1/3akcos(2nk>\o))

SC,o0dd k=1,3,5...
(5-248)

_E -
( ng) - E (Ak sin(2mkx ) + 2 1/3ckcos(2nk>\o)].

2 SC,even k=2,4,6,...
(5-249)

and

These are plotted, along with the HF oscillations, in Fig.19. We ob-
serve that the relative phase of (248) and (249) is such that the extre-
ma of the first coincide with the minima of the second. The sum has,
therefore, sharp structureless minima and broad doubly peaked maxima.

And the increase in amplitude of (249) is responsible for the growing

dip between the pairs of maxima.

Other manifestations of shell structure. In this section we shall brief-

ly discuss other quantities than the binding energy which show shell ef-
fects.
In Chapter Three we found that the density of electrons at the

site of the nucleus is given by

2/3

3 -_
n/ 42217 < 4 2021 - 1.7937 3 v 0(1/2) (5-250)

4n

for a neutral atom; see Eq. (3-166). The estimate of (3-167),
0(1/2) = 1.82/z - 0.82/7°/3 (5-251)

is compared to the HF prediction of 0(1/%) in Fig.3-5, where we notice
that ng contains on oscillatory part. Since the amplitude of the oscil-
lations around the smooth curve in this plot decreases with Z whereby

the period gets longer, the natural surmise is that we have to supple-

1/3 4/3

ment (251) by a term periodic in 2% with amplitude Z . We gain some

insight by considering Bohr atoms, for which

(2z)% _ 3,y -2/3 5,3.y-4/3 2 1
n,/ =gz — = 1.2021 - 3{3N) /3, f(ﬁN]_ / (<y> —EJ

1

313
_ (5-252)
+ 0273

I

as obtained by calculating the term of order N_4/3 in Problem 1-5. Here
y is the solution of Eq.(6). For neutral Bohr atoms, the leading oscil-



Fig.5-20. Experimental vatues of I___(2)/z /3
See also Fig.4-§.
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latory contribution to ng is, therefore,

12

- ®_ ¥
1.46 2743 1 cos (2mkx1.145 /3
k=1

[ ,(22)°
\no/ 4n )osc

)

(5-253)
which has the expected structure. For real atoms, the oscillations in
n

are still waiting to be calculated.

In Chapter Four we found the iconization energy as predicted
by the statistical model. The result is reported in Eg. (4-294) and com-

pared to experimental data in Fig.4-8. Obviously, there are very pro-
nounced shell effects, which we isolate by writing

IOSC(Z) = I(Z) - Istat(z) (5-254)
One naturally presumes that IOSC(Z) equals Z_1/3 times a fluctuating
function of Z1/3. This is confirmed by the experimental data presented
in Fig.20. A semiclassical prediction for IO

sc has not been calculated
as yet. For the evaluation of

I (Z) = E

osc osc (2rN=2-1) -E_  (2,N=2) (5-255)
14 ,
1k ﬂ
He — At
$ 08r \ i
N {
= \
N 1
{
_O 0.5" \ -
\
I
1
-1 \
0.2 \ 4
1
!
-01 Li )
1 2

as a function of Z1/3

.
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one needs EOSC for weakly ionized atoms. This requires a study of the
TF lines of degeneracy for such ions, which differ substantially from
those of neutral TF atoms because of the long-range Coulomb part in the
effective potential of an ion.

Also in Chapter Four we observed, in Table 4-1, that the sta-

tistical model prediction for the expectation value of i/r, for neutral
atoms,

4/3 2/3

= 1.79374 % - Z + 0.44983 2 (5-256)

<;>stat
agrees well with the corresponding HF prediction., The numbers of Table
4-1 indicate that the difference is Z2/3

of Z1/3. For this function we write

times an oscillatory function

1 _ ] 1

“Yosc - T T Tstat - (5-257)

In Fig.21 the HF predictions for <1/r>OSC are plotted. Since, see Eq.

012 T ﬁ ’ T
He Ne H -
0.08 r Kl‘
Zn
004 Y T
o Cd Rn
N Ar
o 0 -
/N
-0041 X 1
-008¢t 1
-012 : : .
1 2 3 I 5
2113

Fig.5-21. HF prediction foir <%>OSC/Z2/3 as a funetion of Z1/3
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and

we find

015

010

005

-005

/ZZG

>

s
:

-015

-020

-025

Fig.5-22: HF prediction fon <1/r>os

Ri—

Nle

&le

d
= I E

E(Z,N)
N=2Z

E(z,Z) +

E

oN

366

E(z,N)

E(2,2) - ¢(2,2)

stat

(z,2)

N=2z

) 5%("Eosc(zr2)) - ¢(2,2)

(5-258)

(5-259)
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prediction foxn <1/r>osc+ z.

¢ Compared to the semiclassical (SC)
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Inserting the semiclassical prediction for Eo , Eq.(247), supplies the

sc
leading terms

1 2/3
(<;>OSC-+Q]/Z
. 2 _to N7 k 4. cos (21kA_) (5-261)
2 3 /3 k o
z k=1

+ 11/3 Z(%ék -2T“ —Z%?k ¢, )sin@mer )

k=1
This is compared to (<%>OSC)HF in Fig.5-22. The aoreement is as good as
one could expect, but not better. Certainly, an improvement upon the
semiclassical prediction for <1/r>Osc is asked for. Possibly the subse-
quent terms in (247) are significant, and presumably some knowledge of

t(%Z,%2) is required. Nothing has been done along these lines so far.

Problems

5-1. Show that, more precisely than Eq.(9), Eg.(6) is solved by

1 ,3.,-1/3
TE(E'N)

- 4 -
y = G013, Sl Em T L g T
observe, in particular, that there is no term proportional to N_3/3.

5-2. Show that a potential V(r), which approaches -Z/r for r- 0, must
be of the form "24/3 times a function of Z1/3r", if Eq.(17) holds (with

¢ independent of Z, of course).

- 5-3. The Hamilton operator of a pafticle moving along the x-axis is

H =

1.2
o= 3507 x|

Show that the eigenvalues of H are related to the zeros of F_1(y),

1D
given in (4-158). Find approximations to these eigenvalues both by em-
ploying the TF guantization (37) and by utilizing (4-170). What do you
notice? (Incidentally, this produced Fig.7.)

5-4, Show that, for r, >r1 >0,

r,+txr

¥2 gy T
i — Vir—r1)(r2—r) =nf

I
1

2
7 " VE )
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(2 &) T TEET - n/EE

T R R LA Sk h B
r

1

r r,tr
2 1752

- - =

g dr r/V/ (T r1iir2 T) n—

1
Use these integrals to confirm Egs. (56), (115), and (122).

5-5. Use (84) in (97), in conjunction with the known result for the

Coulomb potential, to derive (90}).

5-6. Show that for the Tietz potential (4-222) one has, for E=0,

Can you confirm the suspicion that vo(x) is the straight 1line vo(k) =
Z(AO—A) ?

5-7. Evaluate (92) for the neutral-atom TF potential and confirm (140).

5-8. The Bernoulli polynomials Bm(x) are generated by

teXt = B (X) Ei.n..
t z m m!

e -1 m=0

Show that Eq.(171) is eguivalent to

m+1

(N (E) = 4 (1)

1 3 \m
osc BV yrp = Brop 3+ <Ap2) (530 (Avp (1) l

(m+1)! m+1
m=1 A

I
>

(Footnote 4 to Chapter Three may prove useful.)

5-9. Find a corresponding expression for (—Eosc)zTF'

5-10. Suppose E is such that for some j the number jvé is an integer.
Then the right-hand side of (188) is discontinuous for this E. By which
amount? As a consequence of the discontinuity of h(z) at z=0, there is
also, for this E, a discontinuity of the right-hand side of (218). Show
that it exactly cancels the one of (188}).

5-11. If jv5-k =€, |€]| «1, then the sine function in (230) is particu-
larly small and the first f(z) is very large. Conclude that, for such a
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k, 1/3 .
P A, L T L R
k 5\0/2_3/3 nk L%} ntk ‘/EJTS

where the sign agrees with that of €. Insert numbers and compute 434

and 562'

5-12. Use (232) to infer that, for 7 »1,

(--1)k/2 %g for k even ,
5. /5 =
K (k=1) /2

(-1) % for  k odd .

Insert this into (229) and arrive at

R A _1
{ Eosc)x = n(4 [<Ag 4>]1
o)
o 51 2 1
5\— = <2)\o> (<2)\o> -Z]
o

Find the amplitude of these oscillations, and their period.

5-13. For the exact VO(A), Egs. (71} and (72) imply

>\O
4 [T axav_ () =32 .
o o]

Show that the approximate vo(k) of (189) does not obey this equation.
Why does this not discredit the approximation?



Chapter Six

MISCELLANEA

In this final Chapter we shall briefly discuss a few topics
without presenting thorough treatments. Keeping with the general theme
of these lectures, we shall stick to ground state properties of atoms.
There are, of course, lots of other applications of semiclassical me-
thods. Maybe one should draw the reader's attention to two conference
proceedings,1 where many aspects of semiclassical approximations are
dealt with.

We shall also not concern ourselves with applications of the
models developed in the preceding Chapters. Instead, we shall focus on

additional refinements and point to possible future developments.

Relativistic corrections. In Fig.5-3 we observed that in larger atoms

relativistic effects contribute more to the total binding energy than
the shell effects of Chapter Five. An extension of the theory to in-
clude relativistic corrections is, therefore, called for. Now, if we
simply replace the kinetic energy %pz in the independent-particle Hamil-
ton operator (2-1) by the relativistic expression, so that (a=1/137.036

is the fine structure constant)
H = 5 (/Tra?pf-1) + V(E) (6-1)

then we find in the TF limit the relations

1 .2 Zy _
_ZT—EV (V+;) =n
(6-2)
o1 3/2., , a2 _ 3/2
= sy -2(vn) 1772 (1 + S -2 (ve) 1)
In particular, at small distances when V= -Z/r, the density is
n o= ot &%3 for r->0 (6-3)
3n2'r )

This density does not integrate to a finite number of electrons. We

have arrived at complete nonsense.
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Equation (2) was first obtained by Vallarta and Rosen in
1932, and by Jensen in 1933.2 Ever since people have argued that the
divergent behavior (3) is overcomé by recognizing that the electrosta-
tic energy with the nucleus is different from -Z/r for r- 0, because
of the finite size of the nuclear charge distribution. We know better
than that: the breakdown of the semiclassical approximation at small r
(small on the atomic scale, but still enormous on the nuclear scale)
requires a special treatment of the strongly bound electrons. In other
words: relativistic effects can only be included into the description
if they are accompanied by the Scott correction.

To illustrate this remark we compute the leading relativistic
correction to the binding energy of a neutral atom. That is: to order

(Za)z. The relevant additional terms in the Hamilton operator are
a” V'V ’ (6-4) .

of which the first one is the correction in (1) to order az and the se-
cond one is the well-known Darwin term. As a matter of fact there is al-
so the term representing spin-orbit coupling, but this results in a le-
vel splitting with no effect on the total energy, so that we need not
take it into account.

After splitting E1(c) as in Eqg.(3-1) we can look at the va-
rious contributions separately. We begin with the effect of the p4 term
on Es’ the energy of the strongly bound electrons. Since the expecta-
tion value of p4 in the m-th Bohr shell is, averaged over the angular

quantum number, (see Problem 1)
<p4>m = 5(Z/m)4 p (6-5)
the energy of a full Bohr shell is changed according to3

2m2(-§%7) = - 22

> )

2 72
» 2’ (- o2p) (14 (20) 2 25)

(6~-6)

= - 221+ () P 2y)

Consequently, when ng Bohr shell are filled, we have

Ts- 2 5
E,=-12 E {1+ (2a) " =) =
m=1



2 2 255 1 =1
=~ z°n_ - 2% (20) -4-(§ F—E =) (6-7)

m=1 m=n_+1
S
or
20 2 2 5 m2 <O 1
B, = - Z°n -2 (Za) Z{? m_Z) . (6-8)
. m=ns+1

The connection between ng and the separating binding energy o is

2 (14 (o) 2525) > £ > m—tr (14 (z0) P2y (6-9
2nZ ' gnz) 7 ts T 2 (n 1) (1+ (za Z(ns+1)2) ’ )

which is the analog of Eq. (3-6). Thus ns=[vs] with

72 25
Zyz (12 ) =g
s s (6=10)
2z
7 25 s
v = [1+(ZC(,) = ——2-] ’
S ‘/2CS 8 Z

where we consistently discard terms of order (Za)4. Now we exhibit the

nonoscillatory terms in Es’

2 1 2 5m?* 1
Eg = = 2 {vg =g+ (2a) Z[G —vs]}
(6-11)
V2r
_ 2, 72 1 2/:5u2 _5 s
= -z {/—Z‘_T ()" (5 -5 =)} -
S

which identifies the relativistic correction to ES (without the contri-

bution from the Darwin term) as

V21

(1) 2 2.55n? _5 s _
brey B = - 27020 (55 -5 —5—) - (6-12)
The corresponding correction to ECE is
s
(1) _ a? - _ 7/2_ _ 7/2
bre1 Feg_ senz @D { [-2 (V+0) ) [-2 (v+z )]

P (6-13)
b

5
- Tz ~t) [-2(V+z )]

where one should not fail to notice the typical strong cancellations
for small r. We insert the neutral-atom TF potential along with =0,
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whereby V= -Z/r suffices in the terms referring to the strongly bound
electrons, and arrive at

(1 __ 3 5/3 2 7 ax 772 7/2

Arel EECS = T4—az— Z (ZG.) Of ;7?{ [F (X)] (1 X/XS)
7 x 5/2
-5 5 (1-x/%g) }o(6-14)
s
with X =Z4/3/(a§s). A partial integration turns this into
(1) e 3,573, 02 (aiem1/2 5/2_,
Bl EZCS = - 325 27/ 7 (2a) oj dx{x [F(x)] "F'(x)
5 x1/2

+3 —X-z———(1-x/xs)3/2]- . (6-15)
S

where the two contributions can be integrated separately. The individual
results are

e 1/2 2 V2T
X _ 3/2 _ n _=1/2 _ _1/3 a s ~
fax S5—(1-x/xy) = 7% g =z T , (6-16)

o] s

and after using the differential equation obeyed by F(x) followed by an-
other partial integration,

fax x V2 Frx)1°/% Fr(x) = [dx F(XO)F' (x)F"(x)
[} o]
= - 28 - [ax[-F' (x)1°) (6-17)
o
1
= -1 x2.16864

the relevant numbers can be found in Eqg.(2-203) and Problem 2-3. Thus,

A(1) B - - Zz(Zq)Z{E VZES
rel ccs 8 &
(6-18)
-2V 2 - Jaxi-r )Y,

(s}
which combines with (12) to the g independent result

2 g - ZZ(ZQ)2{5“2—Z'1/3

() g - S’ o (8°- faxi-F' (01%)} . (6-19)
o]
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Next we consider the contribution from the Darwin term. Since

20 _ 28, .2 z
vV = Vr+V(V+r)
(6-20)
= 4n 7z 6(r) - 4n n(¥) ,
the induced energy change is
(2) _ a? > > > -2
kArel E = 5 {4nZ n(r=0) - 4n ﬂdr)[n(r)] | - (6-21)
Here we need n, =ni?=0) which we have available in Eq. (3-166),
_ (22)° 4,3 U B ,-2/3 )
n, = 4n(2(m-),az ). (6-22)
m=1

The main contribution to the integral of the squared density is supplied
by the strongly bound electrons. In this small-r regime, the density is
of the form "Z3 times a function of Zr." Consequently, the integral in
(21) is (to leading order) proportional to Z3, so that its contribution

-3/3

to the energy is of relative order % as compared to the ng term. At

the present level of accuracy this is to be neglected. Thus

2 2 2 ;(~,1,3 B . -2/3
22) B = 2% (2a) S -2 /3y, (6-23)
m=1

which we add to (19) to obtain the relativistic binding-energy correc-

tion to order (ZQ)Z:
2 2 [i5n? 1,3
“bep B = 27(20) {[751‘ E (E) )
m=1

o«

- 2
-7 1/3 422 (B - fdx[—F'(x)]3}
o (6~24)
+ Z—Z/3 E}
a.
The numerical version hereof is
-A__.E
ﬁ—r‘—ai—— - 6.833 - 16.600 z~ /3 & 14.350 z72/3 (6-25)
-gZZ(ZOL)Z

As the natural unit of this relativistic energy correction we chose its

amount for the one-electron ion,
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2

L (1-/1=(Z07) - 3 7

22 (z0) 2 /———2—~——->2 (6-26)
M+/1=(20) 2

o] —=

22 (za)? 1140 ((za) 2)1

| —

which is quite analogous to measuring the nonrelativistic binding ener-

gy in multiples of %22.
The leading and the next-to-leading terms in (24), or (25),
were first derived by Schwinger in 1980.4 The third term, of relative

order Z_z/% was found by Dmitrieva and Plindov in 1982.5 We compare the

semiclassical prediction (25) with the corresponding HF numbers6 in Pig.
1. Except for very small values of Z, the agreement is marvelous. The
relative deviation is less than 10; 1.0; 0.25% for Z 213; 40; 54, re-

spectively. The larger discrepancy for 7z 510 is not unexpected; it is

5 T T — T T

1
0 25 50 75 100 125
VA

Fig.6-1. Comparison between Eq. (26} and corresponding HF data {chosses).
Curve (a}: Leading plus next-to-Leading feam; curve (b): all three teams.
The dashed curve {(c) is Scoft's estimate (L7).

also nothing to worry about because for these small atoms the relativ-
istic energy correction is practically neglicible in the first place.
In Fig.1 we have additionally displayed Scott's estimate of 1952,7

T 2 0.62 P (6-27)
2 .
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which is surprisingly good for 7z x20. Unfortunately, Scott does not re-
port how he arrived at (27).

The corrections of order (Zon)4 are much harder to come by
and have not been calculated as vet. One of the difficulties lies in
the iterated effect of the (Zcx)2 corrections, inasmuch as the (Za)2 cor-
rections to the effective potential and the density produce (Za)4 cor-—
rections to the energy when the expectation value of (4) is evaluated.
In spite of these principal obstacles it is possible to estimate the
(Zq)4 corrections to the binding energy by utilizing the physical in-
sight that the lion's share is supplied by the strongly bound electrons,
and their contribution does not differ much from the corresponding amount

that one finds for noninteracting electrons. This way Dmitrieva and

Plindov5 obtained8
-4 E 2 -
—Xel’ . gq.(25)] + (za)?[2.248 - % (37)72/3)
1Zz 2 32
3 (Za)
4 2 4 _4/3

= [Eg.(25)] + 1.197x10 ° 2° -1.337x10 " %

z%(Zaf

1
8

-AaE/

| 1 L 1
1O 25 50 75 100 125

Z
Fig.6-2. Comparison of the estimate (28) with cornesponding HF data
(crnosses). The dashed curve represents [25), £t 48 Ldentical with curve
(b) of Fig.1.

For the comparison with HF predictions we need HF data that include

higher order corrections. It can be found in Ref.8 of Chapter Two. We
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see in Fig.2 that the estimate (28) 1is quite good for 2557 <100. For
larger 7 values the relativistic (Za)2 expansion does not work and for

small Z values the semiclassical Z—“/3

series converges slowly. Further
improvement can, in my opinion, only be achieved if no (Zo.)2 expansion
is performed at all. A possible starting point is the relativistic ana-
log of (5-55), which - and this is essential for any relativistic treat-
ment - has the correct energies of the strongly bound electrons built

in from the beginning. This field remains to be tilled.

Kohn-Sham equations. The stationary property of the energy functional
(2-434)

E(V,n,5) = By (V+2)=[ (@ZNV-V__ )n+E__ (n) -¢N (6-29)

implies the set of coupled equations

&V: n(@ = —2— E (1) (6-30a)
sVI(T')
> S .
én:  V(EN=V__ (£') + —= () (6-30b)
ext sn(F") ee
. = 2 -
6c: N = o7 E (V1) {6-30c)

of which the first and the third combine to
N = [@r')n") , (6-31)

expressing the normalization of the actual density. The simple structure
of E1(V+;),

B, (Ve2) = tr(gpievec)n( - 1pi-v-1) (6-32)
has the consequence
n(E) = 2<¥n(-2p%-v@d-g) [F> (6-33)

which we have seen early in the game, in (2-20). Now one could think of

evaluating (33) as in (2-21), that is: solve the effective Schrddinger
equation

Gp*v@ )k, «> = |k, <>E. (6-34)
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where k stands for additional quantum numbers, and employ these eigen-

states |k,«> in writing

2 E <?'|k,K>n(—Ek—g)<k,K|}'>

k,k (6-35)
Fiy 2
2 g ka,K(r VI n(-E-0)
k,k

with the orbital wave functions

n(x")

n

K(?') = <T'|k,> . (6-36)

b

’

In view of the normalization of these wave functions, Eq.(31) now ap-

N =2 E n(-g-z) . (6-37)

k,k

pears as

This determines ¢, once the Ek are known. Please note that because of
the discreteness of the energy eigenvalues, no unique value is assigned
to the minimal binding energy . It is only determined within a (small)
range, as we have stated already in the paragraph following Eq. (4-306).
The set of equations (30b), (34), (35), and (37) are the so-

called Kohn-Sham (KS) equations.9 In principle, they can be used to

find both n(;') and V(f'), and ¢. In practice, their usefulness is 1li-
mited by our lack of knowledge about Eee(n)'

In developing the HF method one has learnt how to solve Schrd-
dinger equations like (34) numerically. It is, therefore, not difficult
to find, with a high numerical precision, the density that corresponds
via (33) to a given effective potential. But what is the point of this
extreme accuracy, as long as the relation (30b) can only be explored
approximately? In my opinion, the numerical precision achieved by the
KS equations is both a luxury and a danger. For, it suggests an accura-
cy of the results obtained, which is only apparent because of the physi-
cal approximations that enter the Eee(n) functional used in (30b). In
other words: the evaluation of E1(V+;) need not, should not, and (I
think) must not be more accurately than that of Eee(n). For example, if
Eee(n) is approximated by the electrostatic energy only, the TFS version
of E1(V+g) suffices; if the Dirac-Jensen expression for the exchange
energy is included into Eee(n), the consistent treatment of E1(V+;)
leads to the ES model.

Nevertheless, the KS equations are valuable, since they con-
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stitute an additional tool for studying E1(V+c). Future investigations
should, in my opinion, therefore focus on the analytical content of the
KS equations. Maybe one can learn something about the unification of

the quantum corrections of Chapter Four with the shell effects of Chap-
ter Five, aiming at a refined model that contains both. Once obtained,
this model will enable one to study, for instance, shell effects as they

are manifested in the electron density.10

Wigner's phase~space functions. We have been mainly interested in the

effective potential V(T) and the spatial density n(?'), which we used,
for example, to compute diamagnetic susceptibilities. In other appli-
cations, however, knowledge of the spatial density does not suffice.
Nonlocal quantities like the one-particle density matrix (2-422) appear,
whenever the expectation value of a momentum dependent operator is asked
for. The kinetic energy (2-42) is one example; another one is the Comp-
ton profile

N
JQ) = <> S(Ej-éz-Q)>
j=1 {6-38)
Za In = _'—)—I. _)'I__)'ll
- J'(dr )igf{)l(d@ ) n(1)(‘£|;_fn) e ip (r'-r )S(Pé_Q) ,

which, in the situation of spherical symmetry, can be expressed equiva-
lently by

d_>l Zn el —i_ﬁ"(f'—%")
g(g) = (AAELEENUERT) o (1) Gz o 7 (B'-0) -

(6-39)

Similarly, the kinetic energy (2-421) equals

) 12
Byin = <> 7 P5°>

3=1 (6-40)

> > >
_lpl.(rl_rll)1 I2

d_)l d_’u d"q
=J(r)(r)(p) 1y

G o @

Quite obviously, we meet in (39) and (40) the density in momentum space

_i’p*l . (i.*l _‘fn)

—)l _)-“
- I(dr ) (dr") n(1)(;|;}n) e , (6-41)

n(g' ) (211:) 3

which we could have also obtained by starting with the mbmentum—space
wave-function.

A change of integration variables turns (41) into
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n@') = ey @) n{V E LB, (6-42)
where
L, >
o @B = f@n @ e 13 - 13y oIS (6-43)

is the so-called Wigner function of the one-particle density.11 The spa-

tial density is obtained, in perfect analogy to (42), by

1

n(r') = v

s J(dE')né1)(?',§') . (6-44)

Given the Wigner function, one can evaluate the expectation value of
any (one-particle) operator F(;,g) by means of

i pg > > > >
@ (@,p)> = (AR w @ ponft @By (6-45)

where FW(;',E') is the Wigner function of F(%,E),

_-"’-,"'
F (0, 00) = [(@)<Er+ B E,P) [T - 3e™P 0 (6-46)
Equations (42) and (44) are special realizations of (45) with F(;,E) =
6(5—5') in (42) and F(;,B) = 6(r-r') in (44). Some properties of Wigner
functions are the subject of Problems 3 to 7.
In Chapter Four, one of the central quantities was the time

transformation function

—i[%p2+v(;))t

>

<r',t|r",0> = <r'|e [r"> (6-47)
for which we wrote (—f' > T +—;——§ ’ T _;_E)
3/2 X
>, _1_—> >, _1_-+ _ __1_ -id _
<r -+2s,tlr 5 ,0> (ZniT e (6-48)

and found approximations for the phase ¢ and the tyme T, both being
functions of ;',E, and t. Let us now find the corresponding approxima-
tion to the Wigner function of exp[—i(%p2+v(;)]]. In the TF limit we
have ,
> s
T=zt, dzV(r')t -3 ¢ (6-49)

which result in

-i(2p 124V (F))t

(£',p') = e ; (6-50)

[

_-(l 2 v(r))t
(e iizp +Vir )w
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thus, the TF approximation simply replaces T and E by their eigenvalues.
[To some extent, this was our starting point, see Eq.(1-43).] With the
guantum corrections of Chapter Four we have, instead of (49), T and ¢
given by Egs. (4-45), (4-47), and (4-50), which produce

(Z',5")

-i(Zp2+v (D))t
O ),

2 5 >
- (1 LB v'zv(}'))[det(*?-%—z v"v*'V(r')>
(6-51)

2 -1
« expl-i[gpr-(T- 55 TTvaEn) B

2
+ V(£ + %(ﬁw&w) ]} ]

The machinery of Chapter Four {(Airy averages, corrections for the strong-
ly bound electrons, ...) can now be employed to derive the quantum cor-
rected version of the TF approximation to né1)(;',5'), which is immedi-
ately available from (50):

n{M @B = 2n(-gprtvED ) . (6-52)

Chapter Two deals with the implications of this equation. In contrast,

the consequences of (51) are unexplored territory.

Problems

6-1. The expectation value of 1/r2 in a Bohr orbit with principal gquan-

tum number m and angular quantum number & is

ZZ

r >m,£ T RI(F172)

Why? Use this, the Schrddinger equation, and the virial theorem to de-
rive

4 _ 4m
®u,p = v (mwiyz )

Average over & and arrive at Eqg. (5). - For an alternative derivation

employ the momentum space analog of (3-53), which is

2 _ 8 (2/m) >
jwmlav(p) T n? [p2r(z/mizit
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6-2. The relativistic (Zon)2 expansion and the semiclassical 2—1/3 ex-
pansion compete with each other, inasmuch as one should have (Za)z« 1
and Z_1/3 «1 simultaneously. For which range of Z does one get a com-

promise? Compare with Fig.2.

6-3. Show that in one dimension, with position g and momentum p, the

Wigner function of F(q,p) is given by

Fola',p') = tr Flq,p)Vip-p'ig-q")

tr Flg+q',p+p')V(p;q)

where V{(p;q) is the ordered exponential

. k
2ip; =
Vip;q) = 2e°*PiT = 3 (—2%3— prg®

k=0
What is the three dimensional analog?
6-4. Show that V(p;gq) is hermitian, and that [V(p;q)]2 =4, that is:

%V(p;q) is unitary. Find the Wigner function of V(p;q) and interpret
the result.

6-5. Show that V{p;qg) =V(p cos¢ +q sind; g cos¢ -psing) for arbitrary
(real) ¢. Is there a corresponding property of the Wigner functions?

6-6. Show that for F{g) and G(p) one obtains Fw(q-) =F(q') and GW(p')=
G(p'). Find a Fl(qg,p) such that F(q',p') =q'p".

6-7. Find the Wigner function of the one dimensional Hamilton operator
(5-54).
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Thirring, Lehrbuch der Mathematischen Physik, Vol.4: Quantenmecha-

nik groBer Systeme (Springer, Wien-New York, 1980). A recent re-
view is E.H.Lieb, Rev.Mod.Phys.53, 603 (1981). A treatment with

emphasis on thermal properties is given by J.Messer, Temperature
Dependent Thomas—-Fermi Theory (Lecture Notes in Physics, Vol.147)

(Springer, Berlin-Heidelberg-New York, 1981).

Models of screened Bohr atoms have been studied to some extent by
R.Shakeshaft and L.Spruch, Phys.Rev. A 23, 2118 (1981). Their em-
phasis is on the oscillatory terms, about which we shall have to
say something in Chapter Five.

This statement is freguently called the Hellmann-Feynman theorem.
Both Hellmann (1933) and Feynman (1939), however, only rediscov-
ered what had been known before. It is, indeed, difficult to ima-
gine how quantum mechanics could have been developed without such
a central tool. The theorem appears explicitly in Pauli's review
of 1933, in Van Vleck's book of 1932, and in a paper by Giittinger
in 1931. The latter contains, to my knowledge, the explicit state-
ment for the first time. The various references are: P.Gilittinger,
Zschr.f.Phys. 73, 169(1931); J.H. van Vleck, The Theory of Electric
and Magnetic Susceptibilities (Oxford University Press, 1932);
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W.Pauli, Handbuch der Physik, Vol.24,Part I, p.83, edited by H.
Geiger and K.Scheel (Springer, Berlin, 1933); H. Hellmann, Zschr.
f.Phys. 85, 180 (1933); R.P.Feymman, Phys.Rev. 56, 340 (1939).

Chapter Two.

B This is written for the situation of an isolated atom. For appli-

cations to molecules and solids, the term -Z/r has to be replaced
by the respective external electrostatic potential. Or, if the
atom is part of a gas, an additional term is needed to describe
the pressure exerted by the other atoms. If the formalism is being
applied to isolated self~binding systems of fermions, like a nu-
cleus with its strong interactions, or a neutron star held toge-
ther by gravity, the fermion~fermion interaction part is the en-

tire effective potential.

The potential is not physically unique, because there is the free-
don of adding a numerical constant. In writing Eq. (1), we have op-
ted for the usual normalization: V-+o for r +«, which means that

this constant is set equal to zero.

Since the potential is subject to the usual normalization V(r-> )
=0, 6V has to vanish at infinity. This does, however, not affect
the argument, because it suffices to set 5V(;)=—6g for those ; for

which the density is nonzero.

The vacuum is not essential; one could, with little additional

complications, equally well consider a dielectric surrounding.

Many applications of this and other, related stationary principles
can be found in J.Schwinger's (unfortunately still unpublished)
lecture notes on Electromagnetic Theory (University of Californisa,
Los Angeles, 1975 ... 1984).

Strictly speaking, the first equality holds only for nonvanishing
density, since n=o implies no more than V+z2o in Eq. (51). This

subtlety does not affect the argument, however.

In rewriting E2, one has to make use of the identity (the spheri-

cal symmetry is essential here)
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2 2,42 d Zy12
w212 = 5+ D]
! Zy, 42 _ 1 4 z,2
= ZlEEWal - gl

The latter term equals

N
-V weht
r

it is a divergence that integrates to a null result. Consequently,

©

1 Z, .2 1 2
E =-8—nf(d"r*)[$(V+;)] =—7(£dr[(rv)] v

2

which then leads to the second integral in (108).
J.P.Desclaux, At.Data Nucl.Data Tables 12, 311 (1973).
E.Baker, Phys.Rev.36, 630 (1930).

E. Hille, J. d'analyse Math. 23, 147 (1970) showed ricourously
that the series (164) converces for small values of /%, certainly
for v < (108/3125) /4//B¥2 = 0.227, possibly for somewhat larcer
values.

A. Sommerfeld, Zschr. f. Fhys. 78§, 283 (1932).

Some people call this the Coulson-March expansion [C.A.Coulson
and N.H.Marchk, Proc.Phys.Soc.London A 63, 367 (1950)].

Hille (see Footnote 10) proved that the series (193) converces

for sufficiently large values of x.

Such a computer program was realized the first time by S.Kobayashi,
T.Matsukuma, S.Nagai, and K.Umeda, J.Phys.Soc.Japan 10, 759 (1955).
They truncated the expansion (193) after the k=17 term. It is fun-
ny to ovserve that their coefficients €y --- Gy, are correct where-
as €44 ... Cq5 are wrong (with increasing error). This did, how-
ever, not affect their results as far as the values of B and B,
given in the Abstract, are concerned. Also the decimales in their
table of the TF function are correct.
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The usefulness of this change of variables was first noticed by
G.I.Plindov and I.K.Dmitrieva, Dokl.Akad.Nauk BSSR 19, 788 (1975).

A little bit more detail is reported in B.-G. Englert, Phys.Rev.
A 33, 2146 (1986).

E.Fermi, Mem.Accad.d'Italia 1, 149 (1930). Fermi did not go beyond
the first order. A systematic study of the expansion (316) was
first presented by G.I.Plindov and I.K.Dmitrieva, Dokl.Akéd.Nauk
BSSR 21, 209 (1977).

G.I.Plindov and I.K.Dmitrieva, J.Phys. (Paris) 38, 1061 (1977).
B.-G.Englert, Zschr.f.Naturforschung 42a, 825 (19%87).

This (physically rather obvious) statement has become known as the
Lieb-Simon theorem after a formal proof was given by E.H.Lieb and

B.Simon, Phys.Rev.Lett.31, 681 (1973). For more detail see the re-
view by Lieb cited in Footnote 3 of Chapter One.

Cited in Footnote 2 of Chapter One.
Cited in Footnote 1 of Chapter One.

P. Hohenberg and W. Kohn, Phys.Rev. 136, B 864 (1964).

M. Levy and J.P. Perdew, Phys.Rev.A 32, 2010 (1985).
Cited in Footnote 2 of Chapter One.

Actually, (502), is a variant of Hartree's equations, inasmuch as

the self energy is included and no averaging of V(f') over its an-
gular dependence is performed, which is a reasonable procedure in

the situation of a spherically symmetric Vext -
E.H. Lieb, Rev.Mod.Phys. 48, 553 (1976).

The corresponding V(r) =~(2/r)F(x) is known as the Tietz potential
[T.Tietz, Acta Phys.Hung.9, 73 (1958}1.
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Chapter Three.

1

J.M.S. Scott, Philos. Mag. 43, 859(1952).
J. Schwinger, Phys. Rev. A 22, 1827 (1980).

The additive constant that should, in principle, be included into
the Coulomb potential, V(r)=-Z/r + const., can be regarded as being
part of g and ¢, respectively. Nothing is gained by displaying
this constant explicitly, but the algebra is more transparent if
one is not forced to keep track of this term, which for the pre-
sent discussion is irrelevant anyhow.

These (and all corresponding) polynomials in <y> are closely re-
lated to the Bernoulli polynomials (Jakob Bernoulli, 1689). For example,

B1,(x+-12—) = X P
1, - o2 _ 1
Bylx+z) = x% - 93
and
1, _ .3 1
B3(x+§) =x" - X

I owe this remark to Prof. G. SiBmann.

Cited in Footnote 1 of Chapter One.

In Lieb's review of 1981 (cited in Footnote 3 of Chapter One) there
is the statement that "the Scott correction (...) is very plausible,"
but "has not yet been proved." This article was a contribution to

a conference at Erice in June, 1980, which is a couple of months

before Schwinger's paper appeared in print (November, 1980).

B.-G. Englert and J. Schwinger, Phys. Rev. A 29, 2331 (1984). This

paper has been the victim of absent-minded proofreading. Misprints

that I am aware of are:

(1) in Eqg. (24), v% should read: V2 ;

(2) the left-hand side of Eq. (40) should read:-—i%vzv ;

(3) in the first paragraph of the section “Scaling" read "scaling
property" instead of "rescaling property;"

(4) in the second sentence of the same paragraph read "do two things
for us" instead of "do the two things for us;"
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(5} Eq.(63) should read: B = 1.5880710... ;

(6) after Eg.(73) read "as Z scales to AB_1 Z" instead of "as T
B-1 Wn

scales to A"

r;

{7) in the sum over j in Eq. (87) replace r¢; by ¢, ;

(8) in Eq. (88) replace "

(9) the right-hand side of Eq.(102) should read:

b 4/3, b ,4/3.n
E+Z by "EZ/’
1 .,-4/3,
3% 07

(10) the last number in the first line of Table I should read:

(-=0.04).

In Ref.7, there is the (wrong) statement that this [i.e., here

Eg. (89), there Eg.(101)] is only approximately true — a misunder-

standing caused by confusing the different meanings of Z in Egs.

(92) and (101).

If aj and a; are, indeed, constants, the closed expression is

ETFS(Z,N) =

E

a
o2 1.2 1
pp(Z/N-gz) * 72 7 Nt

which can be regarded as evidence in favor of the notion a; zo.

This result has also been found, independently and almost simul-

taneously, by Bander whose argument is reminiscent of Scott's way

of reasoning, and by Dmitrieva and Plindov who make an educated

guess. The references are M. Bander, Ann. Phys. (NY) 144, 1 (1982);
I.K. Dmitrieva and G.I. Plindov, J. Phys. (Paris) 43, 1599 (1982).

The HF predictions have been compiled on the basis of the orbital

parameters given by S. Fraga, J. Karwowski, and K.M.S. Saxena,
Handbook. of Atomic Data (Elsevier, Amsterdam, 1976).

This is the main obstacle. The second-order TFS model has not been

formulated as yet.

For more detail,

consult Ref.7.
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Chapter Four,

1 Consult, for instance, R.Finkelstein, Nonrelativistic Mechanics

(Benjamin, Reading, Massachusetts, 1973), Chapter 3.

0Of course, some such "wrong answers" are still better than others.
For example, taking into account all contributions to ¢ and T that
are linear in V, improves the approximation significantly over the
TF result of Eg.({(19). In particular, the density at r=o turns out

to be finite - but it does not have the correct value. For detail

see R.K.Bhaduri, M.Brack, H.Grdf, and P.Schuck, J.Phys.Lett. (Pa-

ris) 41, L 347 (1980).

% The derivation of (50) and (70) by R.K.Bhaduri, Phys.Rev.Lett. 39,
329 (1977) is, indeed, an expansion in powers of t (in B=it to be
precise, but no matter). Bhaduri does not consider the s dependence
of 9.

M.Durand, M.Brack, and P.Schuck, Zschr.f.Phys. A286, 381 (1978) ar-
rive at Egs.(45), (47), and (50) by "expanding in powers of A" and

. ->
in powers of s.

E.Wignexr, Phys.Rev. 40, 749 (1932); J.G.Kirkwood, Phys.Rev. 44, 31
(1933).

A standard reference is H.A.Antosiewicz, in Handbook of Mathemati-

cal Functions, edited by M.Abramowitz and I.Stequn (Dover, New York,
1972).

7 J.Schwinger, Phys.Rev. A 24, 2353 (1981).
® B.-G.Englert and J.Schwinger, Phys.Rev. A 29, 2339 (1984).
C.F.von Weizsdcker, Zschr.f.Phys. 96, 431 (1935).

This statement is not entirely true, since a deficiency of von Weiz~-
sdcker's approach caused his result to be too large by a factor of
nine. This, unfortunately, has induced people to consider that nu-
merical factor as an adjustable parameter. (The "optimal" coeffi-
cient is then believed to be about 1/40 instead of 1/72.) I do not
see the slightest justification for such a point of view. - To my

knowledge the correct numerical multiple of (ﬁn)z/n was first found
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by A.Kompaneets and E.Pavlovskii, Zh.Eksp.Teor.Fiz. 31, 427 (1956)
[Sov.Phys. - JETP 4, 328 (1957)], whose method is very different
from the one used in the text. A procedure more closely related to
ours is the one employed by D.Kirzhnits, Zh.Eksp.Teor.Fiz. 32, 115
(1957) [Sov.Phys. - JETP 5, 64 (1957)].

G.I.Plindov and I.K.Dmitrieva, Phys.Lett. 64A, 348 (1978), obtain a
finite answer by introducing properly chosen cut-offs at small and
large distances. They succeed in deriving (103) at the price of an
electron cloud reminiscent of "an apricot without a stone," and of
a wrong numerical coefficient for the Scott correction. Their pro-
cedure is therefore hardly convincing, although the correct ZS/3

term emerges.

Unfortunately, some (independent) earlier attempts of developing a
guantum corrected description got either stuck or misled because
the investigators did not succeed in evaluating the Airy integrals
explicitly. See, in particular, R.Baltin, Zschr.f.Naturforschung
A27,1176 {1972), and Ref.4.

Of some historical significance is the so-called "Amaldi correc—
tion" which aims at improving the original TF model by a rough
guess of the electrostatic self-energy [E. Fermi and E. Amaldi,
Mem. Acc. Ital. 6, 117 (1934)]. The arguments in favor of the aAmal-
di correction are not very strong in the first place (since cer-
tainly the Scott correction is more important), and they collapse
totally as soon as exchange is included. It is, therefore, depres-
sing to see people still handle models which contain both the ex-
change energy and the Amaldi correction.

Cited in Footnote 2 of Chapter One.
E. A. Milne, Proc. Cambridge Philos. Soc. 23, 794 (1927).

F. Rasetti, in: E. Fermi, Collected Papers (E. Amaldi et al., eds.,
Univ. of Chicago Press, 1962), p.277.

Cited in Footnote 9 of Chapter Two.

V. Bush and S.H. Caldwell, Phys. Rev. 38, 1898 (1931).
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Cited in Footnote 14 of Chapter Two.

Cited in Footnote 1 of Chapter Three.

Cited in Footnote 1 of Chapter One.

Cited in Footnote 2 of Chapter Three.

See Footnote 7 of Chapter Three.

P.A.M. Dirac, Proc. Cambridge Philos. Soc. 26, 376 (1930).
Ref. 16, pp. 291-304.

H. Jensen, Zschr. £. Phys. 89, 713 (1934).

I.K. Dmitrieva and G.I. Plindov, cited in Footnote 10 of Chapter
Three.

Cited in Footnote 11 of Chapter Three.
See Ref. 19 of Chapter Two.

Experimental ionization energies are tabulated by A.A. Radzig
and B.M. Smirnov, Reference Data on Atoms, Molecules, and Ions
(Springer, Berlin-Heidelberg, 1985) (Springer Series in Chemical
Physics, Vvol.31), for Z=1 to Z=102, except for Z=85 (astatine)

and 2=87 (francium) for which no spectroscopic data is reported.

The stars for these elements in Fig.8 are the predictions of Ref.
19 of Chapter Two.

An illustration of this remark are the utterly wrong coefficients,
corresponding to our Eq. (289), which are reported by S.H. Hill,
P.J. Grout, and N.H. March, J. Phys. B 20, 11 (1987), in the appen-
dix.

See Fig.20 in Gombis' textbook, cited in Footnote 1 of Chapter One.
I.K. Dmitrieva and G.I. Plindov, J. Phys. (Paris) 45, 85 (1984)

give Padé approximants that interpolate between (302) and (303),
and agree with these two limiting forms under the respective cir-
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cumstances.

R.G. Parr, R.A. Donelly, M, Levy, and W.E. Palke, J. Chem. Phys.
68, 3801 (1978).

W.E. Lamb, Phys. Rev. 60, 817 (1941).

The subscript n is non-standard; it is introduced only to exclude

any .confusion with o= (7 +v73 )/2, defined in Eq. (2-309).

For Z £ 86 the HF numbers were compiled from the data given by C.
Froese-Fischer, The Hartree-Fock Method for Atoms (Wiley, New York,
1977). For Z > 86, the (less precise) numbers of Ref. 11 of Chapter

Three were used.
B.-G. Englert and J. Schwinger, Phys. Rev. A 26, 2322 (1982).

The potential V in Eqg.(13) of Ref. 38 equals U-U, *C; it is thus
an electrostatic pseudo-potential. With this identification, (13)
of Ref.38 is equivalent to Eqg.(342) in the text.

The external potential ~%/r has to be replaced by a sum over the
Coulomb potentials of all the nuclei in the molecule; also the Scott
term %ZZ becomes a sum over the contributions from individual nu-
clei. The level of sophistication in performing the CSBE in Eq.
(331b) depends on the particular application. Further, if one is
interested in the dependence of the energy on the parameters that
specify the configuration of the nuclei, the electrostatic energy
due to the Coulomb repulsion between the nuclei. must be included.
Effects of the finite nuclear masses are very small and certainly

irrelevant at this level of accuracy.

As a matter of fact, what is discussed in the text is not the
"usual argument" but a variant of it. The discussion is both sim-

pler and more transparent this way.

Handbook of Chemistry and Physics (Chemical Rubber Co., Cleveland,
Ohio, 1979/80).

F. Hoare and G. Brindley, Proc. Roy. Soc. London 159A, 395 (1937).
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2/3 Y]-3/Y

Sommerfelds approximation to F(x), that is F(x) = [1+(12° x) ’
gives 8.71 for this integral. When inserted after undoing the two-
fold partial integration, it produces 8.67. Both numbers are in sa-

tisfactory agreement with the actual value.
From Ref.11 of Chapter Three.

In Ref.24 of Chapter Two, Levy and Perdew try to put the blame for
the discrepancy between experiment and the HF predictions entirely
onto the experiments (or the experimentalists}. This does not seem
plausible to me. Also, relativistic corrections cannot account for

differences this large.

B.-G. Englert and J. Schwinger, Phys. Rev. A29, 2353 (1984}).

Another application is reported by A. Maflanes and E. Santos, Phys.
Rev. B 34, 5874 (1986). Unfortunately, these authors confuse the
potentials U and Ues (our denotation) with, luckily, no consegquences
as far as the conclusions of the paper are concerned. The appendix,

however, and all related remarks in the text are erroneous.

This modified TF density (or its one-dimensional analog) has been
derived prior to the publication of Ref.8 for the special situation
of a linear potential, when (394) is the whole answer. I am aware

of the following three papers: W. Kohn and L.J. Sham, Phys. Rev.137,
A1697 (1965); S.F. Timashev, Elektrokhimia 40, 730 (1979); H. Grdaf,
Nucl. Phys. A349, 349 (1980). All these authors squared the wave
function in a linear potential [this is essentially an Alry function,
see Eqg. (143)] to arrive, finally, at (394) for that special poten-
tial.Our derivation is more general in not makino such assumptions
about V.

The subscript p is non~-standard; it is introduced only to exclude
any confusion with a =1.04018... of Ea.(2~313).

See Radzig and Smirnov, cited in Footnote 30.
The evaluation of the integral (140) and its y-derivative for x=0
is a simple exercise in performing complex contour integrals. At

worst, the results can be looked up in Ref.6.

The HF density is compiled from D.R. Hartree, Proc.Roy.Soc. London,
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Ser. A 151, 96 (1935).

°* L.L. DeRaad and J. Schwinger, Phys. Rev. A 25, 2399 (1982).

Chapter Five.

1 The first plot of this kind is contained in the paper by Dmitrieva
and Plindov, cited in Footnote 10 to Chapter Three.

2 To avoid a possible misunderstanding: it is not the numerical
accuracy of HF numbers that is questioned here, but the physical
reliability of the HF approximation.

8 C.E. Moore, Atomic Energy Levels, Natl. Bur. Stand. Ref. Data
Ser., Natl. Bur. Stand. (U.S.) Circ. No. 35 (U.S8. GPO, Washington,
D.C., 1970).

4 J.P. Desclaux, cited in Footnote 8 to Chapter Two.
5 J.M.S. Scott, cited in Footnote 1 to Chapter Three.

6 H.A. Kramers, Zschr. £. Phys. 39, 836 (1926).

7 R.E. Langer, Phys. Rev. 51, 669 (1937).

8 N.H. March and J.S. Plaskett, Proc. R. Soc. London, Ser. A235,
419 (1956) already noticed that the semiclassical sum contains
the TF approximation in the continuum limit. However, their me-
thod is very different from the one discussed in this text, and
they did not develop a systematic way of analyzing these quantum
corrections.

K B.-G. Englert and J. Schwinger, Phys. Rev. A32, 26 (1985).

1% The circular orbit is also the one which, for given angular momen-
tum, has least energy.
11 presumably due to too crude an approximation for F(x), Fermi re-

ported 3.2 (instead of 3.916) for this integral in his classical

paper on the systematics of the Periodic Table. The reference is:
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E. Fermi, Rend. Lincei 7, 342 (1928}.

12 B.-G. Englert and J. Schwinger, Phvs. Rev. A 32, 36 (1985)

3% H. Hellmann, Acta Physicochim. URSS 4, 225 (1936), was the first
to consider the ATF model. Since he used the original sum over %,
not the Fourier formulation, Hellmann failed to recognize that one

can split the energy into E plus the quantum correction E

TF qu’

A simple counting of the respective points on a j,k lattice shows
that this fraction equals [arctan(vé)—n/4]/n =0.098, a little bit
less than ten percent.

15 rThe factor k-j is missing in Egs. (107) and (108) of the original
publication [B.-G. Englert and J. Schwinger, Phys. Rev. A32, 47
(1986)]. Fortunately, this inadvertence did not cause any harm.

18 A standard reference is M. Abramowitz in the Handbook of Mathe-

matical Functions, cited in Footnote 6 of Chapter Four.

17 Another way of plotting the Fresnel functions, and a particularly

charming one, is presented in Fig.16 of F. Ldsch, Tafeln hdherer

Funktionen/Tables of Higher Functions (7-th edition, Teubner, Stutt-
gart, 1966).

18 gee the paper cited in Footnote 15.

Chapter Six.

: Density Functional Methods in Physics (Alcabideche/Portugal, 1983),

edited by R.M. Dreéizler and J. da Providéncia (Plenum Press, New
York, 1985); Semiclassical Methods in Nuclear Physics (Grenoble/
France, 1984), edited by R.W. Hasse, R. Arvieu, and P. Schuck,
J. de Physique 45, Coll. C6.

2 M.S. Vallarta and N. Rosen, Phys. Rev. 41, 708 (1932); H. Jensen,

Zschr. f. Phys. 82, 794 (1933).

8 Footnote 3 of Chapter Three applies here as well.
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J. Schwinger, cited in Footnote 2 of Chapter Three.

I.K. Dmitrieva and G.I. Plindov, cited in Footnote 10 of Chapter

Three.
6 From Ref.11 of Chapter Three.
7 J.M.S. Scott, cited in Footnote 1 of Chapter Three.

The number appearing here is

Il
EN
Iﬂ
o
i
-
(X
IA
=

2.248

n n
DI SPL I AT ) S 8

1
n=1 m=1 n=1 m=1 m

It

N
4%x1.036928 - 19><%54-4x 1.265738 + 12 x1.133479

® W. Rohn and L.J. Sham, Phys. Rev. 140, A1133 (1965)

' D.A. Kirzhnits and G.V. Shpatakovskaya, Zh. Eksp. Teor. Fiz. 62,
2082 (1972) [Sov. Phys. - JETP 35, 1088 (1972)] used methods re-
lated of those of Chapter Five to study shell effects in atomic
densities. Their results are encouraging, but hardly satisfactory.

1 E.P. Wigner, cited in Footnote 5 of Chapter Four. We do not in-

clude the factors of 2n into the definition of the Wigner function.

- A recent review of this subject is M. Hillary, R.F. O'Connell,

M.O. Scully, and E.P. Wigner, Phys. Rep. 106, 121 (1984).
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Semiclassical Theory of Atoms
(Lecture Notes in Physics, Vol. 300, Springer 1988)
by B.-G. Englert
List of typographical errors
(updated February 1996)

. On p. 3, the second line after Eq. (1-8), it should be
‘macroscopic’, rather than ‘macroscopics’.

. In the text between Eqs. (1-17) and (1-18), p. 6, the ref-
erence should be to Eq. (16), not to Eq. (15).

. The right-hand side of the second equation in Problem
1-3, p. 25, should read p+Ft, rather than p+xFt.

Z
. In Eq. (2-94), p. 44, replace ¢ by —.
r

. Read B (x2/%2)” rather than (3 (x2/%2)” in Eq. (2-202) on
p. 65.

. The first line of Eq. (2-238), p. 70, should end with (— %ETF—
¢(N), not with (—ZErr + ¢(N).

. On p. 75, read t=1 instead of t>1 in the line preceding
Eq. (2-266).

. The numerator in the integrand of Eq. (2-268), p. 75,
should be q’*/®, rather than q’7/3.

. In the first line on p. 79 replace ‘(287)’ by ‘(286)’.



10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

In Eq. (2-349), p. 88, read [y(x)]* instead of [y(x)¥].

On p. 93, the first line after Eq. (2-379), replace ‘statet’
by ‘stated’.

In the line preceding Eq. (2-436), p. 110, read ‘functional’
instead of ‘funcitonal’.

On p. 134, the last term in Eq. (3-15) should be ({5 —
¢)trn(—H — ¢s) rather than

(gs - C) tr (_H - Cs)

On p. 138, the second line in Section Scott’s original argument,

replace ‘as as’ by ‘as’.

On p. 145, the fourth line after Eq. (3—64) should begin
with ‘understood’, rather than ‘unterstood’.

The fourth line after Eq. (4-67), p. 186, should end with
‘of’, not with ‘or’.
The line after Eq. (4-91), p. 191, should begin with ‘Con-

sequently’; not with ‘Concequently’.

The second line after Eq. (4-99), p. 192, should begin with
‘Delta’, not with ‘delta’.

In Eq. (4-129), p. 198, an integral sign is missing in front
of (d1) (dB)
(2m)?

The second line after Eq. (4-157), p. 203, should end with
‘fory - oo’ ’

on the right-hand side.

, rather than ‘ for z — oo .



21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

For ‘contruction’ in the first line before Eq. (4-236), p. 223,
read ‘construction’.

On p. 230, the third line in Section History, replace ‘re-
makred’ by ‘remarked’.

On p. 232, the sixth line from the top, it should be ‘per-
formed’, rather than ‘preformed’.

On p. 239, the fourth line before Eq. (4-299), insert ‘elec-
tron from the’ after ‘removal of one’.

In Eq. (4-320), p. 244, the power 5/3 should be replaced
by 5/2.

On p. 246, the integral in the second line of Eq. (4-332)
should also be performed over (dr’).

In the last line on p. 263 read ‘Clausius—Mossotti’ instead
of ‘Clausius—Mosotti’. The same applies to the corre-
sponding entries in the Index, pp. 397 and 398.

In Eq. (4-485), p. 276, replace [n(f)]*/? by [372n(F)]*/3.
In the seventh line of Problem 4-10, p. 294, read F3(y)
instead of F2, (y).

In Eq. (5-27), p. 305, replace (%Z)l/3 and (%Z)fl/3 by
(%Z)l/3 and (%Z)_l/g, respectively.

On p. 309, the fourth line after Eq. (5—41), replace ‘do’ by
‘to’.



32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

On p. 309, the third line before Eq. (5-42), replace r'(x —
00) =0by'(x = —c0) =0.

Equation (5-45), on p. 309, should be numbered correctly.

: 3 d?s(x) .
In Eq. (5-47), p. 309, it should read 4s°(x) o2 in the
d?s(x)

X
2

square brackets, rather than 4s(x) 1
X

In the line after Eq. (5-58), p. 312, replace ‘Eq. (209)’ by
‘Eq. (2-9)’.

For ‘centripal’ read ‘centripetal’ in the first line before
Eq. (5-111), p. 320.

The abscissa of Fig. 5-9, p. 323, should be labeled )\/Zl/3,
rather than \/Z*/3.

Read (Z/Z15)'/? instead of (Z/Z15)V? in the top line of
Eq. (5-145) on p. 330.

The second term on the right-hand side of Eq. (5-149),
p- 331, should be subtracted rather than added.

On p. 345, the first line after Eq. (5-191), replace ‘insteat’
by ‘instead’.

On p. 355, the second sentence after Eq. (5-232), exchange
the words ‘even’ and ‘odd’ with one another.



42.

43.

44.

45.

46.

47.

48.
49.

50.

51.

92.

In the first line of Eq. (5-236), p. 356, read ‘odd’ rather
than ‘even’; in the second line read ‘even’ rather than
‘odd’.

On p. 361, the sixth line from the bottom, read ‘Fig. 18’
instead of ‘Ref. 18’.

The abscissa of Fig. 5-22, p. 366, should be labeled Z'/3,
rather than Z.

The last line in Problem 5-1, p. 367, should begin with
‘Observe’, not with ‘observe’.

On p. 370, the second line before Eq. (6-1), replace ‘(2-1)’
by ‘(2-3)’.

On p. 378, the sixth line from the bottom, insert ‘done’
between ‘must not be’ and ‘more accurately’.

In the third line of Eq. (6-51), p. 381, replace % by %

On p. 385, the last equation in Footnote 7 should end with
[ (rV)]2, rather than [(rV)]2.

On p. 385, the fourth line of Footnote 14 read ‘observe’
rather than ‘ovserve’.

In the last sentence of Footnote 14, p. 385, read ‘decimals’
instead of ‘decimales’.

In Footnote 15, p. 395, the year of publication should be
1985, not 1986.



