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PREFACE 

This  b o o k  g r e w  out  of a set  of no tes  that  I s u p p l i e d  to the a u d i e n c e  

o f  a se r i es  of l e c t u r e s  on "The T h o m a s - F e r m i  M e t h o d  in A tom ic  Phys i cs  

and  Its R e f i n e m e n t s "  d e l i v e r e d  at the U n i v e r s i t y  of Mun i ch  in 1985. 

S t a n d a r d  t e x t b o o k  m a t e r i a l  p l a y e d  a m ino r  ro le  d u r i n g  these  l ec tu res [  

the e m p h a s i s  was  on the nove l  a p p r o a c h  d e v e l o p e d  by  P r o f e s s o r  J u l i a n  

S c h w i n g e r  and myse l f ,  b e g i n n i n g  abou t  e i gh t  yea rs  ago. As a con -  

sequence ,  th is  book  is the f i r s t  comp le te ,  d e t a i l e d  s t e p - b y - s t e p  

p r e s e n t a t i o n  of our  i deas  and the i r  i m p l i c a t i o n s .  

Na tu ra l l y ,  the w o r k  of o t h e r  r e s e a r c h e r s  is not  i gno red .  In pa r -  

t i cu la r ,  I have  t r i ed  to c o l l e c t  and  o r g a n i z e  the many  p i eces  of 

k n o w l e d g e  abou t  the T h o m a s - F e r m i  mode l  tha t  are  s c a t t e r e d  ove r  as 

many  o r i g i n a l  p u b l i c a t i o n s .  On the o t h e r  hand,  my i n t e n t i o n  was  not  

to s u p p l y  a c o m p l e t e  l i s t  of e v e r y  pape r  on the sub jec t ,  as th is  

w o u l d  have  b e e n  of l i t t l e  va lue .  Thus  r e f e r e n c i n g  is s e l e c t i v e  and I 

c i t e  o n l y  the mos t  r e l e v a n t  papers .  On a few o c c a s i o n s  h o n e s t y  de -  

m a n d e d  c r i t i c a l  r e m a r k s  abou t  s o m e o n e  e l se ' s  work [  I hope  that  these  

c o m m e n t s  w i l l  no t  be  m i s u n d e r s t o o d  as p u t - d o w n s .  

The r e a d e r  is not  e x p e c t e d  to have  any p r e v i o u s  k n o w l e d g e  abou t  

the sub jec t .  In a d d i t i o n  to an open  mind,  the on ly  p r e r e q u i s i t e  is a 

t h o r o u g h  u n d e r s t a n d i n g  of e l e m e n t a r y  q u a n t u m  m e c h a n i c s ,  and some 

f a m i l i a r i t y  w i t h  the p h e n o m e n o l o g y  of a toms  is c e r t a i n l y  he lp fu l .  

The tex t  c o n s i s t s  of a m i x t u r e  of g e n e r a l  c o n c e p t s  and t e c h n i c a l  

de ta i l .  Bo th  need  to be abso rbed ,  a l t h o u g h  some of the l a t t e r  can  be 

s k i p p e d  d u r i n g  a f i r s t  r ead ing .  I t rus t  tha t  r e a d e r s  can  p e r f o r m  a 

r e a s o n a b l e  s e l e c t i o n  t h e m s e l v e s .  

I am g r a t e f u l  for  the m a n y  i n s i g h t s  g a i n e d  in d i s c u s s i o n s  w i t h  a 

la rge  n u m b e r  of peop le .  B e i n g  a f r a i d  of f o r g e t t i n g  somebody ,  I sha l l  

not  even  t ry  to l i s t  them. 

It is a p l e a s u r e  to thank  Mrs. E. F igge,  who t yped  the m a n u s c r i p t  

w i t h  e n v i a b l e  sk i l l .  

Ga rch ing ,  F e b r u a r y  1988 B.-G.  E n g l e r t  
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Chapter  One 

INTRODUCTION 

Atoms that conta in many electrons possess a degree of comple- 

x i ty  so h igh that it is impossib le to give an exact  answer even when 

we are asking s imple quest ions.  We are there fore  compel led to resort  to 

approx imate descr ip t ions.  Two main approaches have been pursued in the- 

ore t ica l  atomic physics. One is the Hart ree-Fock(HF) method and its re- 

f inements; it can be v iewed as a genera l i za t ion  of Schr~d inger 's  des- 

cr ip t ion of the hydrogen atom to many-e lec t ron  systems; it is, by con- 

struct ion, the more re l iab le  the smal ler  the number of electrons. The 

other  one is the Thomas-Fermi  (TF) t reatment  and its improvements;  this 

one uses the p ic ture of an e lect ronic  a tmosphere sur round ing the nucleus; 

it is the bet ter  the larger the number of electrons. For this reason, 

the TF method is f requent ly  cal led the "s tat is t ica l  theory  of the atoms."  

Throughout these lectures we shal l  be concerned wi th the TF 

approach, thereby concent ra t ing  on more recent  developments.  The repe- 

t i t ion of mater ia l  that has been presented in textbooks I a l ready wi l l  be 

l imi ted to the min imal  amount necessary  to make the lectures se l f -con-  

tained. The der iva t ion  of known resul ts wil l ,  wherever  feasible, be done 

d i f ferent ly ,  and - I be l ieve - more elegant ly,  than in standard texts on 

the subject. 

It should be rea l ized that the methods of the TF approach are 

in no way l imi ted to atomic physics. Besides the immediate mod i f i ca t ions  

for apply ing the formal ism to molecules or solids, there exists the pos- 

s ib i l i ty  of employ ing the technics in ast rophys ics and in nuc lear  phy- 

sics. The lat ter  app l ica t ion  na tura l l y  requires appropr ia te  changes re- 

f lec t ing the t rans i t ion  from the CoUlomb in terac t ion  of the e lect rons 

to the much more compl ica ted nuc leon-nuc leon forces. 

In these lectures we shal l  conf ine the d iscuss ion  to atoms, 

however. This has the advantage of keep ing the complex i ty  of most cal-  

cu lat ions at a rather  low level, so that we can ful ly focus on the pro- 

pert ies of the TF method wi thout  being d is t rac ted by the techn ica l  com- 

p l icat ions that ar ise from the cons idera t ions of mo lecu la r  s t ructure 

or f rom our incomple te  knowledge of the nuc lear  forces, for instance. 

Rest r ic t ing  ourse lyes to atoms is fur ther  advantageous because it en- 

ables us to compare pred ic t ions of TF theory wi th  those of other  methods, 

l ike HF calculat ions.  The u l t imate test of a theore t ica l  descr ip t ion  is, 



of course, the compar ison of its impl icat ions wi th  exper imenta l  data. 

Whenever  possible, we shal l  there fore  measure  the accuracy o f  the TF 

predic t ions by conf ront ing it w i th  exper imenta l  results. 

Lack of exper imenta l  data somet imes forces us into re ly ing 

upon HF resul ts for comparison. The same s i tuat ion occurs when quant i -  

t ies of a more theoret ica l  nature are d iscussed (as, e.g., the nonre la-  

t iv is t ic  b ind ing energy, wh ich  is not ava i lab le  from exper iments) .  Such 

a procedure must not be misunders tood  as an at tempt of reproduc ing HF 

pred ic t ions by TF theory. The TF method is not an approx imat ion  to the 

HF descr ipt ion,  but an independent  approach to theoret ica l  atomic phy- 

sics. [Incidentally, it is the h is to r ica l l y  o lder  one: TF theory or ig i -  

nated in the years 1926 (Thomas) and 1927 (Fermi), whereas the HF model  

did not exist pr ior  to 1928 (Hartree) and 1930 (Fock).] 2 The two appro- 

aches should not be regarded as compet ing wi th  each other, but as sup- 

p lement ing one another. Each of the two methods is wel l  sui ted for stu- 

dy ing cer ta in  proper t ies of atoms. For example, if one is in terested in 

the ion izat ion energy of oxygen, a HF ca lcu la t ion wi l l  p roduce a rel i-  

able result; but if you want to know how the total  b ind ing energy var ies 

over the ent i re Per iodic  Table, the TF model  wi l l  tel l  you. Tersely: the 

HF method for speci f ic  in format ion  about a par t icu lar  atom, the TF me- 

thod for the systemat ics of all atoms. There is, of course, a cer ta in  

over lap  of the two approaches, and they are not comple te ly  unrelated. 

We shal l  d iscuss thei r  connect ion to some extent  in Chapter  Two. 

Atomic units. Al l  future a lgebraic man ipu la t ions  are eased s ign i f icant-  

ly when atomic units are used for measur ing  distances, energies, etc. 

Let us br ie f ly  cons ider  the many-par t i c le  Hami l ton operator  

N i ~  j e2 N 1 + 2  Z e  2 

'= 9=I j,k=1 rjk 
(I-I) 

of an atom wi th  nuclear  charge Ze and N electrons, each of mass m and 

carry ing charge -e. The th i rd sum is pr imed to denote the omiss ion  of 

the term wi th  j = k. Obviously,  r. stands for the d is tance between the 
3 

nucleus and the j- th electron, whereas rjk is the d is tance from the j- th 

to the k- th electron, and pj the momentum of the j- th electron. This 

Hmp is accompanied by the commutat ion re lat ions 

[~j,Pk ] = i ~ ? 6jk (1-2) 



and the i n j unc t i ons  caused  by the Fermi  s ta t i s t i c s  that  the e lec t rons  

obey. Equa t i ons  (I) and (2) con ta i n  th ree  d i m e n s i o n a l  pa ramete rs :  m, e, 

~. But  none  of t hem can p o s s i b l y  be used as e x p a n s i o n  v a r i a b l e  of  a 

p e r t u r b a t i o n  ser ies  b e c a u s e  t o g e t h e r  they  do no more  than  set the ato- 

mic  scale.  To see th is  in deta i l ,  let  us rewr i t e  (I) and (2) w i t h  the 

aid of  the  Bohr  rad ius  

~ 2  
ao = m--~-fe = 0.5292 ~ (I-3) 

and tw ice  the Rydbe rg  ene rgy  

2 
Eo _ e _ me ao ~2 - 27.21eV.  (I-4) 

Equa t i ons  (I) and (2) now appear  as 

Z-/ 7- 7, 1 > '  1 / ~  ) _ + 

Hmp/E° = 3 ~(PJ a° j ~ ~ j , k  (r jk/ao) 
(I-5) 

and 

[ ( r j /a  o) , (pk/~{] = i 1 6 jk  . (I-6) 

If we then  i n t r oduce  the d i m e n s i o n l e s s  quan t i t i e s  ~. /ao,  ÷ 3 Pj /ao'  and 

Hmp/E  o as re levan t  ob jec ts ,  al l  r e f e rence  to m, e, and ~ d i sappears .  

Us ing  the  same le t te rs  as for the d i m e n s i o n a l  quan t i t i es ,  we now have 

I Z Hmp = y pj ~ + y .... (I-7) 
j j J j ,k r jk 

and 

÷ _~ e9 
[rj,Pk] = i 1 6 jk  . (I-8) 

Equa t i ons  (7) and (8) are i den t i ca l  w i t h  Eqs. (I) and (2) excep t  tha t  

i ns tead  of  the m a c r o s c o p i c s  un i ts  (cm, erg, etc.) a tomic  unt is  are used. 

Forma l l y ,  the t r a n s i t i o n  f rom (I) and (2) to (7) and (8) can be done  by 

" se t t i ng  e = { = m = I," but  the  m e a n i n g  of th is  co l l oqu ia l  p r o c e d u r e  

is made  p rec i se  by the a rgumen t  p r e s e n t e d  above. 



Besides s impl i fy ing the algebra, the use of atomic units also 

prevents us from t ry ing such fool ish th ings like "expanding the energy 

in powers of ~ , " a  phrase that one meets surpr is ing ly  f requent ly  in the 

l i terature. The energy is no th ing  but Eo t imes a d imens ion less func- 

t ion of Z and N, it depends on ~ only through Eo~I /~  2. We shal l  see la- 

ter, what is real ly  meant  when the foregoing phrase is used. 

The many par t ic le  problem def ined by Eqs. (7) and (8) cannot  

be solved exactly. It is much too compl icated. This is true even when 

the number of e lectrons is only two, the s i tuat ion of he l ium- l ike  atoms. 

There is a branch of research 3 in which r igorous theorems about the sy- 

stem (7) and (8) are proved, such as (d isappoint ing ly  rough) l imits on 

the total  b ind ing energy. One can show for example, that for N=Z÷~ the 

many par t ic le  problem reduces to the or ig ina l  TF model, which we shal l  

descr ibe in the next Chapter.  In these lectures, we shal l  not fo l low 

those h ighly mathemat ized  lines. I prefer  rather s imple physica l  argu- 

ments instead of employ ing the mach inery  of funct ional  analysis.  Also, 

it is my impress ion that those "r igorous" methods are of l i t t le help 

when it comes to improv ing the descr ip t ion  by going beyond the or ig ina l  

TF model. Final ly, let us not forget that mathemat ica l  theorems about 

(7) and (8) are not absolute knowledge about real atoms, because in put- 

t ing down the Hami l ton operator  (7) we have al ready made phys ica l  ap- 

proximat ions:  the f ini te size and mass of the nucleus is d isregarded;  

so are all re la t iv is t ic  ef fects inc lud ing magnet ic  in teract ions and 

quantum e lec t rodynamica l  correct ions;  other than e lect r ic  in teract ions 

are neglected - no re ference is made to grav i ta t iona l  and weak forces. 

Of course, both att i tudes, the h igh ly  mathemat ica l  one and the more 

physica l  one, are valuable, but there is danger  in judging one by the 

standards of the other. 

Bohr atoms. We cont inue the in t roductory  remarks by s tudying a very  

s imple model  in order to i l lus t ra te  a few basic concepts. This pr imi-  

t ive theoret ica l  model  neglects the in ter -e lec t ron ic  interact ion, thus 

t reat ing the e lectrons as independent ly  bound by the nucleus. But even 

if fermions do not interact  they are aware of each other  through the 

Paul i  pr inciple.  Therefore, such non in te rac t in~  e lect rons (NIE) wi l l  

f i l l  the success ive Bohr shel ls of the Coulomb potent ia l  w i th  two elec- 

trons in each occupied orb i ta l  state. 

For the present  purpose it would  be suf f ic ient  to cons ider  

the s i tuat ion of m full Bohr shells. But wi th  an eye on a later dis- 

cussion of shell  effects, in Chapter  Five, let us add i t iona l ly  suppose 



tha t  the  (m+1) th she l l  is f i l l ed  by a f r ac t i on  ~, o ~ < I .  S ince  the  mul -  

t i p l i c i t y  of  the she l l  w i t h  p r i nc i pa l  q u a n t u m  number  m' is 2m'2- fo ld ,  

the to ta l  number ,  N, of  e lec t rons  then  is (see P rob lem I) 

m 

N = ~  2m '2 + B2(m+1) 2 (I-9) 
m'=1 

= ~2 (re+l) 3 _ 61(m+1 ) + 2B(m+1)2  

The to ta l  b i n d i n g  energy  for a nuc leus  of  cha rge  Z is even  s impler ,  

m 

-E  = > 2m '2  Z2 Z2 
m ' = l  ~ + B2(m+1)2 2 (m+l )Z  (1 -10 )  

= z g ( m + ~ )  , 

wh ich  uses the  s ing le  p a r t i c l e  b i n d i n g  energy  Z2/ (2m'2) .  If we under -  

s tand Eq. (9) as d e f i n i n g  m and ~ as func t i ons  of  N, then  Eq.(10)  d is -  

p lays  -E(Z,N) .  Towards  the o b j e c t i v e  of  m a k i n g  th is  f unc t i ona l  depen-  

dence  exp l i c i t  we p r o c e e d  f rom no t i ng  that  

1(m+½ ) < 3 (m+~)3 _ I 3 (m+~) 3 - ~ = ~N < ~(m+~) (I-11) 

Consequen t l y ,  i f  y so lves  the equa t i on  

I 3 
y3 _ ~ y = ~ N , (I-12) 

I 
t hen  m is the  i n tege r  par t  o f  y - ~ . (For N>0, there  is just  one so lu-  

t i on  l a rge r  than  I/2.) We use the s tanda rd  Gauss ian  no ta t ion ,  

m = [y - I/2] (I-13) 

For the  seque l  the  i n t r o d u c t i o n  of  <y>, de f i ned  by 

<y> = y - [y+I/2] , (I-14) 

that  is 

y - <y>= in teger ,  



I < < y >  < I 
- 5  = ~ , 

wi l l  p rove  usefu l .  We emp loy  it in w r i t i n g  

( i -15) 

m = y - I - <y - I> = y - I - <y> (I-16) 

The la t te r  e q u a l i t y  is based  upon  the obv ious  p e r i o d i c i t y  of  <y>, 

<y + I> = <y> (I-17) 

We can now inse r t  bo th  Eq. (12) and Eq. (15) in to  Eq. (9), 

2(. 3 1 , 2 I I ( y _ l _ < y > )  ~ _~y~ = ~ ( y _ ~ _ < y > ) 3  _ 

( I -18)  

+ 2~(y-<y>)  2 , 

and so lve  for b. The resu l t  is 

2 
I I Y -~<Y>  

= 2 + < y >  + ( < y > 2 _ ~ )  (y_<y>)2 

AS a c o n s e q u e n c e  of  y>~, the d e n o m i n a t o r  here  is nonzero .  Also,  one  
3 

eas i l y  checks  that ,  as y i nc reases  f rom m+½ to m+~, ~ g rows m o n o t o n i -  

ca l l y  f rom zero to one, as it should .  

The c o m b i n a t i o n  of  Eqs. (I0), (16) ,and (19) now p roduces  

(I-19) 

2 
I 1 Y -3<Y> 

-E  = z 2 { y  _ ~ + ( < y > 2 _ )  } 
(y_<y>) 2 

, ( i -20)  

wi th  y(N) f rom Eq. (12). Let  us f i rs t  obse rve  that  th is  b i n d i n g  ene rgy  

is a con t i nuous  f unc t i on  of  y - and t h e r e f o r e  of  N - a l t hough  <y> occa-  
I I s i o n a l l y  jumps f rom +~ to -~. Next,  we no te  tha t  for la rge  N, Eq. (12) is 

so l ved  by 

y(N) = (3N)I /3 + I~ (3N)- I /3 + . . . .  (1-21) 

so tha t  the o s c i l l a t o r y  c o n t r i b u t i o n  in (20) is of  o rde r  N - I /3.  Conse-  

quent ly ,  the b i n d i n g  energy  of  N IE  is 

-E = Z 2 {(~N) I/3 I - ~ + . . . .  } , ( I - 2 2 )  

w h e r e  the e l l i ps i s  i nd i ca tes  o s c i l l a t o r y  te rms of  o rde r  N - I /3 and smal-  



ler. The phys ica l  or ig in  of these terms is the process of the f i l l ing 

of shells. We shal l  d is regard them here wi th the promise of re turn ing 

later when we shal l  engage in a more deta i led d iscuss ion of shel l  effects. 

Expans ion (21) is expected to be good for large N. However, 

just the two terms d isp layed exp l ic i t ly  form a prac t ica l ly  perfect  for- 

mula even for smal l  N. An impress ive way of demonst ra t ing  the high qua- 

l i ty of this two- term approx imat ion  is to look at the values pred ic ted 
3 5 7  

for N, at wh ich c losed shel ls occur. For y=~,~,~ .... , the exact ans- 

wer of Eq. (12) is N=2,10,28, .... whereas Eq. (21) produces N=1.99987, 

9.999974, 27.999991, ... ; even for the f irst shel l  the agreement is bet- 

ter than one hundredth  of a percent. 

We have just learned an important  lesson: a few terms of an 

asymptot ic  expans ion l ike Eq.(21) may be, and f requent ly  are, a h ighly 

accurate approx imat ion  even for very modera te  values of N. Such consi- 

derat ions based upon large numbers are the or ig in  of the label "stat ist i -  

cal" that is at tached to TF theory, The fundamental  phys ica l  approxima- 

t ion is, however, rather a semic lass ica l  one. 

This wi l l  become c learer  when we now answer the quest ion how 

one can f ind the leading term in (22) somewhat more direct ly,  w i thout  

u t i l i z ing our deta i led knowledge of the energy and degeneracy of bound 

states in the Coulomb potent ia l .  

The count of e lectrons is evaluated in Eq. (9) as the sum of 

the mul t ip l i c i t ies  of all occupied shel ls .Equiva lent ly ,  we could have 

summed over all occupied states, 

> sI0 if the state is °ccupied } 

N = if the state is not occupied 
all state 

(i-23) 

Since a given state is occupied (or not) if its b ind ing energy, -E 
state' 

is larger than a cer ta in amount, ~ , (or less), we can employ Heavis ide 's  

unit  step funct ion, 

{~ for x > o 

~(x) = for x < o ' (I-24) 

in wr i t ing  

N(~) = > ~(-Estat  e - ~) (I-25) 
all states 

Such a sum over  all e igenstates of an operator,  here the s ing le-par t i -  

cle Hami l ton operator  for NIE, 



1 2 Z 
HNI E = ~p  - ~ , 

is mo re  c o n c i s e l y  exp ressed  as a t race. We then  have  

(I-26) 

N (~ )=  t r  u ( -HNI  E - ~) (I-27) 

[Do not  w o r r y  about  the p o s s i b i l i t y  o f  pa r t l y  f i l l ed  shel ls .  Then  

equa ls  the b i n d i n g  ene rgy  of  the r e s p e c t i v e  shel l ,  and the f r eedom of 

ass i gn i ng  any va lue  b e t w e e n  0 and I to D(x=o) enab les  us to d e s c r i b e  

the s i t u a t i o n  of  a f r a c t i o n a l l y  f i l l ed  shel l .  More abou t  th is  in Chap-  

te r  Five, ]  Ana logous l y ,  we can express  the energy  of Eq. (I0) as the sum 

over  the s i n g l e - p a r t i c l e  ene rg ies  of  a l l  o c c u p i e d  s tates,  

E(~) = t r  HNI E ~( -HNI  E - ~) 

The i den t i t y  

1-28) 

d 
~ ( x  ~(x))  = ~(x) 

used in the form 

1-29) 

co 

- /dx' ~ ( -x ' )  = x ~(-x)  
X 

1-30) 

can be used to re la te  E(~) to N(~) :  

E(~) = t r  (HNI E + ~) ~ (-HNI E - ~) - ~ t r  ~ ( -HNI  E - ~) 

o0 

= - t r  fd~' ~ ( -HNI  E - ~') - ~ N(~) , 

(I-31) 

or, 

oo 

E(~) = -  ~ N(~) - fd~' N(~')  (I-32) 

We see tha t  E(~) is i m m e d i a t e l y  a v a i l a b l e  as soon as we know N(~) .  Th is  

is no surpr ise .  Reca l l  tha t  N(~) s i gn i f i es  the number  of  s ta tes  w i t h  

b i n d i n g  ene rgy  l a rge r  than  ~. Consequen t l y ,  N(~) is d i s c o n t i n u o u s  at al l  

va lues  of ~ equa l  to the b i n d i n g  ene rgy  of  a (Bohr) shel l ,  and the  s ize 



of the jump of N(~) at such a d iscont inu i ty  is the mu l t ip l i c i t y  of the 

respect ive  shell. So N(~), regarded as a funct ion of ~, tel ls us both 

the energy and the mu l t ip l i c i t y  of all shells. 

The problem is now reduced to eva luat ing the t race in Eq. (27) 

in an appropr iate,  approx imate way. [Remember, it is the leading term 

of Eq. (22) only, that we want  to der ive simply.] First  an intu i t ive ar- 

gument. The count of states is the spin mul t ip l i c i t y  of two, t imes the 

count of orb i ta l  states. There is roughly one orb i ta l  state per phase- 

space volume (2v~) 3 [=(2E) 3 in atomic units], so that 

2 n(-1½p ,2- z ~-r)- ~) , (I-33) 
(2~) 3 

where pr imes have been used to d is t ingu ish  numbers from operators.  The 

step funct ion equals uni ty in the c lass ica l ly  a l lowed domain of the 

phase-space and vanishes outside. Therefore,  Eq.(33) represents the ex- 

t reme semic lass ica l  (or should we say: semiquantal?) limit, in which 

the poss ib i l i t y  of f inding the quantum-mechan ica l  system outs ide the 

c lass ica l  a l lowed region is ignored. 

Some support  for the approx imat ion  (33) is suppl ied by its 

impl icat ions.  Af ter  per forming the momentum integrat ion,  we have 

I ~,  (I-34) N(~) ~ f(d~') ~ [2( _ ~)]3/2 , 

where the square root is understood to van ish for negat ive arguments. 

Then the r' in tegrat ion produces, wi th  x = ~r'/Z , 

N(~) ~ (2Z2/~)3/2 3--~4 fdx x I/2 (l-x) 

o 

2 tZ 2 , 3/2 
= ~,~ 

3/2 

(I-35) 

(the integral  has the va lue ~/16.) Inser t ion into Eq. (32) results in 

-E(~) =- Z 2 (~ )  I/2 (I-36) 

which combined wi th  (35) is 

-E ~ Z2(3N) I/3 (I-37) 
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Indeed, here is the leading term of Eq. (22), now very s imply reproduced 

by the semic lass ica l  count ing of states. Please note that the steps from 

Eq. (32) to Eq. (37) did not requi re any knowledge about the energy and 

mul t ip l i c i t y  of bound states in the Coulomb potent ial .  

Traces and phase-space integrals. One does not have to rely upon intui- 

t ion alone when wr i t inq  down Eq. (33). A general  way of eva luat ing the 

trace of a func t ion  of pos i t ion operator  ~ and the conjugate momentum 

operator  p is 

-9,- ->- -)- ->-) ->. 
tr F(r,p) = S(d~') <r' I F(r ,p I r'> 

( 1 - 3 8 )  

( d r ' ) ( d ~ ' )  <~' / F(~,p) F p '> <p' I r ' >  

We have left out the factor of two for the spin mu l t ip l i c i t y  here, be- 

cause i t  i s  i r r e l e v a n t  f o r  t h e  p r e s e n t  d i s c u s s i o n .  I f  now F ( r , p )  i s  o r -  

d e r e d  such that all r's stand to the left of all p's, then 

<r' I F ( r ,p )  1 F ,p '  [ 5 '> p' > = (~' ) <r (I-39) 

This, combined wi th  the pos i t ion-momentum t rans format ion  funct ions 

i ~ , . ~ ,  
1 

<f '  I ~ '>  = 12r~)3--/- ~ e ,_ 

-i r', p' 
, :~, i ~ , >  = 1 

(2tO 3 / 2  e 

(i-40) 

and inser ted into (38) produces 

tr F ( ~ , p )  = f ( d ~ - ' ) - ( d ~ ' ' )  F ( ~ ' , p ' )  
(2~) 3 

(i-41) 

Equat ion (41) is an exact s tatement  for an ordered operator  F(~,p). If 

the operator, of wh ich  the trace is desired, is not ordered, one can 

somet imes do the order ing expl ic i t ly.  An example is (see Problem 3) 

- i [~p - F.r) t  
e = 
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+ ÷ I ÷ I ~ t)zt _ iF2 t3 /24  i F-r t -i ~(p  + 
- e e e , ( I - 4 2 )  

where F is a constant  vector. Wi th  the aid of (42), all o ther  funct ions 
½3 ÷ ÷ of 2 _ F-r can be ordered if expressed as the appropr ia te  Four ier  

integral .  We shal l  have a use for Eq. (42) later, in Chapter  Four. 

Wi th  the except ion  of a few re la t i ve ly  s imple instances, the 

order ing  of an opera to r  F(r,p) is p rac t i ca l l y  impossible.  However, even 

then Eq. (41) is not useless. Inasmuch as the order ing  process involves 

the eva lua t ion  of commutators  of funct ions of r w i th  funct ions of p, 

<~' IF(r,p) I p'> d i f fers from F(r ' ,p ' )<~'  Ip'> by commutator  terms. Under 

c i rcumstances when these commutators  are small, 

÷ ÷ (d~') (d~') F(~ '  ÷ } tr F(r,p) --- ; ,pl 
(2~) 3 

(I-43) 

can be used as the basis for approximat ions.  Since the noncommuta t i v i t y  

of r and p becomes ins ign i f i cant  in the semic lass ica l  limit, Eq. (43) 

mani fes ts  a h igh ly  semic lass ica l  approx imat ion.  

Al l  re f inements  of (43) are due to the noncommuta t i v i t y  of 

pos i t ion  and momentum. This is at the heart  of quantum mechanics,  and 

we shal l  there fore  cal l  these improvements  "quantum cor rec t ions, "  not- 

w i ths tand ing  the fact that (41) is a l ready a quantum mechan ica l  result. 

The s tar t ing  point  is c lear ly  the semic lass ica l  (or, semiquantal)  pic- 

ture, not the c lass ica l  theory  of the atom, wh ich  does not exist  in the 

f irst place. 

For the t race of Eq. (27) all this means that the semic lass i -  

cal eva lua t ion  of Eq. (33) wi l l  be a re l iab le  approximat ion,  if the de- 

Brogl ie  wave leng th  of an ind iv idual  e lec t ron is smal l  compared to the 

typ ica l  d is tance over wh ich the Coulomb potent ia l  var ies s igni f icant ly .  

This cond i t ion  is sat is f ied if both the number of e lect rons and the nu- 

c lear charge are large, because in this s i tuat ion the e lec t ron ic  c loud 

is very dense. In this sense the semic lass ica l  approx imat ion  is equi- 

va lent  to a large-N, a s ta t is t ica l  one. 

Bohr atoms w i th  shielding. The pr imi t i ve  model  of NIE const i tu tes  a sen- 

s ib le approx imat ion  for h igh ly  ionized atoms only, in wh ich  the dynamics 

is governed by the Cou lomb potent ia l  of the nucleus, and the e lect ron-  

e lec t ron in te rac t ion  is negl ig ib le.  Consequent ly ,  the resul ts ob ta ined 

above should not be taken ser iously,  unless N << Z. For instance, the 



12 

b ind ing energy of a neutra l  atom is expected to d i f fer  s ign i f i can t ly  

from the p red ic t ion  of Eq. (37), 

-E m (3) I/3 Z7/3 = 1.145 Z 7/3 , (I-44) 

because of the screen ing of the nuc lear  Coulomb potent ia l  by the inner  

shells. Let us, therefore, t ry to get a feel ing for the impor tance of 

the e lec t ron -e lec t ron  in teract ions by re f in ing the NIE picture. 

Wi thout  inner -she l l  screening, each ful l  Bohr shel l  contr i -  

butes the amount of Z 2 to the b ind ing energy [see Eq. (I0)]. We now sup- 

pose that this remains true for the f irst shell, whereas the ef fec t ive 

Z-value for the second shel l  is Z-2, s ince the total  charge of the nu- 

cleus together  w i th  the f irst shel l  is (-Z+2)e. Simi lar i ly,  the th i rd 

shel l  sees Z-2-8=z-10, and so on. In this picture, 4 the screen ing of 

the inner shel ls is so e f fec t ive that the m' - th  shel l  is exposed to a 

Coulomb po ten t ia l  -Zm,/ r  w i th  

m' -I 
- ~ 2m "2 (I-45) 

Zm, = Z m]/"=~ 

Its con t r ibu t ion  to the b ind ing energy is Z~, , so that we have 

m 
-E = ~ Z 2 + Z 2 

m' ~ m+1 
m'=1 

(I-46) 

We are in teres ted in the leading term only  and can, therefore, evalu- 

ate the var ious sums over m' by means of 

m 
7 - -  m,~ ~ l m V + 1  
m'=1 v+1 

1-47) 

We can then also d is regard all ef fects of the f i l l ing of shells, slnce 

the terms propor t iona l  to ~ are of a lower order, both in N [Eq.(9)] 

and in E. To leading order, we have 

2 m 3 (I-48) N ~ ~ 

2(m,-I)3 Zm, ~ z - ~ 

as wel l  as 
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m m 
2 3]2 

-E = 7 Z m, ~ 7 [Z - -~(m'-1) 
m'=1 m'=1 

I m ~ ~3 7 Z2m - -~ Z + m 

(I-49) 

or, 

- E  = Z 2 (3N)I/3 - I (3N) 4/3 ~Z + ~3 (3N)7/3 

1N+1~2] = Z2(  N ) 1 / 3 1 1  2 Z 7 (  ) ( 1 - 5 0 )  

For neutra l  atoms, N = Z, the pred ic t ion  for the total  b ind ing energy 

is now 

I I 2 ~ I/3 
-E ~ (I - ~ + 7) Z ( Z )  

9 3 I/3 Z7/3 Z7/3 = ~ ( ~ )  = 0.736 

(I-51) 

The compar iso n w i th  (44) shows that the inner-shel l  screening reduces 

the tota l  b ind ing energy by roughly  one third. It cer ta in ly  is a sub- 

stant ia l  ef fect  in a neutra l  atom. 

Inc identa l ly ,  it is remarkab le  that the numer ica l  coef f ic ient  

in (51) d i f fers from the correct  answer  (see the next Chapter) by less 

than 5%. In v iew of the crude way, in wh ich  the e lec t ron-e lec t ron  in- 

te rac t ion  has been taken into account, this is much bet ter  than one 

could poss ib ly  expect. 

Th e e f fec t i ve  ~otent ia l .  The model  that we just studied possesses one 

par t i cu la r l y  unsa t i s fac to ry  feature: the inner shel ls in f luence the ou- 

ter ones, but not v ice versa. There is act ion but no react ion - hard ly  

a good way of descr ib ing  interact ion. 

In our present, p re l im inary  at tempt of reso lv ing this insuf-  

f iciency, in the f ramework of a modi f ied  Bohr model, we shal l  cont inue 

to assume that the var ious Bohr shel ls are geomet r i ca l l y  separated. The 

m' - th  shel l  is supposed to be spher ica l  of a cer ta in  radius, Rm,. Then 

the potent ia l  energy of an e lect ron w i th  this shel l  is 

2m' 2/Rm, for r<Rm, 
Um, (r) = 

2m' 2/r for r>Rm, 
, ( I - 5 2 )  
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if the e lect ron is s i tuated at a d is tance r from the nucleus. The pic- 

ture is no longer asymmetr ic  now, since the energy of the m"- th  shell 

in the e lec t ros ta t ic  f ield of the m'- th  shell, 

2m "2 Urn, (Rm,,) = (2m "2) (2m'2)/MaX(Rm,,Rm, ,) , (I-53) 

remains unal tered if m' and m" are interchanged; act ion and react ion 

are equal. 

The total  potent ia l  energy of the electrons in the m' - th  Bohr 

shell is the sum of the potent ia l  energy wi th the nucleus and wi th  all 

o ther  shells, 

Epot,m, = 2m'2 [_ Rm'Z + ~---'m,,=1 Urn'' (Rm') + ~Um+1 (Rm')] (I-54) 

In this sum, the pr ime is a reminder  to delete the term wi th m"=m'. In- 

c luding this term would mean to include the self energy of the m'- th  

shell. This is not undesirable,  though, because the self energy of the 

shel l  consists most ly  of the in teract ion energy of the indiv idual  elec- 

trons in the shell. The unphysica l  e lect ron se l f -energy can be expected 

to be a re la t ive ly  small f ract ion of the shell sel f-energy. Thus we feel 

just i f ied in dropping the pr ime on the sum in (54), imply ing 

Epot,m, = 2m '2 V(Rm,) , (I-55) 

which int roduces the ef fect ive potent ia l  

m 
Z + ~ Umt (r) + ~ Urn+ I (r) (I-56) V (r) = - 

m' =I 

It is the same for all shells, i.e. for all electrons. 

Before going on, let us supply addi t ional  ev idence in favor 

of the in t roduct ion of the ef fect ive potent ial .  It comes from evaluat ing 

the total  self energy of all shells. This is 

E 
sse 

m 

1 ~----2m,2 Um ' (Rm,) + }~(2(m+i )2)~  Um+l (Rm+1) 
2 m'=1 

1 ~ - -  (2m'2) 2 I ~2(2(m+I)2) 2 (1-57) 

= -~ m ' : l  ~ + ~ ~ + 1  
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the subsc r i p t  sse s tands  for ~ a m e - s h e l l  e l ec t rons .  It now becomes  nece-  

ssa ry  to spec i f y  the rad i i  of  the shel ls ,  Rm,. An e l ec t r on  of the m ' - t h  

she l l  moves  in a po ten t i a l  of  the fo rm -Zm, / r  + c o n s t .  Th is  is, bes ides  

the  here  i r r e l e v a n t  add i t i ve  cons tan t ,  a C o u l o m b  po ten t ia l .  C o n s e q u e n t -  

ly, the e x p e c t a t i o n  va lues  of  the  k i ne t i c  and po ten t i a l  ene rgy  of  th is  

2 (2m,2 _Z~, /m,2  e l e c t r o n  are Zm,/ ) and + oonst,  respec t i ve l y .  It is natu-  

ral  to de f i ne  Rm, by equa t i ng  th is  p o t e n t i a l - e n e r g y  e x p e c t a t i o n - v a l u e  

to -Zm, /Rm, + c o n s t .  Th is  means  

Z 2 
m' Zm' 

m, 2 R m , 
, ( 1 - 5 8 )  

o r  

m, 2 ~ m'-1 
= Zm, = Z -2 "=12m"2m Rm' ; (I-59) 

the la t te r  equa l i t y  is Eq. (45). (Of course,  no c la ims are made  tha t  th is  

r ep resen ts  the one and on ly  way  of d e f i n i n g  Rm,. The e lec t rons  of  a Bohr  

she l l  are not  g e o m e t r i c a l l y  con f i ned  to a smal l  range of r, so tha t  

the re  canno t  be a un ique,  phys i ca l  va lue  asc r i bed  to Rm,.) 

Upon i nse r t i ng  (59) in to  (57), we have  

m 

Ess e = ~ 2m'2 Zm ' + ~2 2 (m+l) 2 Zm+1 
m'=1 

m 

=> 
m'=1 

2 1 3+ 1 1 2m '2 [Z - -~(m'- -~) ~ (m ' -  )] 

2 1 3 1 1 +.u, 2 2(m+1)  2 [Z -  ~(m+ ~,) + -~(m+ ~-)] 

of w h i c h  the lead ing  te rms are [Eqs. (47) and (48)] 

( 1 - 6 0 )  

E 
sse 

~ 2 Z m 3 2 m6 

N I N ~ z 2 [ ~ - ~ (~ )  ] 
( 1 - 6 1 )  

For  a neu t ra l  a tom (N/Z = I), th is  is 

___I z 2 
Ess e ~ , (I-62) 
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and does not cont r ibute  to the leading term of the b ind ing energy, which 

is ~ Z 7/3 

Since the self energy of the m' - th  shell  is p ropor t iona l  to 

(2m'2) 2, i.e., to the square of the number of e lectrons it contains, 

whereas the sum of all e lect ron se l f -energ ies is propor t iona l  to their  

number (2m '2 for those of the m' - th  shell, N for the whole atom), the 

error made in the total  b ind ing energy by the inc lus ion of the e lect ron 

se l f -energy is very small  on the scale set by the leading term (propor- 

t ional  to Z7/3)." Moreover,  as soon as we shal l  have inc luded the ex- 

change in terac t ion into the descr ipt ion,  the e lect ron ic  self energy wi l l  

be exact ly  cancel led by the equal ly  unphys ica l  se l f -exchange energy. In 

o ther  words: there is n o r e a s o n  at all to wor ry  about the self energy; 

at the present  stage is does not contr ibute s igni f icant ly,  and later it 

is going to be taken care of automat ical ly .  

In the ef fect ive potent ial ,  the use of which now being just i-  

fied, the electrons move independent ly.  As the main consequence, the com- 

p l icated many-par t i c le  prob lem is reduced to an ef fect ive s ing le -par t i c le  

one. In our present  model  the total  k inet ic  energy is 

m 
= ~ Z2 Z 2 

Ekin = m' + ~ m+ I (I-63) 

[recall, once more, that the k inet ic  energy of an e lec t ron in a Cou lomb 

potent ia l  -Z /r + const , as is the s i tuat ion in the m' - th  shell, is 
m' 

given by Z~,/(2m'2)] .  Further, the independent -par t i c le  (IP) potent ia l  

energy can be expressed wi th  the aid of the ef fect ive potent ia l  V, 

m 

EIP,pot  = >  2m'2V(Rm,) + ~2(m+1)2V(Rm+1) (I-64) 
m'=1 

Together  they const i tu te  an approx imat ion to the independent -par t i c le  

energy Eip : 

Eip = Eki n + EiP,pot  (I-65) 

m m 
=7 Z~, +7 2m'2 V (Rm,) 

m' =1 m' =I 
2 +2 (m+i)2 V(Rm+I) ] + ~ [Zm+ I 

This is, however, not the energy of the system. Because of the use of 

the ef fect ive potent ial ,  the e lec t ron-e lec t ron  in terac t ion is counted 

twice in (65). In addi t ion to the energy of the m' - th  shell  in the elec- 
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t ros ta t ic  f ield of the m"- th  shell, 2m 'z Um.(Rm,),  Eip also contains 

2m "2 Um, (Rm,,), for any pair  m',m"; and the two are equal, as we have 

seen earl ier, in Eq. (53). Consequent ly,  we have to remove the e lect ron-  

e lect ron in terac t ion  energy once. This is conven ien t ly  achieved by ex- 

press ing this energy in terms of the e lect r ic  f ield made by the elec- 

trons, 

~ = - 7 ( v  - (_z))  (1-66) 

We have care fu l ly  subst racted the cont r ibut ion to V that stems from the 

nuc lear  charge. What we have to add to Eip in order  to remove the doub- 

ly counted in terac t ion  energy, is then 

I 

1 Z 
- 8 ~  / ( d ~ )  [ 7 ( V  + r ) ] 2 (I-67) 

The eva lua t ion  of this integral  is fac i l i ta ted by the observa t ion  that 

in our model  

Z-Z 
Z m'+1 

V(r) + r - r + const for Rm,<r<Rm,+1 (I-68) 

Accordingly ,  

[7 (v+~) ]  2 = 
(Z-Zm,+1)2 

r 4 
for Rm ' I <r<Rm, + , (I-69) 

which holds for m' = 1,2, .... m . Addi t ional ly ,  we need 

I ~  for r<R I 
[ 7 (v+  ) ] 2 = 

N 2 
for r>Rm+ I 

At this stage, we have 

+ f + " ' "  + f + f 

R I R m Rm+ 

4~r2dr 

(1-70) 

[ 7 ( v+~ ) ]  2 : 
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m 
1 7 - -  
2 

m'=1 

Rm'+1 
(Z-Zm'+1) 2 

f dr  I N 2 
r 2 2 f dr  - -  r 2 

Pill' Rm+1 

m 

: _ i ~ ( z_zm,+1 )2 (__  I I ) I N 2 
2 m'=1 Rm, Rm,+1 2 Rm+ I 

(I-71) 

A un i t  sh i f t  of  the summat ion  index  t r ans fo rms  the sum w i th  Rm,+1 in to  

an equ iva len t  one w i t h  Rm,: 

= _ _I ~ ( Z - Z m ' + 1  )2 I x rn+1 (Z-Zm')2 I N 2 

E2 2 2m,=i Rm ' + 2~m '=2  Rm' 2 Rm+ I 
(1-72) 

The recogn i t i on  tha t  Z - Z I = 0 , comb ined  w i th  

(Z-Zm,+I)2 - (Z-Zm,)2 

= (Zm,-Zm,+1) [(Z-Zm,) + (Z-Zm,+I)]  

m'-1 
= 2m,2(2 > 2 m"2 + 2m ,2) 

m" =I 

(I-73) 

m'-1 
= 2m '2 Rm, ( 2 >  Um,,(Rm,) + Urn, (Rm,)) 

m" =I 

wh i ch  uses Eqs. (45) and (52), as we l l  as [Eqs. (45), (52) and 9)] 

m 
N 2 _ (Z-Zm+I)2 = B2 (m+1 )212y - - - 2m"2+  ~2(m+I) 2] 

m"=1 

m 

= ~2(m+1) 2Rm+ I ( 2 >  Urn. (Rm+ I) + ~Um+ I (Rm+ I)) 
m" = I 

tu rns  (72) in to 

E 2 = - 

m m' -I 2 m 
2m'2~m Um,,(Rm,) + ~2(m+I) > Um,,(Rm+ I - 

m ' =I " = I m" = 1 

(I-74) 

( i -75) 



19 

{m } 
I y 2 m ' 2 U m ,  (Rm,) I 2] - ~ + ~ [ ~ 2  (m+1) [bUm+ I (Rm+ I ] 

m' =I 

The contents of the two curly brackets are immediate ly  recognized as 

the in teract ion energy of the pairs of shells and the self energy E 
sse 

of the indiv idual  shells, respect ively.  Indeed, E 2 is the negat ive of 

the e lec t ron-e lec t ron interat ion energy, as it should be. 

Before adding EIp of (65) and E 2 of (75) to get the total  en- 

ergy itself, it is useful to rewri te EiP,pot. From (64) we get 

EIP,pot 

m m Z 
= ~- - -2m'2 [ -R--~  + ~---Um,,(Rm,) + ~Um+1(Rm,)] 

m'=1 m"=1 

+ ~2(m+i)2[_ " Z 
Rm+ I 

m 

+ > Um' (Rm+ I) + ~Um+ I (Rm+ I)] 
m' =I 

= ,\m 2m' 2 m ' -1  m 

/m,..=lRm , ( -Z+7  2m ''2) * ~  2m'ZU m, (Rm,) 
m"=1 m' =I 

m m 
+ 7--- 7-~2m'2Um,, (Rm,) 

m'=1 m"=m' +I 

(I-76) 

+ 
m 

2m,ZUm+1(Rm, ) 

m' =I 

2(m+i)2 m 
+ ~ (-Z+ ~----2m ,2) 

Rm+ I 
m'=l 

+ [~2(m+I) 2] x [~Um+ I (Rm+ I) ] 

Af ter using Eq. (59) and the m'-m" symmetry of 2m '2 Um,,(Rm,) [the act ion- 

react ion symmetry that we observed in Eq. (53)], this reads 

m 
= - 2 >  Z 2 

EIP'p°t  m'=1 m' 
- 2;~ Z 2 

m+1 

I m P 1  m"-1 m +" ~ 2 m " 2 U m ,  (Rm,,) + #(2m+I)2> U m, (Rm+ I + 

"= m'=1 m'=1 
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+ 2 ~-----2m'2Um, (Rm,)+ ~[~,2(m+I) ] [~Um+ I (Rm+l) 

mt=1 

m (I-77) 
= - 2 > Z 2 - 2~ Z 2 - E 2 + E 

m' m+1 sse 
m'=1 

F ina l ly ,  we ob ta in  the  to ta l  b i nd ing  energy  

-E = - (Eki n + E iP ,po t  + E 2) (I-78) 

m 
= ~  --z2m' Z2 

+ ~ m+1 - ESS e 
m'=1 

We compare  th is  w i t h  Eq. (46) and no t i ce  tha t  the  m o r e  s y m m e t r i c a l  t rea t -  

men t  of  the e lec t rons  leads to an add i t i ona l  term, Ess e , in the energy.  

Th is  is ve ry  s a t i s f a c t o r y  because  E is the i n t e r a c t i o n  energy  of  
sse 

e lec t rons  in the  same she l l  (plus the  i nnocuous  e l ec t r on  se l f -ene rgy ) ,  

wh i ch  was lef t  out  w h e n  (46) was der ived .  

E q u a t i o n  (78) can be s imp l i f i ed .  F i rs t ,  we use 

2m '2 = Zm, - Zm,+1 (I-79) 

and 

~ 2 ( m + I ) 2  = Z m + l  - (Z -N)  , ( I - 8 0 )  

w h i c h  are c o n s e q u e n c e s  of Eqs. (45) and (9), to rewr i t e  Ess e of  (60) as 

m 
Ess e = >  (Zm,- Zm,+l )Zm, + ~ z 2 - (I-81) m+1 5(Z-N)Zm+I  

m'=1 

Then we inser t  th is  in to  (78). The ou t come  is 

m 

-E = > Zm, Zm,+1 + ~(Z-N) Zm+ I 
m' =] 

1-82) 

We can now eva lua te  the sum over  m', express  m and ~ in te rms of  y, as 

g iven  in Eqs. (16) and (19), and p ick  out  the  two lead ing  c o n t r i b u t i o n s  

to -E. They  are 
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1 , 4 7 _ 1 2 -E  = (Z2y - ~Zy + ~-~y ) ~Z + 0 (Z5 /3~Zy2~yS)  (1 -83 )  

To t h i s  o r d e r ,  y i s  s i m p l y  a i v e n  by  (3N) 1/3 [Eq. ( 2 1 ) ] ,  so t h a t  

3 I N + I N 2) _ 1 2 -E = Z2( N) I/3(I 2 Z ~( ) ~Z 

(1-84)  
+ 0 ( Z N 2 / 3 ~  N 5 /3 )  

The neut ra l -a tom b ind ing energy pred ic ted by our improved model  of Bohr 

atoms wi th  sh ie ld ing is, consequent ly ,  

-E = 0.736 Z 7/3 1 2 (Z5/3) - ~ Z  + 0 ( I - 8 5 )  

Without  shielding, that is: w i thout  account ing for the e lec t ron-e lec t ron  

interact ion,  the resul t  was [Eq. (22) for N = Z] 

-E = 1 145 Z 7/3 1 2 (Z5/3 • - ~ Z  + 0 ) ( I - 8 6 )  

Whereas the screen ing of the nuc lear  potent ia l  by the inner e lect rons 

reduces the leading term by 5/14 ~ I/3, it does not af fect the Z 2 term 

at all. We shal l  see later, in Chapter  Three, that this nex t - to - lead ing  

term is a consequence of the Coulomb shape of the ef fect ive potent ia l  

for smal l  r. It is the same for all potent ia ls  w i th  V ~ - Z/r for r ÷ o, 

for wh ich  reason it is independent  of N [Eqs. (22) and (84) conf i rm this]. 

The two examples that we looked at so far, the Coulomb potent ia l  of (26) 

and the V(r) of (56), both have this property. 

Size of atoms. A last app l ica t ion  of our model  of Bohr atoms wi th  shiel-  

d ing consis ts  in s tudy ing the Z dependence of the size of neutra l  atoms. 

The ind iv idua l  Bohr shel ls shr ink propor t iona l  to I/Zm, as Z increases 

[see Eq.(59)] .  This wou ld  mean that the size of an atom is roughly gi- 

ven by I/Z, if there were not the necess i ty  of f i l l ing addi t ional  shel ls 

to compensate for the growth of nuc lear  charge. Clear ly,  a qua l i f ied  state- 

ment  about atomic size requires the eva luat ion  of some average of r over 

the atom. 

Accord ing  to Eq. (59), it is the inverse of Rm, that is easy 

to handle. We shal l  there fore  measure  the size R of an atom as 
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5 = 5  <i> 
R N r (i-87) 

where  <I /9> deno tes  the e x p e c t a t i o n  va lue  of I/r. In our  mode l  it is 

g iven by 

m 2m I 2 2 (m+ I ) 2 

< > = > R m , + m'=1 Rm+1 
(I-88) 

It has a s imple  phys i ca l  s ign i f i cance :  <I / r> is the e l e c t r o s t a t i c  ene rgy  

of the e lec t rons  in the f ie ld  of a uni t  charge  s i t ua ted  at the l oca t i on  

of the nucleus,  r=o; or, equ iva len t l y ,  the e l ec t r os ta t i c  energy  of th is 

uni t  charge in the f ie ld  of the e lec t rons.  As such it can be eva lua ted  

in terms of the e f fec t i ve  po ten t i a l  V: 

m I Z <~> = ( v +  r ~) (r=o) = >  Um, (o) + ~Um+1(o) 

m'=1 

Indeed, Eq. (52) assures  us of the e q u i v a l e n c e  of (88) and (89). 

A f te r  emp loy ing  Eq. (59) to rewr i te  (88), 

(I-89) 

m 
<1> = 2 >  Zm, + 2~ Zm+ I 

m'=1 

m 
:2> 

m'=1 

_ I (Z- 2m' (m'-1) (m' 5) )+  2~(Z-N) + 4~2(m+I)  2 

(I-90) 

[the la t te r  equa l i t y  a lso uses Eq. (80)], we can sum over  m' and then 

iden t i f y  the lead ing  con t r i bu t i ons  w i th  the aid of Eqs. (16), (19), and 

(21). The resu l t  is 

I N N 3% I/3) <~> = 2Z( N) I /3 ( I -  ~ ~) - Z(I-  3) + 0(N 2/ ZN- 
r 

, ( I - 9 1 )  

wh ich  for neu t ra l  a toms reads 

(I-92) 

Consequen t l y ,  the a tomic  s ize is [Eq. (87)] 
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R ~ Z -I/3 (I-93) 

Heavier  atoms are geometr ica l ly  smaller,  This pred ic t ion of our rather 

s imple model  wi l l  remain val id in more real is t ic  t reatments.  

A remarkable  observa t ion  is the agreement of Eq. (92) wi th  the 

Z der iva t ive  of Eq. (84) to leading order, 

<1> ~ ~z(_E) (I-94) 

Its physica l  s ign i f icance becomes t ransparent  when we exhib i t  the change 

in the b ind ing energy that is caused by increas ing the nuclear  charge Z 

by the in f in i tes imal  amount 6Z: 

6(-E) = ~z(-E)6Z ~ <&Z>r (I-95) 

This says that the change in the b ind ing energy is main ly  given by the 

e lec t ros ta t ic  energy of the extra nuc lear  charge; the induced a l terat ions 

of the shel l  radi i  Rm, do not cont r ibute to 8(-E) to leading order. This 

resul t  of the model  must be contrasted wi th the cor responding impl icat ion 

of the exact t reatment  based upon the many-par t ic le  Hami l ton operator  

(7). In general, an in f in i tes imal  change of a parameter  in a Hami l ton 

operator  causes a change in the energy, which is equal to the expecta- 

t ion value of the respect ive change of the Hami l ton operator  5. In the 

present  discussion, this s tatement  reads 

& ( - E )  = < & ( - H m p ) >  = <Z 8Z> = <6_~Z> ( I -96)  
j rj r ' 

wh ich says that the change in the b ind in~ energy is ent i re ly  given by 

the e lec t ros ta t ic  energy of the extra nuc lear  charge 8Z. 

As we see, in our model  of Bohr atoms wi th shielding, Eq. (96) 

is not obeyed exactly, but approximately.  This minor  def ic iency could 

poss ib ly  be removed by a s l ight ly  d i f ferent  def in i t ion  of the Rm, [Eq. 

(59)]. It is not wor th  the trouble, though. 

The models  studied in this In t roduct ion not only prov ided 

a f irst insight into the genera]  character is t ics  of complex atoms, but 

also made us somewhat  fami l iar  wi th  a few important  ideas: the concept  

of the ef fect ive potent ia l ,  the semic lass ica l  eva luat ion of t races 

through phase-space integrals,  and re lat ions of the kind i l lus t ra ted 

by Eq. (32) are the centra l  ones. The next Chapter, devoted to the Tho- 
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mas-Fermi  model, wi l l  use them for a f irst se l f -cons is tent  descr ipt ion.  

Problems 

I-I. Sums of powers of m' , as, e.g., in Eq. (9), can be convenient ly  

evaluated fo l lowing the pat tern of this example: 

m m I I 2_(m,_ I 2] 
> m' = ~ - - ~ 5 [  (m'+ ~) ~) 

m'=i m'=1 

I TM I 1 ~  -1 1 2 
= ~ > (m'+ 5) 2 - _ /  (m'+ 5) 

m' =I m' =o 

= l ( m + ~ )  - (0+  )2 = 21 (m+5)I 2 __8 

Show that the other  sums, that occur in this Chapter, are given by 

m' 2 = 

m' =I 

I 3 _ 1 ~ ( m  + I l (m + 5) y) 

m 1 1 4 1 ( m + 1  z 1 
m'3 = (m+5)  - 5 ) + 6--4 

m' =I 

m 
~ ---m' 4 

m'=1 

1 5 _ 1  1 3 7 1 : { ( m + 5 )  z ( m + Y )  + ~ ( m + 5 )  

m 's = (m+ I 6 

m'=1 
"•4 1 ~. "~6 1 2 1 

- ( m + ~ )  + ( m + ~ )  128 ' 

and 

m I 1 1 1 T8 1 m,6 7 ( ~ +  )7_  5 3 : z ( m  +5)  + (m +5 )  - 

m' =I 

31 (m+ I 
1344 5 ) 

I-2. Use the per iod ic i ty  of <y> [see Eq. (17)] to wr i te it as a Four ier  

series, 

(-I)m 
~{n" sin(2~my) = - <y> 

m=1 
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I n t e g r a t e  th is  r e p e a t e d l y  to e v a l u a t e  

(-1)m ~ - -  (-1)m 
(~m) 2 cos (2umy) ' ~ _  (~m) 3 

m=1 m=1 

(-1)m 
(~m) ~ cos (2~my) 

m=1 

s in (2~my) , 

1-3. In o r d e r  to e s t a b l i s h  Eq. (43), f i r s t  use the  o n e - d i m e n s i o n a l  s ta-  

t emen ts  

_i ie! 
6F 6F 

_, p2 - F X = e ( - F x )  e 
2 

- i F x t  i F x t  
e p e = p + F x t  , 

w h i c h  a re  i l l u s t r a t i o n s  of  

-i f(p) i f (p) d 
e x e  = x - ~ f(p) 

and 
-i f(x) i f(x) d 

e p e = p + ~ f (x) 

to show tha t  
I p2_ P8 

- i (~  F x ) t  -i ~ i F x t  i 
e = e e e 

i F x t  
= e 

I (p+F t) 3 i 
- i ~-~ 6F 

e e 

I I F2t3/24 i F x t  - i  ~ ( p + ~ F t ) 2 t  -i 
= e e e 

G e n e r a l i z e  to t h ree  d i m e n s i o n s  and a r r i ve  at Eq. (42). 

I-4. The ave rage  v a l u e  o f  r ~ for  an o r b i t a l  s ta te  in the Bohr  a tom is 

_ m '2 
(r--f)m,,Z , ~ T [ 5 m ' 2 -  3Z ' (Z' +1 ) ]  , 

w h e r e  m' is the p r i n c i p a l  q u a n t u m  numbe r  and £ ' =o , . . . ,m ' - I  the a n g u l a r  

m o m e n t u m  q u a n t u m  number .  A v e r a g e  th is  ove r  the £' va lues  to f ind  
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- -  m,2 
(r2) m, = ~ r  (7m'2 + 5) 

A measure for the size R of the atom is the average of r 2 , 

m 

N R 2 = (r2)atom = ~---2m'2(r2)m, + ~2(m+I)  2 (r2)m+ I 

m' =I 

Show that 

R--- ~ [ 3 N) 2/3 I 
Z (Y + Y] 

for large N. Compare wi th  Eqs. (87) and (92). 

I-5. The cont r ibut ion of a full Bohr shell, wi th  pr inc ipa l  quantum num- 

ber m', to no, the e lect ron densi ty  at the site of the nucleus, is gi- 

ven by 

(2Z)3 
4~ ( )' 

Show that 

no (2Z) 3 ~ m1__[ 1 3 - 2 / 3  3 - 4 ~  [ ( ) 3 _ 2 ( N )  + 0 ( N  - 4 /  ) ] , 

m,=1 

for a Bohr atom (without shielding) that contains N electrons. 

I-6. Der ive the ident i ty  

m m m 
f(m') - [ dyf(y) = f dy < y - g >  dy 

m'=1 I I 

(which, incidental ly,  was first proven by Euler) and use it to conf i rm 

Eq.(47). 



C h a p t e r  Two 

THOMAS - FERMI MOD£L 

The c rude  mode l s  of the p r e c e d i n g  C h a p t e r  taugh t  us tha t  it 

may  be use fu l  to t rea t  the e l ec t rons  in an a tom (or ion) as if t hey  

we re  m o v i n g  i n d e p e n d e n t l y  in an e f f e c t i v e  po ten t ia l .  We sha l l  now take 

th is  idea  ve ry  ser ious ly ,  w i thou t ,  however ,  m a k i n g  exp l i c i t  a ssump t i ons  

about  the e f f e c t i v e  po ten t ia l ,  V. It is c lea r  that  V possesses  the ge- 

ne ra l  s t r u c t u r e  1,2 

Z 
V = - -- + [ e l e c t r o n - e l e c t r o n  part] , (2-I) 

r 

and the c h a l l e n g e  cons i s t s  in f i nd ing  the e l e c t r o n - e l e c t r o n  par t  in a 

c o n s i s t e n t  way. The f u n d a m e n t a l  too l  fo r  a c h i e v i n g  th is a im is the e lec-  

t r os ta t i c  P o i s s o n  e q u a t i o n  

_ I V2  V = n , ( 2 - 2 )  
4~ es 

w h i c h  re la tes  the  e l e c t r o n  dens i ty ,  n, to the e l e c t r o s t a t i c  po ten t i a l ,  

Ves, due to the e lec t rons .  As soon as we sha l l  have  m a n a g e d  to exp ress  

bo th  Ves and n in te rms of  V, Eq. (2) w i l l  d e t e r m i n e  the e f f e c t i v e  po ten -  

t ial .  

Gene ra l  fo rma l ism.  The dynamics  of  the e lec t rons  is c o n t r o l l e d  by the 

i n d e p e n d e n t - p a r t i c l e  H a m i l t o n  o p e r a t o r  

H = lp2 + V(~) (2-3) 

The e l ec t r ons  f i l l  the e i g e n s t a t e s  of H s u c c e s s i v e l y  in such a way  that  

al l  s ta tes  w i t h  b i n d i n g  ene rgy  la rger  than  a c e r t a i n  va lue,  {, are occu-  

pied, w h e r e a s  those  w i t h  less b i n d i n g  energy  are not. The p a r a m e t e r  ~ is 

thus d e t e r m i n e d  by the r e q u i r e m e n t  tha t  the count  of  o c c u p i e d  s ta tes  

equa ls  the numbe r  of e l ec t rons  N. Jus t  as in Eq. (I-27) th is  is e x p r e s s e d  

as 

N = t r  ~ (-H-{) , (2-4) 

w h e r e  we r e m e m b e r  that  the sp in  m u l i t p l i c i t y  o f  two is i nc l uded  in the 

t race.  
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The sum of i n d e p e n d e n t - p a r t i c l e  ene rg ies  is, ana logous ly ,  

Eip = t r  H~(-H-~)  (2-5) 

The c o m b i n a t i o n  H+~, that  appears  in the a rgumen t  of  Heav i s i de ' s  s tep  

f unc t i on  ~, i nv i tes  r e w r i t i n g  E ip  as 

Eip = t r (H+~)u ( -H -~ )  - ~tr ~ (-H-~) , (2-6) 

which,  w i t h  the a id of  (4) and the d e f i n i t i o n  

reads 

E I { t r (H+~)~ ( -H -~ )  , (2-7) 

In th is  equat ion ,  N is the g i ven  number  of  e lec t rons ,  and bo th  E ip  and 

E I are f u n c t i o n ( a l ) s  of  the e f f e c t i v e  po ten t i a l  V and the m i n i m u m  b in-  

d ing  ene rgy  ~. 

Let  us make  con tac t  w i t h  Eqs. (I-27) and (I-32), in tha t  we 

w r i t e  

w h e r e  

co 

E I (~) = - Sd~ ' N(~')  , ( 2 - 9 )  

N(~')  = t r  ~( -H-~ ' )  (2-10) 

is the count  of s ta tes  w i t h  b i n d i n g  ene rgy  e x c e e d i n g  ~'. E q u a t i o n  (4) 

appears  now as 

N = N(~) (2-11) 

E q u a t i o n  (9) can be e q u i v a l e n t l y  p resen ted  as a d i f f e r e n t i a l  s ta tement .  

If ~ dev ia tes  f rom its co r rec t  va lue  [which is d e t e r m i n e d  by Eq. (11)] 

by the amount  8~, then  E I is o f f  by 

~E I 
&~E I = ~--~ 8~ = N ( ~ ) ~  = N&~ (2-12) 

This  has the impo r tan t  i m p l i c a t i o n  tha t  E ip  of  Eq. (8) is s t a t i o n a r y  un- 

E ip  = E I - ~ N  (2-8) 
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der  v a r i a t i o n s  of  ~ (around its co r rec t  va lue,  of course) :  

8( E ip  = 8 E I - N6( = o (2-13) 

In a d d i t i o n  to (, E I and E ip  a lso depend  on V. The loca l  r esponse  

of bo th  ene rg ies  to v a r i a t i o n s  of the po ten t i a l  exh ib i t s  the e l e c t r o n  

d e n s i t y  n: 

6 V E ip  = 8 V E I = f (d~ ' )SV(~ ' )  n(~') (2-14) 

A l t h o u g h  th is  is i n t u i t i v e l y  obv ious ,  let  us supp l y  a fo rma l  proof .  The 

f i rs t  e q u a l i t y  fo l l ows  i m m e d i a t e l y  f rom (8), b e c a u s e  N is the g i ven  num- 

ber  of  e l e c t r o n s  and ( is a p a r a m e t e r  tha t  we rega rd  as i ndependen t  of  

V. For  the  second  equa l i t y ,  we need the f o l l ow ing  iden t i t y :  

8 H tr  f(E) = t r  6H f' (H) , (2-15) 

w h i c h  exp resses  the change  in the t race  of a f unc t i on  of  an o p e r a t o r  H 

as the  t r ace  of  the p r o d u c t  of  the change  in the opera to r ,  8H, and the 

d e r i v a t i v e  of  tha t  funct ion.  [Note tha t  (15) is not  t rue  w i t h o u t  the 

t race  opera t i on ,  un less  8H commutes  w i t h  ~: 

8 H f(H) = 6H f' (H) on l y  if [6H,H] = o. (2-16) 

Under  the  t r ace  the  p o s s i b l e  n o n c o m m u t a t i v i t y  does not  mat te r . ]  In our  

app l i ca t i on ,  

f(H) = (H+()D(-H-( )  

f' (H) = q(-H-()  

(2-17) 

[compare w i t h  Eq. (I-29)], and 8H = 6V. Acco rd ing l y ,  

8 v E 1 = t r  8V q(-H-~)  

= 2 f(d~') < r ' l S V ( ~ ) q ( - H ( p , r  ) - ~ ) I~ '>  
(2-18) 

We use, again,  p r imes  to d i s t i n g u i s h  numbers  f rom opera to rs ;  the fac to r  

of  two is, once  more,  the sp in  m u l t i p l i c i t y .  Now, s ince  

<r' 18V(~) = 8V(~')  <r' I , (2-19) 
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and, ant ic ipat ing that 

2<~' I~(-H-~)]~'> = n(~') , (2-20) 

Eq. (18) impl ies Eq.(14). Indeed, equat ion (20) is noth ing but the 

representat ion of the densi ty  as the sum of squared wavefunct ions over 

all occupied states. Upon label l ing these wavefunct ions by thei r  ener- 

gies E' and addi t ional  quantum numbers, ~, the lef t -hand side of (20) 

is 

w 

2 ~, ~E,,a(~') ~(-E'-~)~E,,~(~')  

(2-21) 

: 2 ~  I~E,,~(~') 12~(-E'-~I , 
E',~ 

which is recognized as the usual def in i t ion of the density. 

For consistency, the integrated densi ty  must equal the number 

of electrons, 

N = I(d~')n(~') 

This fol lows immediate ly  from Eq. (20): 

(2-22) 

f(d~')n(~') = 2 f(d~')<~' I~(-H-~)I~'> 

= tr n(-H-~) = N(~) = N 

(2-23) 

Another, and more instruct ive,  proof makes use of (i) the def in i t ion  of 

n in Eq. (14); (ii) the c i rcumstance that E I does not depend on V and 

individual ly,  but only on the sum V+~; (iii) Equat ion (12). Consider  

in f in i tes imal  changes in ~ and V such that 6V(~) = -5~. 3 Then 5(V+~)=o, 

imply ing 6Ei=o. In v iew of Eqs. (12) and (14) this means 

o = 5~ E I + 5 V E I = NS~ + ;(d~')(-5~)n(~')  

= 5~ (N- f ( d ~ ) n ( 5 ) )  , 
(2-24) 

which is equiva lent  to (22). This second proof has the advantage of re- 

main ing val id when the trace in E 1 is evaluated approximately.  There is 

no assurance that the densi t ies der ived from (14) and (20) are ident ica l  

in a certa in approximat ion.  If they are not, Eq. (14) is the preferab le  

def in i t ion.  (We shall, indeed, be confronted wi th this poss ib i l i t y  la- 

ter, in Chapter  Four.) 
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Equat ion (14) relates the densi ty  to the ef fect ive potential,  

so that we have taken care of the r ight -hand side of Eq. (2). We are left 

wi th  the problem of express ing the e lect rosta t ic  potent ia l  of the ele- 

trons, V , in terms of V. 
es 

We proceed from not ing that Eip is not the energy of the sy- 

stem. Just as in the preced ing Chapter  [recall the remark af ter  Eq.( I -  

65)], the use of the ef fect ive potent ia l  causes a double count ing of 

the e lec t ron-e lec t ron in teract ion energy, Eee. The in teract ion potent ia l  

Vee wh ich  is the e lec t ron-e lec t ron  part of V in Eq. (I), is natura l ly  

given as the response of Eee to var ia t ions of the density, 

8Eee = f(d~') &n(~') Vee(~') (2-25) 

[Please do not miss the analogy to Eq. (14).] Since V and ~ are the fun- 

damenta l  quant i t ies  in our "potent ia l - funct iona l  formal ism," &n(r) must 

be regarded as the change in the densi ty  induced by var ia t ions of V and 

Some evidence in favor of (25) is suppl ied by cons ider ing the 

e lec t ros ta t ic  in teract ion energy 

= I 
Ees ~ ;(d~') (d~") n(~')n(~") (2-26) 

I~'-~" I ' 

f o r  wh ich  

8E = / ( d ~ ' ) & n ( ~ ' )  S(d~") n(~")  
e s  1~'-~"1 

(2-27) 

Thus, Eq. (25) impl ies the fami l iar  express ion 

V (~')  = ; (d~" )  n(~'") 
es i÷1 ÷,, r -r I 

, (2-28) 

which is equiva lent  to the Poisson equat ion (2). 

The e lec t ron-e lec t ron  in teract ion energy, as it is incorrect-  

ly conta ined in E ip( "double  count ing of pairs"), is 

tr  V ~ (-H-~) 
ee 

= 2 f(d~') Vee(~')<~'  I~(-H-~)IF,> (2-29) 

= ; (d~')Vee (~')n (~') ; 
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the last  s tep  uses Eq. (20). Consequen t l y ,  the co r rec t  energy  e x p r e s s i o n  

is 

E = Eip - / (d~ )Veen  + Eee (2-30) 

The second  te rm removes  the i nco r rec t  accoun t  for the e l e c t r o n - e l e c t r o n  

i n t e r a c t i o n  con ta ined  in Eip, and the last  t e rm adds the cor rec t  amount .  

The energy  of  Eq. (30) is endowed  w i t h  the impo r tan t  p r o p e r t y  

of  be ing  s ta t i ona ry  under  va r i a t i ons  of bo th  V and ~, 

6 E = 8 v E = o. (2-31) 

In o rde r  to see this, f i rs t  app rec ia te  

6( - / (d~ )Veen  . Eee ) 

= - ; ( d~ ) (6Veen  + VeeSn) + f (d~)Sn  Vee 
(2-32) 

= - f(d~)nSV 
ee 

w h i c h  is an i m p l i c a t i o n  of Eq. (25). Fur ther ,  a c o n s e q u e n c e  of Eqs. (13) 

and (14) is 

8E ip  = 8~E ip  + 8 V Eip 

= f (d~)nSV (2-33) 

Then, the change  in E is 

5E -- S (d~ )n (~V-SVee  ) = f (d~)nS(V-Vee)  (2-34) 

In v iew of [Eq. (I)] 

V = " Z + V , (2-35) 
r ee 

the v a r i a t i o n  6(V-Vee)  van ishes ,  and Eq. (34) imp l ies  Eq. (31), indeed.  

It is use fu l  to sepa ra te  E in to  the c lass i ca l  e l e c t r o s t a t i c  
ee 

part,  Ees' of Eq. (26), and the rema inde r  E' w h i c h  cons is ts  of the ex- 
ee' 

change  i n t e r a c t i o n  and poss ib l y  o the r  e f fec ts .  Accord ing ly ,  we wr i t e  

+ E' (2-36) Eee = Ees ee ' 
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and l i kew ise  

V = V + V' (2-37) 
ee es ee 

The e l e c t r o s t a t i c  c o n t r i b u t i o n  to the energy  (30) can be rewr i t ten ,  

w i t h  the  aid of  the P o i s s o n  equa t i on  (2), in te rms of the e l e c t r o s t a t i c  

f ie ld  -~V : 
es 

+ E = I 
f (d~)n  Ves as - ~ f (d~)n  Ves 

I I ÷ (~Ves) = 8--~ f(d~) (V2Ves)Ves = - 8-~ f(dr) 2 

(2-38) 

[The su r f ace  t e rm  of the pa r t i a l  i n t e g r a t i o n  is zero, because  V 
es 

for  la rge r. ] Fur ther ,  we  comb ine  Eqs. (35) and (37) in to 

N/r 

V = V + _Z _ V '  , ( 2 - 3 9 )  
es r ee 

t h e r e b y  e x p r e s s i n g  V 
es 

reads 

in te rms of V, as needed  in (2). The energy  now 

E = E ip  
I Z 

- ~  f (d~) [~(V+ ~ -Vee) ]2  

- f (d~)n V' + E' ee ee 

(2-40) 

This e x p r e s s i o n  for  the ene rgy  is our  bas is  for app rox ima t i ons .  Va r ious  

mode ls  emerge  d e p e n d i n g  upon  the accu racy  to w h i c h  the t race  in E ip 

[Eqs. (7) and (8)] is eva lua ted ,  and upon  the ex ten t  to wh i ch  E' is 
ee 

taken  in to  account .  Of course,  a cons i s ten t  d e s c r i p t i o n  requ i res  a ba-  

lanced t r ea tmen t  of  both.  

The TF model .  The s imp les t  mode l  based  upon  Eq. (40) is the  TF model .  It 

neg lec t s  E' e n t i r e l y  [then V' a lso d i sappea rs  f rom (40)] and eva lu -  
ee ee ' 

a tes the  t race  of Eq. (7) in the h igh l y  s e m i c l a s s i c a l  a p p r o x i m a t i o n  of  

Eq. (I-43). The TF energy  e x p r e s s i o n  is t he re fo re  

I 2 ETF = 2 f ( d ~ )  (d~) i~_p2+V÷~)~l_ yp - v - e )  - ~N 
(2~) 3 

I Z ]2 
- 8-~ f (d~) [~ (V+ ~) 

(2-41) 

We r e c o g n i z e  the last  t e rm as the q u a n t i t y  E 2 of  Eq . ( I -67) ,  wh i ch  was 
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there in t roduced to remove the doubly  counted (electrostatic) inter-  

act ion energy; the term plays the same role here. The phase-space inte- 

is the TF vers ion of El, proper ly  denoted by (EI)TF. We shall, gral 

however, suppress the subscr ipt  TF unt i l  it wi l l  become a necessary  

d is t inc t ion  from other models. 

The step funct ion cuts off the momentum integral  at the (r- 

dependent) max imal  momentum (the so-cal led "Fermi momentum") 

P = -/~ (V+ ~ ) , (2-42) 

so that 

P 

(2~) 3 0 

rg 2 

(2-43) 

or, square roots of negat ive arguments being zero, 

E I = f(d~) (- I ) [-2(V+~)] 5/2 (2-44) 
15~ 2 

This is the Thomas-Fermi  result  for ~I" The ent i re energy funct ional  in 

the TF model  is then 

ETF = E I + E 2 - ~N 

(2-45) 
Z = f(d~)(- I )[_2(v+~)15/2 a~f(d~)[~(V+ ~ )12_~  . 

15~ 2 

Is there any real i ty  to it? Yes. Look back to Chapter  One, where (45) 

has been used unconsc ious ly  for the Coulomb potent ia l  V=-Z/r. In this 

si tuat ion, E 2 equals zero, and ETF gives the leading term of Eq.(I-22) 

[see Eqs.(1-26) through (I-37)]. Since V is essent ia l ly  equal to the 

Coulomb potent ia l  in a 'h ighly  ionized atom, we conclude 

ET F m - ZZ(~N) I/3 for N << Z (2-46) 

We shal l  return to h igh ly  ionized systems in a whi le  and find the modi-  

f icat ion of (46) when account ing for the e lec t ron-e lec t ron  repulsion. 

Before doing so, we have to study some impl icat ions of Eq. (45). 

The s ta t ionary  proper ty  of ETF wi th respect  to var ia t ions of 

V and ~ reads 
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= I 2 (V+ z o = 6ETF f(d~)6V{ I [_2 (V+~)13/2 + ~-~V r) } 
3rL 2 

+ 6~{ ](d~) I [_2(V+~)]3/2 _ N} 

3~2 (2-47) 

Z - --I f (d~)~ .  (~v ~ ( v+  ~) )  
4~ 

The va lue of the last in tegral  is zero, because the equiva lent  integra-  

t ion over a remote sur face vanishes in v iew of 6V=o for r+~. The var ia-  

t ions of V and ~ are independent,  so that the two cur ly b racke ts  equal 

zero indiv idual ly .  Accordingly,  

I V~(V+ z = I [_2(V+~)]3/2 (2-48) 
4K ~) 3~2 

and 

f(d~) I [-2 (v+~)]3/2 = N , (2-49) 
3~ 2 

of wh ich  the f i rst  is the Poisson equation, and the second the normal i -  

zat ion of the dens i ty  to N. Obviously,  Eq. (49) is the TF vers ion of (11), 

as we not ice  that Eq. (I0) is real ized as 

, :(d~) (d~) 1 2_V - , N(~ ) = 2 2 N(- ~p ~') = ;(d~) I [-2(V+~ )]3/2 (2-50) 
(2~) 3 3~2 

This, inserted into Eq. (9), reproduces (44), as it should. 

On the r igh t -hand side of (48) as wel l  as under the integral  

of (49) we have the TF dens i ty  

I 3/2 
n = --~'--[-2 (V+~) ] (2-51) 

3K 2 

In the c lass ica l ly  forb idden domain, character ized by V>-~, this dens i ty  

vanishes. There is a sharp boundary  assigned to atoms in the TF model. 

In contrast, in an exact quantum mechan ica l  descr ip t ion  the t rans i t ion  

from the c lass ica l ly  a l lowed to the c lass ica l ly  forb idden region is 

smooth. We have just learned about one of the def ic ienc ies  of the TF 

model. It is going to be removed later when we shal l  incorporate  quantum 

correct ions of the sort  d iscussed br ie f ly  af ter Eq. (I-43). 

The d i f fe rent ia l  equat ion (48) for V, known as the TF equat ion 

for V, is supp lemented by the const ra in t  (49) and the short d is tance be- 
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hav io r  o f  V, 

r V ÷ - Z for r + o (2-52) 

It s i gn i f i es  the phys i ca l  r e q u i r e m e n t  that  for r÷o, the e f f e c t i v e  po ten-  

t ia l  is m a i n l y  g i ven  by the e l e c t r o s t a t i c  p o t e n t i a l  ene rgy  of  an e lec-  

t ron  w i t h  the nuc leus;  fo rmal ly ,  (52) is n e c e s s a r y  to ensure  the f in i te -  

ness of E 2. Consequen t l y ,  we have the f o l l ow ing  s i tua t ion :  for smal l  r, 

the p o t e n t i a l  is la rge nega t i ve ,  and the d e n s i t y  is large; as r i nc rea -  

ses the p o t e n t i a l  becomes  less and less nega t i ve ;  f ina l l y ,  at the edge  

of  the c l a s s i c a l l y  a l l owed  reg ion,  it equa ls  -~, and the a rgumen t  of  the 

square  roo t  in (51) tu rns  nega t i ve ;  beyond  th is  d i s tance ,  ro, the dens i -  

ty is zero, so tha t  (48) is the h o m o g e n e o u s  P o i s s o n  equa t ion .  Gauss ' s  

law, c o m b i n e d  w i t h  Eqs. (49) and (52), then  imp l ies  

Z-N 
- -  ~ = V = r for r > r O , (2-53) 

and the rad ius  r o of the a tom is d e t e r m i n e d  by 

V ( r = r  o) = - ~ , (2-54) 

or, 
Z-N 

- (2-55) 
r 

o 

T h e  e l e c t r i c  f i e l d  - ~ V  i s  c o n t i n u o u s  ( t h e r e  a r e  n o  c h a r g e d  s u r f a c e s  i n  

an a tom) ;  in pa r t i cu la r ,  at the edge we have 

d Z-N v (r) I 
r 2 r r o 

o o 

(2-56) 

N e u t r a l  systems,  N=Z, have  ~=o, so that  bo th  V and dV /d r  van i sh  

at r=r o. Consequen t l y ,  the TF e q u a t i o n  for  V, Eq. (48) ,  requ i res  ro=~, 

s ince  for  a f i n i t e  r e it canno t  have  a so l u t i on  s a t i s f y i n g  these  bounda-  

ry cond i t i ons .  We have  just  l ea rned  that  neu t ra l  TF a toms are i n f i n i t e -  

ly large, they  do not  have  an "outside!,, on ly  an " ins ide" .  

It is use fu l  to m e a s u r e  V+~ as as m u l t i p l e  o f  the  p o t e n t i a l  

o f  the nuc leus  by  i n t r o d u c i n g  a f unc t i on  f(x), 

V + ~ = - Z f(x) , (2-57) 
r 

the a rgumen t  of w h i c h  is r e l a ted  to the phys i ca l  d i s t a n c e  r by 

= I~3~%2/3  
x = Z1/3r/a , a ~, -~,  = 0 .8853. . .  (2-58) 
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The cons tan t  a is chosen  such  tha t  the d i f f e r e n t i a l  e q u a t i o n  for  f(x), 

d 2 [f (x) ] 3/2 
- f (x )  = I / 2  
dx 2 x 

, (2-59) 

ca l l ed  the  TF e q u a t i o n  for  f(x),  is f ree of  n u m e r i c a l  factors .  The boun-  

da ry  cond i t i ons  (52) , (54) ,  and (56) t r a n s l a t e  in to  

d N 
f(o) = I , f (x o) = o , -Xo d--~ f(xo) = I - ~ - q , (2-60) 

o 

w h i c h  i n t r oduces  q, the deg ree  of  i on i za t ion .  Of course,  x ° is r e l a ted  

to r ° t h r o u g h  (58). E q u a t i o n  (53) now appears  as 

f(x) = q ( 1 - x / x  o) for  x > x ° (2-61) 

P lease  no t i ce  tha t  Z and N do not  appea r  i n d i v i d u a l l y  in Eqs. (59) and 

(60). Consequen t l y ,  f(x) is so le l y  d e t e r m i n e d  by  the deg ree  of  i on i za -  

t ion, q, so that  al l  ions w i t h  the  same q possess  a common  shape  of  the 

p o t e n t i a l  and of  the  dens i t y .  The p o t e n t i a l  V i t se l f  does,  of course,  

depend  on Z; f i rs t  t h r o u g h  the  fac to r  Z/r, but  then  a lso b e c a u s e  of  the 

Z d e p e n d e n c e  of the TF v a r i a b l e  x o f  Eq. (58). The fac to r  Z I/3 t he re  

imp l i es  the same s h r i n k i n g  of  h e a v i e r  a toms tha t  we have  a l r eady  ob-  

se rved  in C h a p t e r  One, when  c o n s i d e r i n g  Bohr  a toms w i t h  sh ie ld ing ,  see 

Eq. (I-93). 

For  i l l u s t r a t i on ,  Fig.1 shows a ske tch  of f(x) for  q = I/2, 

for  w h i c h  x ° ~ 3. The g e o m e t r i c a l  s i g n i f i c a n c e  of  the th i rd  e q u a t i o n  in 

(60) is i nd i ca ted .  

1 

Z .... 

± 
0 1 2 

I, Xo 4 

)X 

Fig. 2-I. Sketch of f (x )  for q =  1/2 .  

N e u t r a l  TF atoms. For  the s o l u t i o n  of  Eqs. (59) and (60) tha t  be longs  to 
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q=o, we  w r i t e  F(x) and ca l l  i t  t he  TF  func t ion .  It obeys  

d 2 [F (x) ] 3/2 
F(x) = 

dx  2 x ~/2 
, (2-62) 

and is s u b j e c t  to  

F(o) = I , F(~) = o (2-63) 

I ts  i n i t i a l  s l ope  B, 

F(x) = I - Bx + ... fo r  x << I , (2-64) 

has an i m p o r t a n t  p h y s i c a l  s i g n i f i c a n c e .  We  i nse r t  (64) in to  (57), use  

(58), and a r r i v e  at 

V(r) _- _ Z + B Z4/3 fo r  r ÷ o (2-65) 
r a 

The a d d i t i v e  c o n s t a n t  is the  i n t e r a c t i o n  e n e r g y  o f  an e lec t ron ,  nea r  

the  nuc leus ,  w i t h  the  m a i n  b o d y  o f  e l ec t rons .  We can use  i t  to  i m m e d i a -  

t e l y  w r i t e  d o w n  the  change  in  e n e r g y  caused  by  an i n f i n i t e s i m a l  c h a n g e  

o f  the  n u c l e a r  c h a r g e  Z to Z + 6Z. It is the  a n a l o g o u s  e l e c t r o s t a t i c  

e n e r g y  o f  t ha t  a d d i t i o n a l  charge,  w h e r e  a m i n u s  s ign  is n e e d e d  to con-  

nec t  w i t h  the  k n o w n  energy ,  w h i c h  is t ha t  of  an e lec t ron :  

= - ~ Z 4/3 6Z ( 2 - 6 6 )  6 E T F  a 

The  s i m u l t a n e o u s  i n c r e a s e  of  t he  n u m b e r  o f  e l e c t r o n s  f rom N=Z to N=Z+6Z  

has no e f f ec t  on  the  e n e r g y  s ince  ~E/~N = - ~ = o fo r  N=Z,  see Eq . (55 ) .  

C o n s e q u e n t l y ,  

= 3 B Z7/3 fo r  N = Z (2-67) 
-ETF  7 a 

Th is  is t he  TF f o r m u l a  fo r  the  t o ta l  b i n d i n g  e n e r g y  of n e u t r a l  a toms.  

The  c o n s t a n t  B is w e l l  k n o w n  n u m e r i c a l l y .  But  b e f o r e  q u o t i n g  

the  resu l t s  o f  a n u m e r i c a l  i n t e g r a t i o n  of  Eqs. (62) and (63), let  us use 

our  i ns i gh t  to  f ind  an e s t i m a t e  fo r  B. Indeed,  in v i e w  of  the  p h y s i c a l  

a p p r o x i m a t i o n s  tha t  led to the  TF mode l ,  t he re  is no need, at th is  s tage  

of  the  d e v e l o p m e n t ,  of  k n o w i n g  B b e t t e r  t han  w i t h i n  a few pe rcen t .  A 

f i r s t  c rude  e s t i m a t e  is g i v e n  by the  c o m p a r i s o n  o f  (67) w i t h  (I-51), 

the  resu l t  o b t a i n e d  in the  m o d e l  o f  Boh r  a toms w i t h  sh ie ld i ng :  
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B ~ 7a 9 3 I/3 = 9 ~ = 1.52 (2-68) 
3 14(2 ) 8 (-)2/3 

We have  no way  of  judg ing,  how accu ra te  th is  number  may  be, but  sha l l  

see la te r  tha t  it dev i a tes  by less than  5% f rom the co r rec t  va lue.  

The s t a t i o n a r y  p r o p e r t y  of  the ene rgy  f u n c t i o n a l  (45) p rov i -  

des a too l  for o b t a i n i n g  good es t ima tes  for  B. If we  e v a l u a t e  ETF(V,~)  

for  a t r i a l  p o t e n t i a l  V and ~ = o (this much  we know for  sure  when  N=Z),  
3 B Z7/3 the d e v i a t i o n  of ETF(V,~=o)  f rom -7  a w i l l  be of second  o rde r  in 

the e r ro r  of  V. As we sha l l  see in the f o l l ow ina  sect ion,  the ene rgy  

f unc t i ona l  has a m a x i m u m  for the co r rec t  po ten t ia l .  Consequen t l y ,  any 

t r i a l  V g ives  an upper  bound  for the cons tan t  B: 

B < - 7 a  Z -7/3 ETF(V, ~) , (for N = Z) , (2-69) 

w h e r e  the equa l  s ign ho lds  on ly  for ~=o and V = - (Z / r )F (x ) .  

M a x i m u m  p r o p e r t y  of  the TF p o t e n t i a l  func t iona l .  Let  us cons ide r  f i n i te  

d e v i a t i o n s  f rom the co r rec t  p o t e n t i a l  V and the co r rec t  va lue  for ~, 

d e n o t e d  by AV and A~, respec t i ve l y ,  as d i s t i n g u i s h e d  f rom the  i n f i n i t e -  

s ima l  v a r i a t i o n s  6V and 6~. W h e r e a s  A~ is qu i t e  a rb i t ra ry ,  AV is sub jec t  

to 

r AV ÷ o for  r ÷ o , 

AV + o for  r + ~ , 

(2-70) 

w h i c h  are c o n s e q u e n c e s  of  (52) and the n o r m a l i z a t i o n  V( r  ÷ ~ ) = o .  The de-  

v i a t i o n s  of the th ree  te rms  of  ETF in (45) are then  

AE I = S(d~ ) (_ I ) ( [ -2 (V+AV+ ~+A~) ]  5/2 - [ -2 (V+~) ]  5/2) , (2-71) 
15~ 2 

1 ÷ Z 2 Z 2 
AE2 = - 8--~ f(d~) ( [V(V+AV+ ~) ] - [7 (V+  ~)] ) 

and 

1 1 z 8~ S(d~)[~(Av)] 2- /(d~)~IAV)-~iv+ ~) -~ 

w h i c h  a f te r  a p a r t i a l  i n t e g r a t i o n  and the use of Eq. (48) reads 

(2-72) 
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AE2 = 8~ ;(d~) [~(AV)] 2_ S(d~)A V I 
3rL 2 

[ -2 (V+~) ]3 /2  

as we l l  as 

A (- ~N) (A~)N S ÷ A~ [-2 (V+~) ] . . . .  (dr) I 3/2 

3~ 2 

whe re  Eq. (49) has been  employed .  Acco rd ing l y ,  

(2-73) 

(2-74) 

AETF = AE I + AE 2 + A(-~N) 

= S(d~ ) (_ 3 ){[_2(V+~)_2(AV+A~)]5/2_[_2(V+~)]5/2 
15~ 2 

+ 5(AVeA~) [ -2 (V+~) ]3 /2 }  

I 
- 8--~ S (d~) [~(AV)]2 

(2-75) 

The con ten ts  of  the cu r l y  b racke ts  is of  the  s t ruc tu re  

[U+V]5/2 u5/2 5 u3/2 - - ~ v  

4 dv' (v-v') [u+v' ] I/2 
O 

> 0 , 

(2-76) 

whe re  u = -2(V+~) and v = -2 (AV+A~) .  The equa l  s ign in (76) ho lds on ly  

if v = o, or, if u+v' ~ o ove r  the who le  range of i n t e g r a t i o n  (under 

wh i ch  c i r c u m s t a n c e  the square  root  van ishes ) .  Th is  imp l ies  

AETF S o ; = o on ly  for AV = o and A~ = o (2-77) 

In words:  the TF po ten t i a l  f unc t i ona l  of  Eq.(45)  has an abso lu te  m a x i m u m  

at the co r rec t  V and ~. 

Th is  m a x i m u m  p r o p e r t y  m igh t  come as a surpr ise ,  as one na ive -  

ly expec ts  the e lec t rons  to a r range  themse lves  such that  the energy  

ach ieves  a min imum.  True, but  it is not  d i f f e ren t  e l ec t ron  d i s t r i b u t i o n s  

that  we compare;  the c o m p e t i t i o n  is among d i f f e ren t  po ten t i a l s .  In the 

same sense, in wh i ch  it is na tu ra l  for the r igh t  dens i t y  to m in im i ze  the 

energy,  i t  is common for the r igh t  po ten t i a l  to m a x i m i z e  it. Let  us i l lu -  

s t ra te  th is  po in t  by the ana logous  (and c lose l y  re la ted)  s i t ua t i on  in 

e l ec t ros ta t i c s .  
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An e lec t ros ta t i c  analogy. Cons ider  the prob lem of f ind ing the e lectro-  

stat ic  potent ia l ,  ~, to a given charge densi ty,  p, in the vacuum. 4 They 

are re la ted to each other  by the Poisson equat ion 

_ I V2 ~ = P (2-78) 
4~ 

The e lec t ros ta t i c  energy can be expressed in var ious ways: 

I 
= J' I d O l  p {  = f IdOl I {I 2 

1 + 
= [ (d~) [p~ - ~-{ (q~, )  2] (2-79) 

If we insert  the ~ that obeys (78) into any of these express ions,  they 

all g ive the same answer. Suppose, however, that we do not know the cor- 

rect { and have to resort  to us ing an approx imate  one. In this si tuat ion, 

it is adv isab le  to employ the th i rd vers ion  of (79) in ca lcu la t ing  the 

energy, because, un l ike the o ther  ones, this express ion  is s ta t ionary  

at the correct  {: 

1 (~) 2] (2-80) 

A f in i te dev ia t ion  A# from the r ight  e lec t ros ta t ic  potent ia l  resul ts in 

the second order  error in E that is g iven by 

I 
AE = - l(dr) IV(A~)I 2 < 0 (2-81) 

the energy is max imal  for the r ight  ~. The analogy to the TF funct iona l  

is, indeed, close, s ince the same term occurs also in (75). 

Here is a l i t t le app l ica t ion  of the s ta t ionary  proper ty  of 

the e lec t ros ta t i c  "potent ia l  funct ional .  "5 Instead of inser t ing %(~), 

we eva luate  the energy for ~(I~) : 

(2-82) 

For I=I, it is the correct  energy. Consequent ly ,  



4 2  

d E(1) = o for I=I 
d--~ 

which impl ies 

I 
8-{ f Ida) I~) ~ -- ; Ida) p~. I-~®) 

(2-83) 

(2-84) 

We have thus found an unusual  express ion for the e lec t ros ta t ic  energy: 

the integral  of the scalar product  of the d ipo le dens i ty  pr wi th  the 

e lectr ic  f ield - ~ .  Note, in part icular,  that there is no factor of I/2. 

Since a t rans la ted charge d is t r ibu t ion  p(r+R) has the same e lect rosta-  

tic energy, 

;(d~) p(r+R)+ ÷ +r • ( -~ (~+R) )  = f(d~)p(~)~. [-~#(~)] , (2-85) 

+ + + 

we find, af ter  subst i tu t ing r÷r-R on the left hand side, that the self  

force of any charge densi ty  vanishes: 

/(d~)p(-~#) = o (2-86) 

(The stresses, of course, do not.) 

A d i f ferent  prob lem is that of f inding the correct  charge den- 

sity on the surface, S, of a conductor  carry ing a given total  charge, Q. 

In this si tuat ion, the re levant  equat ions are 

and 

/dS' a (~') _ 

i~-~' I 
const, for ~ on S , (2-87) 

;dS a(~) = Q , (2-88) 

where a denotes the surface charge density.  Here the s ta t ionary  energy 

express ion is 

E = ~ ~/dSdS' o(r)a(r ')  + 
fir_r, I +  #o(Q-;dSa(~)) (2-89) ~ d  

The last term incorporates the constra in t  (88). In f in i tes imal  var ia t ions 

of both a and ~o imply Eqs. (87) and (88), thereby ident i fy ing ~o as 

the (constant) e lec t ros ta t ic  potent ia l  on S. This energy is a min imum 

if only a's obey ing (88) are a l lowed in the compet i t ion,  i.e., if var i -  

ous d is t r ibut ions of the same, given, amount of charge are compared. 



43 

We get  

As = 1 j 'dSdS'  Ao (~) Ao ( ~ ' )  2-90) 

whe re  Ao is the  d e v i a t i o n  f rom the op t ima l  d e n s i t y  o. S ince th is  is 

the e l e c t r o s t a t i c  ene rgy  of  some charge  d i s t r i bu t i on ,  it is, indeed, 

pos i t i ve .  

TF d e n s i t y  func t iona l .  This d i g r e s s i o n  into the rea lm of e l e c t r o s t a t i c s  

ra ises  the  q u e s t i o n  if it is poss ib l e  to w r i t e  down a f unc t i ona l  o f  the  

dens i ty ,  in add i t i on  to the po ten t i a l  f unc t i ona l  of  (45), thus ge t t i ng  

upper  bounds  on the energy,  lower  ones on the cons tan t  B. This can be 

done, indeed.  It requ i res  a p p r o p r i a t e  r e w r i t i n g  of  (45), whe reby  the 

po ten t i a l  is r ep laced  in te rms of the dens i ty .  Bo th  Eq. (51) and the 

e l e c t r o s t a t i c  r e l a t i o n  

÷ Z ] ÷ n(r ') 
V(r) = - ~ + (dr') I~-~' I ( 2 - 9 1 )  

can and mus t  be used  in th is  p rocess .  

We s ta r t  by undo ing  the s tep  f rom Eq. (43) to Eq. (44), so that  

E I is sp l i t  in to  the k i ne t i c  energy,  Eki  n, and a po ten t i a l  ene rgy  part :  

E 1 = J" ( d ~ )  

t + = ( d r )  

I [-2(V+~) ]5/2 _ ;(d~) 1 [-2 (V+~) ] I+3/2  

1 01t 2 6rc 2 

I (3T~2n) 5/3 + /(d~) (V+6)n (2-92) 
I 0T~ 2 

÷ Z ÷ Z n ÷ (dr) {; n (dr) r ) - r (dr) = Ek i  n + ; (V+ n [ + 

E 2 is r e w r i t t e n  by  f i rs t  p e r f o r m i n g  a pa r t i a l  i n teg ra t ion ,  then  m a k i n g  

use of the  Po i sson  equat ion ,  f o l l owed  by emp loy i ng  Eq. (91): 

I Z I Z) I 2 Z 
E 2 = - ~-~ ;(d~) [~(V+ 3) ] 2 = 2; (d~)  (Ve r ~ V  (V+ 3) 

I Z ~ I )n(~)n(~ ' )  
= - ~ f ( d ~ ) ( V +  ~ ) n ( r )  = - ~ f ( d ~ ) ( d ~ '  + +, 

Ir-~ I 

(2-93) 

C o m b i n i n g  the two last  ve r s i ons  in to  
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I n(~)n(~') ;(d~) (V+~) n 
E 2 = ~ f ( d ~ )  (d~') l ~ - ~ '  I 

(2-94) 

makes the potent ia l  d isappear  from the sum of E I and E 2. The resu l t ing 

TF dens i ty  funct ional  is 

E = E I + E 2 - cN 

f(d~) 1 - ( 3 ~ 2 n ) 5 / 3  - ; ( d ~ ) Z n  + ~ - i ( d ~ ) ( d ' ~ ' )  n(~)n(~') 
1 o~ ~ r [~-~ '  t 

- ~ ( N -  ;(d~)n) (2-95) 

All we know at this stage is that Eq. (95) gives the correct  va lue of 

the energy, prov ided we insert  the correct  density. To be useful  this 

funct ional  has to be s ta t ionary  about the r ight density.  Not surpr is ing-  

ly, it is: 

I Z 

- 6~ ( N  - f ( d ~ ) n )  = o 

+ ; (d~ ' )  n(~ ' )  + :] 
rr-r'  I 

(2-96) 

which uses Eqs.(51) and (91) in the combinat ion 6 

V(7) I 2 ÷ 2/3 Z + f ÷ n(r') . . . . . .  (dr) (2-97) 
~ (3~  n(r)) ~ r Ir-r' I 

and the const ra in t  (49), now reading 

f ÷ (dr) n = N (2-98) 

The success ive terms in Eq. (95) have the phys ica l  s ign i f ican-  

ce of the k inet ic  energy• the potent ia l  energy between the nucleus and 

the electrons• and the e lec t ron-e lec t ron  potent ia l  energy. The last term 

incorporates the constra in t  (98), thereby ident i fy ing ~ as the corres-  

ponding Lagrang ian mul t ip l ier .  In contrast,  the potent ia l  funct ional  of 

Eq. (45) consists of the sun% of independent  par t ic le  energies• EI-~N, 

plus the removal  of the doubly  counted e lec t ron-e lec t ron- in te rac t ion  

energy, E 2. It is important  to apprec ia te  this d i f fe rence in structure.  

Let us now check if the densi ty  funct ional  does have the ex- 

pected proper ty  of being min imal  for the correct  n and ~. 



45 

Min imum proper ty  of the TF densi ty  funct ional.  In analogy to the pre- 

vious d iscuss ion of the max imum proper ty  of the TF potent ia l  functional, 

we consider  f in i te dev iat ions An and A( from the correct  n and ~. Again, 

A( is qui te arbi trary,  whereas An is rest r ic ted by the requi rement  that 

the dens i ty  be non-negat ive,  

n + An > o for all r (2-99) 

The der iva t ion  of (95) made use of (51) so that negat ive densi t ies had 

been impl ic i t ly  excluded. 

The var ious cont r ibut ions to AE are then 

AEki n f(d~) (3~2)5/3 5/3 n5/3] , = [ (n+An) - (2-I 00) 
I 0~ 2 

and 

A(-  ; (d~)  Zn + 1 ; (d~ )  (d~' )  n ( ~ ) n ( ~ ' ) )  
r 2 

I r - r '  J 

Z n(~') 
= ;(d~)An(~) [- r + f (d~') ] 

I An (7) An(~') + ~ [ Cd~) Ida') 

= ; (d~)  (3~2)5 /3 [  - 5 2 /3 .  , 
~n An] - ( ; (d~)An 

I 0~ 2 

I An(~) An(~') 

[ r - r '  I 

which uses Eq. (97), as wel l  as 

A[-  ( ( N -  ; ( d ~ ) n ) ]  = (( + A() ; (d~)An 

Consequent ly ,  

AE = fld~) 
(3~2) 5/3 

1 0~ 2 
[ (n+An)5/3 n5/3 5_2/3• 

- - ~n AnJ 

+ ~ [ (dr) (d~ ' )  An(~)÷ +An(~') + 
l r - r ' f  

(2-101) 

(2-102) 
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+ AC [ (d~-)An (2-103) 

The first term here is pos i t ive definite, which becomes obvious when 

we wr i te  it [compare Eq. (76)] in the form 

A n  
S(d~ ) {3E2) 5/3 10 Sd~(An_v ) (n+v) 

9 10~2 0 

~o ; = O only if £n(~)=o 

-I/3 

for all 

(2-I04) 

The second term in (103) is the e lec t ros ta t ic  energy of the charge den- 

sity £n(~), thus it is also posit ive, unless An=o everywhere. The third 

term does not have a def in i te  sign. Therefore we restr ic t  the class of 

tr ial densi t ies n and tr ial  ~'s such that 

A~ S(d~)An = o (2-105) 

Then 

AE > o ; = o only for An(~)=o for all ~ ; (2-106) 

the TF dens i ty  funct ional  of Eq. (95) has an absolute min imum at the cor- 

rect density, prov ided Eq. (I05) holds. 

In general, sat is fy ing (105) wi l l  mean to cons ider  only such 

tr ia l  densi t ies that obey the constra int  (98), since then 

S(d~)An = o (2-107) 

The main except ion are neutra l  atoms, about which we know that ~=o. Con- 

sequently, tr ial  va lues for ~ need not be chosen, so that A~=o. Then 

Eq. (I05) is sat is f ied wi thout  res t r ic t ing the densi ty  accord ing to (107). 

This observat ion  wi l l  prove useful, when seeking lower bounds on the 

constant  B. 

Upper bounds on B. We pick up the story at Eq. (69). The ca lcu la t ion is 

cons iderab ly  s impl i f ied by employ ing the TF var iab les x, x o, and f(x), 

which have been int roduced in Eqs. (57) through (60). In these, the TF 

potent ia l  funct ional  appears as [f' (x) E~xf(X)] 

co co 

2 ;dx If(x)]512 I Sdx[f'(xl÷ J2+ E = - (Z7/3/a) {~ I/2 + 
0 X 0 
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+ q !!-q)_ } 
Xo 

(2-108) 

where ,  r e p l a c i n g  V and ~, it is now f(x) and x o tha t  have  to be found. 7 

Whereas  a r b i t r a r y  v a r i a t i o n s  of  x o may  be cons ide red ,  f(x) is sub jec t  

to  

f(o) = 1 (2-I 09) 

and 

f' (x) = - -~- for  x ÷~ (2-110) 
x o 

The  f i rs t  of t hese  is Eq. (52), the second  comes f rom the  i n c l u s i o n  of  

~, in Eq. (57), in to  the  d e f i n i t i o n  of  f(x). In (108) it is needed  to 

ensu re  the  f i n i t eness  of  the  second  in tegra l .  Note,  in pa r t i cu la r ,  tha t  

the  t r i a l  f unc t i ons  do not  have  to obey  

f(x o) = o , -Xof' (Xo) = q (2-111) 

[see(60) ] .  This,  and the  d i f f e r e n t i a l  e q u a t i o n  

f" (x) [ f (x ) ]3 /2  
= I/2 

X 

(2-112) 

[see (59)]  are i m p l i c a t i o n s  of  the s t a t i o n a r y  p r o p e r t y  of  (108). Here  

is how it works :  i n f i n i t e s i m a l  v a r i a t i o n s  of  f(x) cause  a change  in E, 

o = 6 [ - ( a /Z7 /3 )E ]  

co co 8fix){E fIX)f312 £ 
I / 2  - f "  Ix) } + ;dx {6f(x) [f '  ( x )+  1 } 

0 X 0 

3/2 oo 

[f (x) ] 
= ;dx 5f(x)  { i/2 

o x 

(2-113) 

- f "  (x) } 

w h e r e  the  f i r s t  e q u a l i t y  is the s t a t i o n a r y  p r o p e r t y  and the last  one  

uses (109) and (110) in f i nd ing  the nu l l  v a l u e  of  the i n t e g r a t e d  to ta l  

d i f f e r e n t i a l .  Thus (112) is imp l ied .  We comb ine  it w i t h  (110) to con-  

c lude  tha t  beyond  a c e r t a i n  (yet unspec i f i ed )  ~, f(x) is n e g a t i v e  and 

l inear :  

X--X 
f(x) = q - for  x >_- ~ (2-114) 

Xo 
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Next,  we cons ide r  v a r i a t i o n s  of  x o. They  p roduce  

o = 8 [ - (a /Z7 /3 )E ]  

co  

o 

, ( 2 - 1 1 5 )  

imp l y i ng  the  v a n i s h i n g  of  the con ten ts  of the cu r l y  b racke ts .  In v i ew  

of  (114), the i n t e g r a t i o n  s tops  at x: 

o = fdx[f '  (x)+ ~q] + (l-q) 
o x° 

= f(~) - f(o) + q~-~ + I -  q = q (~-~ -I) 

(2-116) 

the last  s tep  makes  use of  (109) and (114). Now we see tha t  x=x  o, so 

that  (114) becomes  (61) and imp l ies  (111). 

Let us now tu rn  to neu t ra l  atoms, q=o. The m a x i m u m  p r o p e r t y  

of the f unc t i ona l  (108), comb ined  w i t h  the known  form of  the neu t ra l  a tom 

b i n d i n g  ene rgy  , Eq. (67), reads 

co  co  

3 2 fdx [ f (x) ]5 /2 I fdx[f '  (X)] 2 
7B--<~ I/2 +3 

o x o 

, ( 2 - 1 1 7 )  

w h e r e  the equa l  s ign  ho lds  on l y  for  f (x )=F(x ) .  No te  tha t  x o d i s a p p e a r e d  

t o g e t h e r  w i t h  q, so that  we do not  need to use e x p l i c i t l y  our  k n o w l e d g e  

of  Xo=~  for q=o. A c c o r d i n g  to (109) and (110), the c o m p e t i t i o n  in (117) 

is among  t r i a l  f unc t ions  tha t  are sub jec t  to 

f(o) = I , f' (x ÷ ~) = o. (2-118) 

For  any t r ia l  f(x), we can a lways  change  the  scale,  

f(x) ÷ f(~x) , (~>o) , (2-119) 

and o b t a i n  a n o t h e r  t r ia l  func t ion .  The op t ima l  cho ice  for ~ m in im i zes  

t h e  r i g h t  h a n d  s i d e  o f  

3 B < 2 fdx [ f ~ x ) ] 5 / 2  I 
7 = g 1/2 + y ;dx[ f(~x) l  2 : 

0 x 0 



40 

It is g iven by 

3 / 2  

-I/2 2 Sd x [f(x)] 5/2 
5 112 

o x 

oo  

I Sd x[f, (x)]2 + ~ g  

o 

= 5 0  2 - dx[f' (x)] 2 

(2-120) 

(2-121) 

We insert  it into (210) and arr ive at the scale invar iant  vers ion  of 

(117): 

7 fax [f (x)15/212/3  ;dx[f '  (x) l ~ (2-122) 

o x I/2 ] o 

where now the equal sign holds for f(x)=F(~x) wi th  arb i t rary  ~>o. 

We are now ready to invent t r ia l  funct ions and produce upper 

bounds on B. Before doing so, let us make a l i t t le observat ion.  If f 

equals F, the opt imal  ~ in (120) is unity, since the equal sign in (117) 

holds only for f(x)=F(x).  Consequent ly ,  the numerator  and denominator  

in (121) are equal for f=F. In this s i tuat ion the re la ted sum in (117) 

is (3/7)B. We conc lude 

and 

2 Sd x [F(x)]5/2 _ 2 

o x I/2 - 

co  

I fdx[F' (x)]2 = "~ B I  

o 

B , (2-123) 

(2-124) 

An independent  (and rather  clumsy) der iva t ion  of these equat ions uses 

the d i f fe rent ia l  equat ion obeyed by F(x) [Eq.(62)], combined wi th  some 

par t ia l  integrat ions.  Equat ions (123) and (124) can be employed for an 

immediate check of the equal i ty  in (122) for f(x)=F(~x) : 

7 I/2 2 2/3 2 1/3 
B = ~ (~- 7 B) (~ 7 B) (2-125) 

More about re la t ions l ike (123) and (124) wi l l  be said in the sect ion 

on the scal ing proper t ies  of the TF model. 

A very  s imple t r ia l  funct ion is 

I 
f(x) = i;x " (2-126) 
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for  w h i c h  

oo  co  

of :-8 2 dx [ f (x) ]5 /2 = 2 fdx x - I / 2 ( 1 + x ) - 5 / 2  15 
x i /2  5 o 

(2-127) 

I 4 [the in tegra l ,  in te rms of Eu le r ' s  Be ta  func t ion ,  is B(~,2}  = ~], and j- 

co  co  

;dx[f '  (x)] 2 = f dx I = - -  

o o (1+x) 4 3 
(2-128) 

Acco rd ing l y ,  

B < ~ 5 -2/3 = 1.596 

A be t t e r  va lue  is ob ta i ned  for 
r 

(x) = (~]__)4/3 , f 
I ~ X  

(2-129) 

(2-130) 

when  

B < 2 -19 /9  (--737--)I/3 [~ (21 :] 2/3 [(1) :]-4/3 
= 1.5909 (2-131) 

Th is  numbe r  is, as we sha l l  see, ve ry  c lose  to the ac tua l  one; so the re  

is no po in t  in c o n s i d e r i n g  mo re  c o m p l i c a t e d  t r ia l  func t ions .  

Lower  bounds  on B. In o rde r  to express  the d e n s i t y  f unc t i ona l  of Eq. (95) 

in te rms  of TF va r iab les ,  we w r i t e  

I V2 (V+ Z n(~) = - ~ - ~  ~)  

I I d 2 Z 
[r(V+ ~)] 

4~ r dr  2 

I I d 2 
- -  ( z f ( x ) )  

4~ r dr  2 
(2-132) 

I Z 2 f" (x) 
= 

4n a 3 x ' 

or, more  c o n v e n i e n t l y  here,  
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I Z 2 g' (x) (2-133) n 
a 

The func t i on  g(x),  thus in t roduced ,  d i f f e rs  f rom f' (x), at most,  by a 

cons tan t .  We choose  th is  cons tan t  to be q /x  o, 

g(x) = f' (x) + -q- , (2-134) 
x o 

w h i c h  in v i e w  of 1110) is equ i va l en t  to r equ i r i ng  

g(x  ÷~) = o (2-135) 

Wi th  (133) and (135) we have for the i n t e r a c t i o n  energy  bet -  

ween  the nuc leus  and the e lec t rons  

Z7/3 ~ Z7/3 
- / (d~) ~ r n a Idx g' (x) = a g(o) , (2-136) 

o 

w h e r e a s  the  e l e c t r o n - e l e c t r o n  energy  is 

I f(d~) (d~') n (~)n(~ ' )  _ z 7/3 I fdx[g ix) ]  2 
÷ ÷, a 2 I r-r I o 

(2-137) 

[This q u a n t i t y  equa ls  -E2, so tha t  Eq. (134), used in the second i n teg ra l  

of  (108), g ives  th is  resu l t . ]  The r e m a i n i n g  c o n t r i b u t i o n s  to the dens i -  

ty f unc t i ona l  can be exp ressed  in te rms of g(x) immed ia te l y .  We a r r i ve  

at 

Z7/3{ 3 ;dx x I/3 5/3 I ;dx [g(x) ]  2 
E - a 5 [g' (x)] + g(o) + 

o o 

co  

- --q-It-q- fdx x g' (x)]} 
xo o 

(2-138) 

Aga in  a r b i t r a r y  v a r i a t i o n s  of  x o may  be cons ide red ,  whe reas  g is res t r i c -  

ted by the r e q u i r e m e n t  of  n o n - n e g a t i v e  dens i t i es ,  

g' (x) > o , (2-139) 

and by  Eq. (135). Toge ther ,  they  imp ly  
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g(x)< o (2-140) 

Accord ing  to the d iscuss ion of Eq.(103), Eq.(138) suppl ies 

upper bounds on the energy, prov ided that Eq. (I05) is obeyed. Expressed 

in terms of x o and g, it reads 

A ( ~ )  fdx x ~g' (x) = o (2-141) 
" 'O  o 

We did not ice a l ready [see the remark fo l lowing Eq.(107)] ,  that in the 

atoms, our knowledge of Xo=~ results in ~ ( ~ ) = o ,  s i tuat ion of neutra l  

so that (141) is sat is f ied wi thout  fur ther ado. In part icular,  g~x) 

need not be subject  to 

; dx x ~g' (x) = o , (2-142) 
o 

or [this is Eq. (98)], more precisely, 

oo 

fdx x g' (x) = 1-q ; = I for q=o 
o 

(2-143) 

The min imum proper ty  of the funct ional  (138), together wi th  

the known form of the neutra l  atom (q=o) b ind ing energy, Eq.(67), im- 

pl ies 

3 3 ;dx x I/3 5/3 I 2} , B ~ - {~ [g' (X)] + g(o) + ~ fdx[g(x)] (2-144) 
o o 

where the equal sign holds only for g(x) = F' (x). For this g(x), the 
3 I 

value of the two integrals is ~B and ~B, respect ively,  as fol lows from 

Eqs. (123) and (124), and the d i f ferent ia l  equat ion (62) obeyed by F(x). 

Consequent ly ,  

F' (o) = -B , (2-145) 

which is noth ing more than the or ig ina l  def in i t ion of B in (64). 

As in the preced ing section, we can consider  changes of the 

scale. Here the poss ib le  scal ings are even more general,  

g(X) ÷ ~ig(~2 x) , (~i,~2 > o) , (2-146) 
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because there is no analog to the restr ic t ion f(o)=1, that we had to 

watch before. The opt imal  choices for ~I and ~2 maximize the r ight hand 

side of 

o o  

3 {3 ;dx x I/3 d 5/3 
7 B > - 5 [~Id--x g (#2 x) ] 

o 
I ;dx[#ig(#2x) ] 2 } + #Ig(o) + 

0 

o o  

5/3 I/3 3 [dx x ~/3 5/3 
t~1 ~2 ~ [g' (x)] + ~ig(o) 

o 

2 
c o  

~I I ;dx[g(x)] 2} + - -  

~ 2 ~ o  

(2-147) 

They are 

and 

~1 = 

co  

(1) 413 [-g [o) ] 4/3 I ;dx[g(x) ] 2)-I/3 oo (y 
~-fdx I / 3  [g, ix) ] 5/3 o 

o 

c o  

~2 (1)4/3 [-g(o) ] 4/3 I ;dx[g(x) ] 2)2/3 
= ~ I~ 

1;d x x l /3 [g ,  (x)15/3 o 
0 

2-148) 

2-149) 

Inserted into (147) they produce the scale invar iant vers ion of 144): 

B > (1) 4/3 . [-g(o)]7/3 
= , (2-150_) co  eo 

(l/dx x l /3[g ' (x) ]5/3)( l [dx[g(x )]2)I/3 

o o 

where the equal sign holds only for g(x)=~iF' (~2x) wi th arbi t rary 

~i,~2>o. Indeed, for such a g(x), we get 

B = (1) 4/3 [~I B]7/3 
. . . . .  (2-151) 

.513 113 1B)(~I 2 1B)113 
(IJ,~ I I~ 2 ,u, 2 

The main contr ibut ion to the energy of an atom comes from the 

v ic in i ty  of the nucleus. Now, Eqs. (62) and (63) imply, 
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F" (x) -'- ~ x  for  x ÷ o 

C o n s e q u e n t l y ,  a good t r i a l  g(x) has to be such tha t  

1 

An examp le  is 

( 2 - 1 5 2 )  

for  x ÷ o (2-153) 

g(x) = -  (1+/x) -~  , ~>o (2-154) 

It tu rns  out, that  the r igh t  hand s ide of  (150) i nc reases  w i t h  ~, so 

that  we may  i m m e d i a t e l y  c o n s i d e r  the l im i t  ~÷~. The sca l i ng  i n v a r i a n c e  

he lps  in th is  l imi t ,  s ince  it a l lows to eva lua te  g ( x /~  2) for ~÷~, in- 

s tead  of  g(x) for ~+~. The l i m i t i n g  t r i a l  f unc t i on  is a s imp le  exponen -  

t ia l :  

g(x) = l im [ - (1+  I -a  - / x  K/~) ] -- - e (2-155) 
[Z÷oo 

For  th is  g(x), we have  in (I 50) 

[-(-i)] 7/3 25 (.~) 4/3 --y 
(~5 2"2/3) (1) I/3 = 

B > (1) 4/3 

(2-156) 

= 1.5682 

B i n d i n g  ene rgy  of  neu t ra l  TF atoms. We have found an upper  bound  on B 

in (131) and a lower  one in (156). Now we comb ine  the two and s ta te  

1.5682 < B < 1 .5909 , (2-157) 

or  

B = 1.580 -+ 0.012 ( 2 - 1 5 8 )  

The m a r g i n  in (158) is about  1.5% of the ave rage  va lue,  so that  we 

know B w i t h  a p r e c i s i o n  of  0.75%. P lease  a p p r e c i a t e  how l i t t l e  numer i -  

ca l  e f fo r t  was  needed  in o b t a i n i n g  th is  resul t .  In v i ew  of  the c rude  

phys i ca l  p i c t u r e  that  we are s t i l l  us ing,  the va lue  for B in (158) is 

e n t i r e l y  su f f i c ien t .  A h i g h e r  p r e c i s i o n  is not  ca l l ed  for  at th is  s tage  
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of the development .  

Inser ted into (67), this B va lue produces 

-ETF = 0.765 Z 7/3 , (2-159) 

which is the TF pred ic t ion  for the total  b ind ing energy of neutra l  

8 
I I I I 1 

6 

.,.+ 

/ 

÷ 

÷ 

TF 

I-IF 

O L  i J j J _I 

0 25 50 75 100 125 

Z 

Fig. 2-2. Compar~on of the TF prediction (160) with HF binding £n~gi~ (crosses). 
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atoms. In Fig.2 the quant i ty  

-ETF = 1.53 Z I/3 (2-160) 
1 2 yz 

is compared to the cor respond ing  HF pred ic t ions 8 for in teger  values 

of Z. This plot  shows that (160) does reproduce the genera l  t rend of the 

atomic b ind ing energies. A l tough the need for re f inements  is clear, it 

is never the less  remarkab le  how wel l  the TF model  works desp i te  the 

crudeness of the phys ica l  approx imat ion  that it represents.  In Fig.2 

the cont inuous TF curve is c loser  to the integer-Z HF crosses at smal l  

Z va lues than at large ones. This is, however, a decept ion  s ince it is 

the f ract ional  d i f fe rence that counts. The amount of this re la t ive de- 

v ia t ion  is 29, 24, 21, 17, 15, and 13 percent  for Z=I0, 20, 30, 60, 90, 

and 120, respect ive ly .  It decreases wi th  increas ing Z. 

Why do we compare wi th  HF predict ions,  and not w i th  exper imen-  

tal b ind ing energies? The reasons are the ones ment ioned in the Intro- 

duct ion. Total  b ind ing energies are known exper imenta l l y  only up to 

Z~20 (in Fig. 2 they are ind is t ingu ishab le  from the HF crosses).  Even if 

they were ava i lab le  for large va lues of Z, the TF resul t  should st i l l  

be measured  against  d i f fe rent  pred ic t ions  based upon, e.g., the many- 

par t ic le  Hami l ton  operator  of (I-7) ; this way we are sure to not be 

mis led by re la t iv is t ic  effects, which are the more s ign i f icant  the lar- 

ger Z. 

TF funct ion F(x). We have learned a lot about the in i t ia l  s lope B of 

the TF function. Natural ly ,  there is much more to say about F(x). We 

shal l  do so in this section. 

Let us proceed from reca l l ing  the def in ing  proper t ies  of Eqs. 

(62) and (63). F(x) obeys the d i f fe ren t ia l  equat ion  

d 2 [F(x) ] 3/2 
dx 2 F(x) = F" (x) I/2 

x 

and the boundary  condi t ions 

(2-161) 

F(o) = I , F(~) = o (2-162) 

Upon us ing /x as the main  var iable,  the d i f fe ren t ia l  equat ion (161) 

appears as 
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d 
F(x) = 2/x  F' ix) , 

d F' (x) : 2 [F(x) ]  3"2 / 
d6x 

(2-163) 

Whereas  (161) is s i ngu la r  at x=o , th is  sys tem of d i f f e r e n t i a l  equa t i ons  

is we l l  behaved  at /x=o . We conc lude  tha t  a round  x=o , F(x) can be ex- 

panded  in powers  of  /x : 

F (x) = ~ s k x k/2 , 
k=o 

wh ich  has become known  as Baker ' s  ser ies  9 The compa r i son  w i th  

F(x) = I - Bx + 0(x 3/2) 

(2-164) 

(2-165) 

[this is Eq. (64)] shows 

s O = I , s I = o , s 2 = -B (2-166) 

For  the s u c c e s s i v e  c a l c u l a t i o n  of  the Sk'S for k>2, we need a r ecu r rence  

re la t ion .  We ga in  it by i nse r t i ng  (164) in to the d i f f e r e n t i a l  equa t i on  

(161). The lef t  hand  s ide is s imple:  

k k - ) x k-2-2/ 
F"(x) = ~ s k ~ ( ~  I 

k=o 

3 - I /2 ~ (/- I) /2 (£+I) (£+3)s/+3 = ~ s3 x + x 
Z=I 4 

(2-167) 

where  s1=o has been  used, and the summat i on  index sh i f t ed  (k=/+3). The 

r igh t  hand  s ide of Eq. (161) is n o n l i n e a r  in F(x) ,  so tha t  the power  se- 

r ies  becomes  more  comp l i ca ted .  We have  

[F (x) ] 3 /2 /x1 /2  = x- I /211 + ~ s k xk/2] 3/2 

k=2 

3/2 ~ xk/2) j = x-I/211 + ~ (  j ) (7k=2 sk ] 
(2-168) 

r 
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where  the b inomia l  t heo rem is employed.  Next ,  we make the j - th power  

of the sum over  k exp l i c i t  by w r i t i n g  it as the p roduc t  of j sums over  

k I , k 2 , . . . .  kj ; then the K ronecke r  De l ta  symbol  , 

1 for k = 1 

81 ,k  = o for k ~ I ' 

is used to co l l ec t  al l  te rms of o rder  x - I /2 x 1/2 x (/-I)/2 = 

(2-169) 

[F (x ) ]3 /2 /x1 /2  = x - I 1 2 1 1 + ~ ( 3 < 2 ) ~ - ~  ~- - - . .  ~"  ... 
j=1 ~ k i=2 k2=2 "kj=2 Skl Sk2 

×..Sk. x(k1+k2+' ' '+kj )/2] 
3 

= x I/2 + 
x s, 

J k1=2" ' ' k ,=2  Ski ' '  3 
J 

× 6 / , k1+k2+ . . . +k j  

(2-170) 

S ince each k is at least  two, we have 

> 2j > 2 (2-171) 1 = k I + k 2 + ... + kj = = , 

so that  the summat ion  over  1 s tar ts  rea l l y  at /=2 , and the la rges t  j 

does not  exceed  1/2 : j ~ [//2] , wh i ch  makes use of the Gauss ian  no ta-  

t ion  for the la rges t  in teger  con ta i ned  in 1/2. The i nd i v idua l  k -summa-  

t ions stop, at the latest ,  at / -2( j - I )  , s ince,  again,  the o ther  k's, 

wh i ch  are j-1 in number ,  are not less than two each. Acco rd ing l y ,  

[F (x ) ]3 /2 /x1 /2  = x- I /2  

/=2 j=l 3 k I =2 

× ' ' ' /k  =2 Sk1 " ' 'Sk j 6 / , k1+ . . . +k .  
3 3 

(2-172) 

Th is  must  equal  (167), imp ly ing  
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and 

s 3 = 4/3 s 4 = o , (2-173) 

sl+ 3 = 

[//2] ~ / -2 j+2  
(/+1) (l+3) ~ - - ( 3 / 2 )  ..> . 

j=1 3 k1= 2 k.=2 Ski "SkjS/ 'k l  + ' '+k" 
3 3 

for £ = 2,3, .... 
(2-174) 

The s k w i t h  the la rges t  index  occurs  on the r igh t  hand s ide for j=1; 

it is s 1. Thus s/+ 3 is here  exp ressed  in te rms of Sk'S w i th  k~/, so 

that  th is is a r ecu r rence  re la t ion ,  indeed. For i l l us t ra t ion ,  cons i -  

der  /=2,3 ,4 ,  and 5. There  is on ly  the j=1 te rm for /=2 and /=3: 

4 3 / 2  4 3 ( _ B )  = 2 
s5 = ]-5( I )s2 - 1 5 2  - ~ B  

If3/2% 1 3 4  I 
s6 = 6' I 's3 = 6 2 3  - 3 

(2-175) 

For  /=4 and /=5 , there  are bo th  the j=1 and the j=2 con t r i bu t ion :  

4 3/2, 3/2 2] = 4 3  3(-B) 2] ~0  , (2-176) s7 = ~ [ (  I ;s4 + ( 2 )s2 ~ [ ~ 0  + ~ = B 2 

I 3/2, 3/2 
s8 = ~ [ (  I Js5 +( 2 ) (s2s3+s3s2)]  

= I--21 [3(_ 2B)+  3~2 (-B) 4] = - ~5  B 

It is not  d i f f i cu l t  (only bor ing)  to compute  more  Sk'S. Let us be con- 

tent  w i th  wha t  we have so far: 

4 3z2 2 5/2 1 3+ B2x712 F(X) = I - Bx + ~ x - ~ X  + ~x BX 4 

+ 0 (x 9/2) 
(2-177) 

The B d e p e n d e n c e  of  the coe f f i c i en t s  and the i r  c o m p l i c a t e d  r e c u r r e n c e  

re la t i on  (174) p roh ib i t  ask ing  for the range  of c o n v e r g e n c e  of the ex- 

pans ion  (164). We can, however ,  tes t  the qua l i t y  of the a p p r o x i m a t i o n  

to F(x) o b t a i n e d  by t e r m i n a t i n g  the summat ion  at, say, k=8. Th is  is 

done by i n s e r t i n g  the t r unca ted  ser ies  in to the d i f f e r e n t i a l  equa t i on  
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obeyed by F(x), and compar ing both sides: 

~ k ( k - 2 ) S k x ( k - 4 ) / 2  ~ 3/2/xi /2 
k= 3 4 ~ [ = skxk/2] (2-178) 

For B=1.580 , our est imate in (158), the compar ison is made in Table I. 

It shows us, that this approx imat ion  to F(x) solves the d i f fe rent ia l  

i~  < ; 
equat ion wi th  an accuracy of I% for /x ~ 0.4 ; of % for /x 0.25 

of i~0  % for /x ~ 0.20 . This k ind of analysis can be repeated for sums 

t runcated at a va lue of k much larger. One observes that a h igh ly  accu- 

rate so lut ion to the d i f fe ren t ia l  equat ion (161) is g iven by these sums 

for ~ < 0.4 only. This is, therefore,  the (numerical) range of conver-  

gence of the ser ies in Eq. (164); as a consequence, this expans ion in 

powers of /x is u t ter ly  useless. I0 

Table 2-I. Left hand side (LHS) and right hand side (RHS) of 

Eq. (178), and their  re lat ive dev ia t ion (DEV) for /x = 0.05, 

..., 0.50 . For B the value of Eq. (158) is used. 

/x LHS RHS DEV 

0.05 19.8866012 

0.10 9.783683 

0.15 6.35805 

0.20 4.60944 

0.25 3.5373 

0.30 2.8071 

0.35 2.275 

0.40 1.867 

0.45 1.542 

0.50 1.27 

19 8866017 

9 7 8 3 6 9 8  

6 35816 

4 60991 

3 5387 

2 8106 

2 282 

I 882 

1 568 

1 32 

2.3 × 10 -8 

1.5 x 10 -6 

1.7 × 10 -5 

1.0 x 10 -4 

4.0 x 10 -4 

1.2 x 10 -3 

3.3 x 10 -3 

7.8 × 10 -3 

1.7 × 10 -2 

3.4 x 10 -2 

For a prec ise knowledge of F(x), we cannot  rely upon (164) be- 

cause of its small  range of convergence. The d i f fe rent ia l  equat ion (161) 

i tsel f  has to be in tegrated numerical ly .  It is not adv isable to at tempt 

doing this by s tar t ing f rom x=o wi th  F(o)=1 and F' (o)=-B , us ing 

a sui table guess for B [as in Eq. (158)]. If the chosen value for B is 

too large, the numer ica l  F(X) wi l l  turn negat ive eventual ly ;  if B is 

too small, it wi l l  start  growing instead of decreas ing steadi ly. One 

could imagine p inn ing down the correct  value of B by an i terat ion ba- 

sed on this d is t inc t ion  between tr ial  B's that are too large or too 
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smal l .  Th is  is not  go ing  to work ,  u n f o r t u n a t e l y ,  because  r o u n d i n g - o f f  

e r ro rs  cause  a w r o n g  l a r g e - x  b e h a v i o u r  of the n u m e r i c a l  F(x) ,  even  if 

one w o u l d  s ta r t  w i t h  the co r rec t  va lue  of B. Th is  d i f f i c u l t y  can be 

c i r c u m v e n t e d ,  however ,  by i n t e g r a t i n g  inwards  f rom x=~  t owa rds  x=o in- 

s tead  of  ou twards .  Let  us, t he re fo re ,  tu rn  our  a t t e n t i o n  to the l a rge -x  

p r o p e r t i e s  of F(x) .  

We s ta r t  by no t i ng  tha t  144 /x  3 is a p a r t i c u l a r  so l u t i on  of  the 

d i f f e r e n t i a l  e q u a t i o n  (161)! I Of the two b o u n d a r y  c o n d i t i o n s  in (162) 

it sa t i s f i e s  the one at x =~, w h e r e a s  it is i n f i n i t e  at x=o. It is c lear ,  

tha t  F(x) a p p r o a c h e s  144/x  3 for x÷~ f rom "below":  

F (x) ~ 1 44 x3 for  x ÷ ~ (2-179) 

Th is  i nv i t es  the ansa tz  

F(x) - 144 G(y(x) )  (2-180) 
x 3 

w i t h  

y(x) ÷ o for  x ÷ ~ (2-I 81) 

and 

G(y) = 1 for  y = o (2-182) 

The  bes t  cho i ce  for the f unc t i on  y(x) mus t  be found f rom i n s e r t i n g  (180) 

in to the d i f f e r e n t i a l  e q u a t i o n  o b e y e d  by F(x) ,  Eq. (161). This  leads to 

I [xy' (x) ] 2G" 1 ~ [ x 2 y  " I--2 (y(x)) + (x) - 6xy' (x)]G' (y (x) ) +C- (y (x) ) 

= [G(y(x))] 3/2 , (2-183) 

w h i c h  takes  on a sca le  i n v a r i a n t  fo rm if we choose  xy' (x) to be p ro-  

p o r t i o n a l  to y(x) :  

xy' (x) = - yy(x) (2-184) 

The o p t i m a l  v a l u e  for y>o has to be de te rm ined .  E q u a t i o n  (184) and i ts 

i m m e d i a t e  c o n s e q u e n c e  

x2y" (x )  = (X d - I )  xy' (x) = ¥ (¥+ l )y (x )  , (2-185) 
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used in (183), produce 

¥2 Y2G"(Y) + y(¥+7) I--2 12 yG'  (y) + G(y) = [G(y)] 3/2 (2-186) 

The a forement ioned scale invar iance is obvious here: wi th G(y) also 

G(~y) is a so lut ion to (186), for arb i t rary  ~. A unique value for y is 

now impl ied by the requi rement  that G(y) be regular  at y=o, 

G(y) = I - y + 0(y 2) for y ÷ o (2-187) 

Note that because of the scale invar iance of (186), the coef f i c ien t  in 

front of the term l inear in y can be chosen to be minus one [it has to 

be negat ive to not be in conf l ic t  w i th  Eq. (179)]. Wi th  (187), Eq. (186) 

reads 

I - [I+ ~(¥+7)1y + 0(y 2) = I - ~ y + 0(y 2) , (2-188) 

whence 

y(y+7) = 6 , (2-189) 

or, 
1 

y = ~(-7+ 7 ~ )  = 0.77200...  (2-I 90) 

The second solut ion to (189) is -(y+7) = -7.772.. .  and of no use to us 

in the present  context.  

The d i f fe rent ia l  equat ion (186) is s impl i f ied a l i t t le bi t  by 

mak ing use of (189): 

¥--~2 y2G"(y) + l y G '  (y) + G(y) = [G(y)] 3/2 
12 

(2-191) 

G(y) is thereby subject  to (187), wh ich  determines the solut ion to (191) 

entirely. This does not mean that we know F(x) af ter  f ind ing G(y), sin- 

ce the impl icat ion of Eq.(184) 

y(x) = 8 x -¥ (2-192) 

contains an undetermined constant,  B. Its va lue is f ixed by the requi re-  

ment  F(x=o)=1. This is, of course, analogous to the prev ious s i tuat ion 

when F' (o)=-B was determined by F(x÷~)=o. 

Since G(y) is, by construct ion,  regular  at y=o, we can expand 

it in powers of  y:12 



63 

G (y) = ~ Ck yk 
k=o 

(2-193) 

where 

c o I , c I -I (2-194) 

The steps that led us to (174) can be repeated here for (191) 

and (193) wi th  the appropr ia te  changes. Compar ing powers of yl on both 

s ides of Eq. (191) gives 

y2 1 
[-~- / ( / - 1 )  + ~ l + 1 ]c£  

Z-j+1 Z-j+I 
= 13(2) 7 - - -  . . . .  > 

j=1 3 k I =I kj =I 
.. c 5 

Ck I " kj l ,k l+k2+. . .+k j  

(2-195) 

3 
for £~I. The j=1 term equals ~c I and has to be brought  over to the left 

hand side. We then arr ive at the recurrence re lat ion 

cl = 12 ~ ( 3 ( 2 ) ~ - ~ + 1 . . . 2 C k . . . C k j  6 l ' k 1 + ' ~  .+kj 
(y2Z+6) (£-I) j=2 3 k1= I k.=1 1 " ' 

3 

(2-196) 

for Z = 2, 3, ... 

For example, 

c 2 
= i__3_21312)c 9 201+21  

2y2+ 6 4y2+12 608 

c 3 - 

= 0.625697 . . . .  

13/2 3/2, 3 } 
12 {' 2 ) (CLC2+C2CI)+( 3 ;Cl 

(3y2+6) 2 

3 - ¥ 2 / 8  15377+1813 7 ~  
= - -  

(y2+2) (y2+3) 98496 

(2-197) 

= -0.313386.. .  

AS we did before, in Eq. (178) and Table 1, we can again insert t runca- 
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ted vers ions of (193) into the d i f ferent ia l  equat ion (191) in order to 

f ind the numer ica l  range of convergence of this series. The outcome is: 

the expansion (193) represents a h ighly accurate solut ion to (191) for 

y~1 , or, x ~  I/Y Ant ic ipat ing  that the actual  value of ~ is about 13, 

is x~30) 3 Does this mean that the expansion (193) is as useless as this 

the one of Eq. (164)? 

No. The power series of G(y), for some o<y<1, is needed to get 

away from x=~, i.e., y=o, when in tegrat ing the d i f ferent ia l  equat ion for 

F(x), Eq. (161), inwards. Here is a br ief  descr ip t ion of the essent ia l  

ingredients of a computer  program calcu la t ing F(x) for the whole range 

of x, o~x<~ : (i) f ind G(y) and G' (y) for a sui tably chosen y1(~0.3 is 

a good choice) by employing (193), t runcated at a suf f ic ient ly  large k 

(depends on the chosen Yl and the accuracy of the machine);  (ii) inte- 

grate numer ica l ly  the d i f ferent ia l  equat ion (191) up to a certain Y2 

(~5 is a good choice), so that we now know G(Y2) and G'(Y2) wi th in the 

accuracy of the computer (the standard Runge-Kut ta scheme is wel l  sui- 

ted for the numer ica l  integrat ion);  (iii) choose a tr ial  value, ~(~13), 

for ~, and use Eqs. (192) and (180) to find x2=( ~-/y2 ~ ) I/y together wi th 

~(~2 ) and ~' ~ (x2); (iv) now integrate the d i f ferent ia l  equat ion for F(x), 

in the form (163) wi th /x as the relevant argument• down to x=o. At 

this stage• we have a solut ion to (161), the one cor responding to ~=~. 

This ~(x) obeys ~(x=~)=o , but not ~(x=o)=1 •. Fortunately•  one does not 

have to vary ~ unt i l  ~(x=o)=1 in order to f ind F(x). Instead, • the ob- 

servat ion that, if ~ ( x ) o b e y s  (161), so does ~3~(~x) for arb i t rary  ~>o, 

enables us to s imply rescale ~(x). The last step in the procedure is 

therefore: (v) set 

F(x) = ~(x)/~(o) , (2-198) 

where 
= x / [~ (o )  ] I /3 (2-199) 

Accordingly,  we have B given by 

B = - F '  (o) = - F '  ( o ) / [ ~ ( o ) ] 4 / 3  (2-200) 

and• as a consequence of 

Y2 ~ x2Y ~ %-Y = = x 2 , (2-201) 

B is re lated to ~ through 



65 

[3 = 13(x2/~:2 )Y = ~ [ F ( o )  1 x / 3  (2 -202 )  

The sens i t iv i ty  of the numer ica l  resul ts for B, ~, and F(x), to the 

round ing-o f f  errors of the computer  can be tested by vary ing  the para- 

meters YI' Y2' and ~. Ideal ly,  the outcome should be independent  of 

them, numer ica l l y  it is not. The l i t t le dependence that  one observes 

shows how many decimals of the resul ts  can be trusted. For example, 

the rea l i za t ion  of the procedure just descr ibed gave 

B = 1.58807102261 (2-203) 

and 

= 13.270973848 (2-204) 

on a computer  wi th  a 15-decimal  ar i thmet ic!  4 

we give a plot  of F(x) for o~x~10. 

1 , 0  I | I I 

f 1  - B x  

For i l lust rat ion,  in Fig.3 

0.8 

A 

X 

u_ 0./-. 

0.2 

0 I I I I 

0 2 /-. 6 8 10 
X 

Fig .2-3 .  The TF f u n c t i o n  F(x). 

Now that we know the actual  va lue of B, let us look back at 

the bounds that  we found earl ier,  Eq. (157). The upper  bound is extreme- 
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ly good: it is too large by less than 0.18%. On the other  hand, the 

lower bound is s ign i f icant ly  worse: it is too small  by 1.25%. This is 

a f i rst  sign of the super ior i ty  of the potent ia l  funct iona l  over  the 

densi ty  funct ional .  

Wi th  (203) we can give more s ign i f icant  dec imals  in the TF 

b inding energy formula. Inser t ing  B into Eq. (67) gives 

- ETF = 0.768745 Z 7/3 (2-205) 

There is no point  in d isp lay ing  more than six decimals.  

Scal ing proper t ies  of the TF model. In step (v) of our "computer pro- 

gram" for F(x) we made, in Eqs. (198) and (199), use of the invar iance 

of the TF equat ion for f(x), 

f"(x) [f(x)]3/2 
= (2-206) 

xl/2 

[this is Eq. (59)], under the t rans format ion  

f(x) ÷ ~3f(~x) , (~>o) (2-207) 

The TF model  i tsel f  is not invar iant  under such a scal ing, because the 

boundary  condi t ion f(o)=1 f ixes the scale. Therefore,  we have to be 

somewhat more carefu l  when inves t iga t ing  the scal ing proper t ies  of the 

TF model. 

When we were looking for bounds on B, we found it advantageous 

to explo i t  cer ta in  scal ing proper t ies of the respect ive funct ionals.  The 

scal ing t rans format ions  that we cons idered then, were, Eq. (119): 

f(x) ÷ f(~x) (2-208) 

and, Eq. (146) wi th  g(x)=f' (x)+q/Xo=f' (x) for q=o: 

f(x) ÷ ~q f(~2 x) , (2-209) 

where ~, ~I' and ~2 were arb i t ra ry  (positive) numbers. Let us now exa- 

mine the impl icat ions of t rans format ions  as general  as (209) app l ied 

to the TF potent ia l  funct ional .  

We return to Eq. (45), 
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I ) [_2(V+~)15/2 

15~ 2 

= E I + E 2 - { N  

and consider  

V(r) ÷ v V(~r) , 

(2-210) 

Since, for the ex is tence of E2, we need [Eq. (52)] 

rV(r) ÷ - Z for r ÷ o , (2-212) 

such a scal ing t rans format ion  of V has to be accompanied by a scal ing 

of Z, 

Z ÷ ~ - I  Z (2-213) 

For convenience,  we also scale ~ by 

÷ v E , (2-214) 

so that the s t ructure V+E is conserved. 

In terms of f(x), (211) and (214), w i thout  (213), read 

f(x) + v - 1  f(~x) , (2-215) 

which ident i f ies (207) and (208) as the special  s i tuat ions v=4 and v=1, 

whereas (209) is real ized by ~2=~ and ~i=~ ~. However, wi th  (213), we 

just have (208), as we should have, since (212) is equiva lent  to requi-  

r ing f(o)=1; and only (208) is consis tent  wi th  this constraint .  

Under (211), (213), and (214) the var ious cont r ibut ions to ETF 

scale accord ing to 

E 1 ÷ E I (~) = f(dr) (- I ) [_2 V(V(~r)+~) ]5/2 
15~ 2 

= 55v/2-3 El • 

(2-216) 

and 
IIVZ. 

E2 ÷ E2(I~) = _ 8 ~ f ( d ~  ) [ ~ ( l l V V ( g r )  + _ ~ ) ] 2  = 

(~>o) (2-211) 
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29-I = 

as we l l  as 

~N + V ~N 

C o n s e q u e n t l y  

E 2 , 

(2-217) 

(2-218) 

ET F ÷ ETF(~) = ~ 5 ~ / 2 - 3  El + 2 v - I  E2 _ ~V~N (2-219) 

For  ~=I, th is  is just  ETF; for  ~=I+5~,  we have ETF+6 ETF . Now, s ince 

the energy  is s t a t i ona ry  under  i n f i n i t e s i m a l  v a r i a t i o n s  of  V and ~, a l l  

f i rs t  o rde r  changes  mus t  o r i g i n a t e  in the sca l i ng  of  Z. Tha t  is 

~ETF ~ETF ( v-1 Z) = (~ - I )Z - -~ - -5~  (2-220) 5 ETF = ~ 6 

On the o the r  hand,  f rom (219) we get  

5 ETF = [ (5v-3)E I + (2~-I )E 2 - ~ N ] 6 ~  , (2-221) 

so tha t  we  conc lude  

(-~-3)E I ÷ (2~-I)~ 2 - ~  = (v-1)z~z~T~ (2-222) 

This  is a l i near  equa t i on  in v. It has to ho ld  for any  v. So we ob ta in  

two i n d e p e n d e n t  re la t i ons  among  the  d i f f e ren t  ene rgy  quan t i t i e s  - two 

"v i r ia l  t heo rems . "  Bes ides  v=1, when  

I 
- ~ E I + E 2 - ~N = o , (2-223) 

the o the r  na tu ra l  cho ice  is the  TF sca l i ng  v=4 [see the comment  to Eq. 

(215)], for w h i c h  

7E I + 7E 2 - 4~N = 3Z~zETF (2-224) 

The la t te r  comb ines  w i t h  E T F = E I + E 2 - ~ N  and 

8-~ ETF = - ~ (2-225) 
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to give 

~ (z ,N) 7ETF (Z ,N) = 3 (Z-~+Ny~) ETF (2-226) 

We have made expl ic i t  here, that the energy of an atom is a funct ion 

of Z and N. 

For N=Z, Eq. (226) has the simple impl icat ion 

7ETF(Z,Z) = 3Z~zETF(Z,Z) , (2-227) 

o r  

ETF(Z,Z) = - C Z 7/3 , (2-228) 

where the constant  C is yet undetermined.  It is found by combin ing our 

knowledge of C=- ~ETF/~N=o for N=Z wi th 

(dr) (V+)  V 2Z 
~ r 

B Z7/3 for N = Z : - z ( v +  ) 1  ; :  - 
r = o  

(2-229) 

The th i rd step here is a part ia l  integrat ion;  the fourth one recogni-  

zes -ZS(r) as the source of the Coulomb potent ia l  Z/r; the last one, 

val id for N=Z only, uses Eq. (65). [The comment to that equat ion says 

that (229) ident i f ies the in teract ion energy between the nuclear  charge 

and the electrons: 

ENe = Z~ZETF , (2-230) 

which, accord ing to (I-96), is a general  statement, not l imi ted to the 

TF model  in its val id i ty. ]  Now, 

ETF(Z,Z) -- 71Z ÷N )~T~(Z,m[ : ~Z~ET;(Z,N) [ 
N=Z N=Z 

3 B Z7/3 (2-231) 
= - T K  

which  ident i f ies the constant  C. This is, of course, the resul t  that 
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we  h a d  f o u n d  e a r l i e r  in Eq. (67). 

T h e  f i r s t  o f  ou r  " v i r i a l "  t h e o r e m s ,  Eq. (223), has  t he  c o n s e -  

q u e n c e  

E I = 2 (E2 -%N)  = 2 ( E T F  , E I , (2-232) 

orr  

and  

2 
E I = ~ ETF  , (2-233) 

I 
E 2 - ~N = ~ ETF . (2-234) 

Fo r  a C o u l o m b  sys tem,  l i ke  t he  one  w e  a re  c o n s i d e r i n g ,  one  e x p e c t s  t he  

u s u a l  t h e o r e m s  a b o u t  the  k i n e t i c  and  the  p o t e n t i a l  ene rgy :  

Ek i  n = - ETF , Epo  t = 2ETF  (2-235) 

I n d e e d ,  t h e y  e m e r g e  f r om  the  r e l a t i o n s  t h a t  w e  h a v e  f o u n d  so far.  I t  is 

e s s e n t i a l  to  r emember  how E 1 and E 2 a r e  composed  o f  Ek i  n and Epo t  = ENe 

+ E : 
ee 

E I = Ek i  n + ENe  + 2Eee  + ~N , 

(2-236) 

E 2 = _ Eee  

N o t e  in  p a r t i c u l a r  t he  d o u b l e  c o u n t i n g  of  t he  e l e c t r o n - e l e c t r o n  e n e r g y  

in  E I. W i t h  (230) we  h a v e  

Epo  t = ENe  + Eee  = Z~TETF~_ - E 2 

(2-237) 

w h i c h  m a k e s  u s e  of  (225). N o w  Eqs.  (226) and  (234) can  be  e m p l o y e d  to  

p r o d u c e  the  s e c o n d  s t a t e m e n t  o f  (235),  w h i c h  t h e n  i m p l i e s  t he  f i r s t  o n e  

i m m e d i a t e l y .  

T h e  r e l a t i v e  s i zes  a re  

E 
ee : Ek i  n : (-ENe) : (- ~--ETF-~N): ( -ETF):  (- 7 E T F + ~ N )  ; 

= I : 3 : 7 fo r  N = Z, w h e n  ~ = o . 

(2-238) 
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In words: the e lec t ron-e lec t ron energy of a neutra l  TF atom is one third 

of the k inet ic  energy and one seventh of the (negative of the) nucleus-  

e lect ron energy. 

For ions, there is less speci f ic in format ion in Eq. (226). It 

mere ly  impl ies that ETF(Z,N) can be wr i t ten in the form 

N (2-239) ETF(Z,N) = Z 7/3 x [ funct ion of ~] 

This invi tes in t roduc ing a reduced b ind ing energy, e(q), that is a func- 

t ion of q=I-N/Z, the degree of ionizat ion: 

Z7/3 
ETF(Z,N) = - ~ e(q) (2-240) 

We know e(q) for q=o, i.e., N=Z : 

3 
e(o) = 7 B  , (2-241) 

which is s imply Eq. (231). The factor mul t ip ly ing  e(q) in (240) is the 

same as the one in Eqs. (108) and (138). The max imum (minimum) proper ty  

of the TF potent ia l  (density) funct ional  is, therefore,  here expressed 

as 

2 fax [f(x)]5/2 I fdx[f' (x)+ q ] 2  + q(1-q)} 
{5 o x I/2 + ~ o Xo x° 

e(q) 

_ { !  fdx x I/3 ' 5/3 
5 [g (x ) ]  

o 

oo  

I fdx[g(x) ] 2 } + g(o) + y . 
o 

The compet ing g(x) 's are hereby rest r ic ted by [Eq. (98)] 

whereas 

co  

fdx xg' (x) = 1-q 
o 

(2-242) 

, (2-243) 

f(x=o) = 1 (2-244) 

The equal signs in (242) hold only for g(x)=f' (x)+q/x o, when f(x) obeys 

Eqs. (59) and (60), wh ich  also determine x o. 

We can relate e(q) to Xo(q) by recogniz ing that Eq. (225) says 
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Z 7/3 Z 4/3 d 
~--~(- ~ e(q)) - a dq 

_-- _ ~ - -  

e(q) 

Z4/3 q 
a x o (q) 

thus, 

d e (a) = q 
dq - x O (q) 

Consequen t l y ,  
q 

q, 

3 B  - fdq' Xo~q') e (q) = 7 o 

(2-245) 

and 

I q' 
e(q) = Sdq' 

xo(q')  q 

(2-246) 

, (2-247) 

, (2-248) 

of wh i ch  the f i rs t  one shou ld  be app l i ed  to w e a k l y  ion ized  sys tems 

(N~Z, q~o),  whe reas  the second one is des igned  for h igh l y  ion ized  a toms 

(N<<Z, q~1).  In Eq. (248) the obv ious  s ta temen t  

e(q=1) = o (2-249) 

has been used; it says: no e lec t rons  - no b ind ing  energy.  

For ions, Eq. (229) g ives 

7Z Z 
Z E T F  = - Z(V+~+ ~)I + ~Z 

r=o 

Z7/3 
- [ f "  (o) + -~-q] 

a q x o 

(2-250) 

s o  that  Eq. (226) t r ans la tes  in to 

q2 
7e(q) = 3[ - f 'q(O) - Xo(q)]  (2-251) 

By w r i t i n g  a subsc r ip t  q we emphas i ze  the q dependence  of  fq(X) and its 

in i t ia l  s lope f' (o). The compa r i son  of (251) w i th  (247) resu l ts  in 
q 
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- f '  ( o )  q 

q2 7 . q a' 
= B + - - - | d q '  , 

x O (q) 3 ~o x° (q )  

q 
q,7/3 d I 

= B ÷ ofdq' ] 

(2-252) 

The lat ter equal i ty  is ver i f ied  by per forming a par t ia l  integrat ion. 

Since -f' (o) increases wi th increasing q, we learn here that 
q 

~q[q l /3xo(q)] < o (2-253) 

We observe in these relat ions, that in studying ions the cen- 

t ral  quant i ty  is Xo(q). It is bas ica l ly  avai lab le from solv ing numeri -  

cal ly the d i f fe rent ia l  equat ion for f (x), Eq. (59): q 

f" (x) [f~(x) ] 3/2 q = - - ~  
x 

(2-254) 

w i th  the boundary  condi t ions (60): 

fq(O) = I , fq(Xo(q)) = O , -Xo(q)fq(Xo(q))  = q (2-255) 

Never theless,  in the two l imi t ing s i tuat ions q~1 and q~o it fs possi-  

ble to make prec ise statements about the analyt ic  dependence of Xo(q) 

on 1-q(=N/Z), or, q, respect ively.  Let us f i rst  concent ra te  on h igh ly  

ionized atoms, q~1. 

Highly ionized TF atoms. In the l imit  of ext remely high ionizat ion, 

N/Z÷o, the in tere lec t ron ic  in teract ion becomes ins ign i f icant  as com- 

pared to the nuc leus-e lec t ron  interact ion. In this s i tuat ion V is sim- 

ply the Coulomb potent ia l  -z/r, and we are deal ing wi th  Bohr atoms, 

which have been studied in the f irst Chapter. We conc luded already, in 

Eq.(46),  that then 

ETF(Z,N) = -Z2(3N) I/3 for N/Z ÷ o (2-256) 

As a s tatement  about  e(q) this reads 

3 I/3 3 ~ 2/3 1/3 
e(q) = a[~(1-q)] = ~(~) (l-q) 
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for  q ÷ I (2-257) 

A f te r  e m p l o y i n g  Eq. (246) we f ind 

Xo(q) = [ ~ ( 1 - q ) ]  2/3 for  q + I , (2-258) 

wh i ch  is r ecogn i zed  to be Eq. (I-35) when  ~=(Z4/3/a) (q/Xo) , etc., is in- 

ser ted  there.  

If N/Z is not  tha t  smal l ,  Eq. (257) and (258) acqu i re  co r rec -  

t ions  tha t  accoun t  for  the r epu l s i on  among  the e lec t rons .  A sys tema t i c  

t r ea tmen t  p roceeds  f rom no t i ng  tha t  f(x) is not  the best  su i ted  para-  

m e t r i z a t i o n  of the po ten t i a l  for  the p resen t  purpose.  I t  is advan tage -  

ous to i n t r oduce  ano the r  f unc t i on  ~(t) by means  of 15 

Z-N ~ (r/ro) (2-259) V (r) + ~ - r 

or, r e c a l l i n g  ~ = (Z-N)/r  o [Eq. (55)] , 

V + ~ = - ~ ~(t) t= r / r  o = x /x  o (2-260) 
t 

Because  of the g rea t  s im i l a r i t y  b e t w e e n  the d e f i n i t i o n  of f(x) in (57) 

and the one of  ~(t) in (259), the two func t ions  are s imp ly  re la ted  to 

each other :  

I f (tXo) (2-261) f(x) = q ~(x /x  o) , # (t) = 

Consequen t l y ,  ~(t) 

~" (t) = 

obeys  the d i f f e r e n t i a l  equa t i on  

[~(t)] 3/2 

t i /2  
(2-262) 

and is sub jec t  to 

1 
q~ ( o )  = - 

q 
, { ( 1 )  = o , { '  ( 1 )  = - 1  , (2-263) 

whe re  l=l(q) is g i ven  by  

(q) = q l / 2 [ x  o (q ) ]3 /2  (2-264) 

AS a c o n s e q u e n c e  of  (258), I is smal l  for q~1 : 
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I ~ 16(I-q) - 16 N for N ~-- ~ Z Z = 1-q o (2-265) 

Why is it f i t t ing to switch from f(x) to ~(t)? The reason is that the 

appearance of I in (262) of fers the poss ib i l i ty  of expanding ~(t) in 

powers of I, whereby the smal lness of I promises a good convergence of 

the expansion. 

The d i f fe rent ia l  equat ion (262) and the boundary condi t ions 

at t>1 in (263) can be combined into the integral  equat ion 

I [~1(t')] 3/2 
~1(t) = I - t + I Sat' (t'-t) 

t t 'I/2 
(2-266) 

where we wrote ~1(t) in order to emphasize the I dependence of ~. Af ter  

so lv ing this equat ion for a chosen I, the cor respond ing value of q emer- 

ges from 

I 
I _ 91(o ) = I + I fdt t l /2 [~ l ( t ) ]3 /2  
q 

o 
(2-267) 

In the f i rst  place, one obtains I/q as a funct ion of I, from which l(q) 

is to be found in an addi t ional  step. Then Eq. (248), here in the form 

I 7/3 
e(q) = fdq' q' 

q [1(q')] 2/3 
, (2-268) 

suppl ies the des i red e(q). The eva luat ion of this in tegral  is eased 

by wr i t ing  it as an in tegrat ion over I instead of q, s ince then q(1) 

enters, not 1(q). The rewr i t ing  begins wi th  

o 
e(q) = ] d1' dq(1') [q(1')] 4/3 

1(q) d1' 1,2/3 

1(q) I' -2/3 -_3 fdl, 
7 

o 

d ( i_[q( i , ) ]7/3 
d1' 

) ; 

(2-269) 

in v iew of this impl icat ion of Eq. (265) : 

i -2/3(I- [q( i ) ]  7/3) = i -2/3( i - [1-  ~61+.. . ]  7/3) = 
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7~ 11/3 (14/3) 48 + 0 ; = o for I=o , (2-270) 

a part ia l  in tegrat ion can be per formed wi th the outcome 

I (q) ,) 7/3 3 1-q 7/3 2 5 d1' I-[q(I ] 
e(q) - 7 [i(q)]2/3 + 7 o 1,5/3 (2-271) 

An al ternat ive exDression makes use of (251); here it reads 

3 q4/3 
e(q) = 7 [i(q)']2/3 (-~i(o)-q) , (2-272) 

where 

I [~1(t)] 3/2 

- ~ ( o )  = I + I o Sdt"  t I/2 (2-273) 

is the ini t ial  slope of ~1(t). Note that the equivalence of (271) and 

(272) al lows to relate ~ ( o )  to ~i(o) = I/q(I) [this is Eq.(267)]:  

1 I - [ ~ (o ) ]  -7/3 
, 2 12/3 fat' -~I (o) = [~i(o)]4/3{I + o f 5/3 } ,(2-274) 

which is a useful  equat ion for checking against a lgebraic mistakes. 

Let us now, indeed, expand ~1(t) in powers of I, 

oo  

~1(t) = I - t + ~---I k ~k(t) (2-275) 
k=1 

This, inserted into (266), impl ies 

~--IZ~l(t) = I 5dt' (t'-t) t '-1/211-t'+~--Ik ~k(t')] 3/2. (2-276) 
£=I t k=1 

The technique that produced the recurrence relat ion for the s£ in Eq. 

(174) can be appl ied here, too. We find 

1 
~I (t) = 5dt' (t'-t)t '-I/2 (I-t')3/2 

t 
, (2-277) 
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and 

I ~ ( 3 / 2 )  (1-t') ~l(t) = ]at' (t'-t)t '-I/2 3/2-9 
t j=I J 

_ .  (2-278) 

x ~ - ~ . . . i  3= ~kl (t ')...~k (t ' )Sl_1,k1+...+k. 
ki=1 9 1 9 3 

for Z=2, 3, ... 

The first few ~l(t) can be expressed in terms of e lementary 

functions; unfortunately,  the degree of algebraic complexi ty increases 

rapidly. Let us, therefore, conf ine ourselves to expl ic i t ly  stat ing on- 

ly ~1(t) as it emerges from (277) : 

41 (t) = ( ~ -  3 /2 + 2 _ ~t2) t1/2 ~t )arccos( t  I ) + (~ ~t 

In part icular,  we have 

(1_t) I/2 

(2-279) 

1 
#I (o) = fdt t1/2(1- t )3/2 - ~ 

16 o 

I t)3/2 = 3~ - ~  (o) = ]at t -I/2 ( 1 -  -~- 
o 

, (2-280) 

Equat ion (279) is ut i l ized in 

and 

3 ~ ti/2 I/2 (t) = 2 3~ 2 
~2(o) = ~ d t  (l-t) ~I 15 256 

o 

3 1 I/2 I/2 I 3~ 2 
- ~ ( o )  = ~ ]at t- (l-t) ~I (t) = 3 256 

o 

, (2-281) 

(2-282) 

We are now prepared to employ Eq. (267) in order to 

f ind the leading correct ions to (265), (257), and (258). From 

I I 
q I- (l-q) 

- I + ( l - q )  + ( l - q )  2 + . . .  

= ~ i ( o )  = I + ~ i ( o ) I  + ~ 2 ( o ) 1 2 +  . . .  

(2-283) 



78 

we get 

or 

I (q) = 
I 

~I (o) (l-q) [I+ (I 
~2 (O) 

[~1 (o) ] 2 
) (l-q) + ... ] 

= 16( I -q )  [I+ (4- 512 ) (l-q) + ... ] 

1 5"n; 2 

N l(q) - 16~ NZ [I+(4- 15~ 2512) Z + 0(( )2)] for  N/Z<<I  

(2-284) 

(2-285) 

Then,  us ing  e i the r  one of the Eqs. (268) , (269) , or  (271) , we f ind 

e ( q )  = ~ ( ~ ) 2 / 3 ( 1 - q )  1,311_(i_/ 256 ) (l-q) + ... ] 

45~ 2 

= ~ [ I - (1 -  ~ + 0( 
45~ 2 

(2-286) 

Also,  f rom (264) or  (246), 

Xo(q) = [ ~ ( i _ q )  ] 2 /311+ (3 _ I ~  i024) (i_~) + ... ] 
45~2 

N 2/3 1024) N (N) 2 
= (--- ~) [I+(3- ~ + 0( )] 

45T~ 2 

(2-287) 

The numer i ca l  ve rs ions  the reo f  are 

N 
I = 5.093 ( I+0.5416 ~ + ...) , 

e = 1.0135( )1 /3 (1 -0 .4236  ~ + ..) , 

x o = 2.960(  )2 /3 ( I+0 .6944  ~ + ...) 

(2-288) 

Here then is the m o d i f i c a t i o n  of Eq. (46) that  we p rom ised  

at that  t ime: 

ETF(Z,N)  = -Z2 (3N) I /311- (1  - 2 5 6 ) N  + ] 
45~2 Z "'" 

(2-289) 

for  N<<Z ; 



79 

it is obta ined by inser t ing (287) into (240). 

A simple check of cons is tency is prov ided by 

states 

(253). This 

d l(q) < o , (2-290) 
dq 

or, 

d 
d ( N ~  I(q=I-N/Z) > o (2-291) 

A quick look at (285) shows that this is true, indeed. 

We close this sect ion on highly ionized TF atoms with a dis- 

cussion of the re lat ive sizes of Eki n, Eee, and ENe. In order to be 

able to apply Eq. (238), we need ~N. It is given by 

~N = -N~N ETF(Z,N) 

1 2 3 N I/3 1024) N = ]Z ( ) [I-(4- ~ + ...] 
45~ 2 

so that Eqs. (236) and (234) produce 

I 
Eee = - ~ETF - ~N 

= Z2(3N)1/3[(  I- N 256 ) Z + ...] 
45m 2 

(2-292) 

(2-293) 

The in teract ion energy of the electrons wi th the nucleus is given by 

[see Eq. (230)] 

ENe = Z~Z ETF (Z, N) 

N + I 128) 
-2Z2 (3N) I/3 [I- (2 45~2 • . . ]  , 

(2-294) 

whereas the k inet ic energy is s imply  the negat ive of ETF, as is ex- 

pressed in Eq. (235). Consequent ly,  

E 
N 

-ENeee _ (21 _ 45~ 2128) Z + 0(( ) ) , (2-295) 

which states that Eee is negl ig ib le  in the l imit of extremely high ioni- 

zation. [We have already made use of this (physical ly obvious) fact re- 
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peatedly; see, for example, Eq. (256) ] Together wi th the neutra l ,a tom 

statement of (238), we have, therefore, 

Ee e _ ji/7 for N = Z 
f 

-ENe ~ 0 . 2 1 1 8 ~  for N<<Z 
(2-296) 

Likewise, one obtains 

Ekin 
~r3/7 for N = Z 

and 

Ee e _ ~ I /3  for N = Z 

Ekin ~0. 4236 N for N< <Z 

, (2-297) 

(2-298) 

Weakly  ionized TF atoms. As I increases, #l(t) grows larger for al l  

t<1, as is evident from Eq. (262), or Eq. (266). Thus q=I/~l(o) decreases, 

f inal ly reaching q=o for the cr i t ical  value 

A = l(q) I (2-299) 
q÷o 

Consequent ly•  

Xo(q) = q-1/3 [l (q) ] 2/3 

A2/3 q-I/3 for q+o • 

(2-300) 

so that Eq. (247) implies 

3 3 ,A-2/3 q7/3 e(q) ~ 7 B  - 7 for q÷o 

Accordingly,  we have in the l imit  of very  weak ionizat ion 

3 Z 7/3 A-2/3 q7/3] 
ETF(Z'N) ~ 7 - - -~[B - = 

(2-301) 
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= _ 3 I [ B  Z 7 / 3  _ A - 2 / 3 ( Z _ N ) 7 / 3 ]  
7 

(2-302) 

for N ~ Z 

If we insert  Eq. (301) into the inequal i t ies  of (242), sui tably chosen 

t r ia l  funct ions f(x) and g(x) supply bounds on A -2/3. Deta i ls  are given 

in Prob lem 10, from where we ci te 

0.0946 < A -2/3 < 0.1008 , (2-303) 

or, 

A -2/3 = 0.0977±0.0031 , (2-304) 

wh ich  tel ls us that  A -2/3 is about six percent  of B. A weak ly  ionized 

TF atom has, therefore,  p rac t ica l ly  the same b ind ing energy that has 

the neut ra l  atom. In other  words: the outermost  e lectrons cont r ibu te  

very l i t t le  to the tota l  b ind ing energy of the atom. 

In the l imit  q÷o, the re la t ion between f(x) and ~(t) becomes 

singular. We cannot  give sense to the r ight hand side of 

fq(X) I = F(x) = q ~l(q) (X/Xo (q)) I 
q+o q÷o 

(2-305) 

[Eq. (261)], because Xo(q÷~) = ~ squeezes t=X/Xe(q) into an in f in i tes imal  

v ic in i t y  of t=o. There is, never the less,  a sens ib le  l imit to %l(t) as 

I approaches A.  We wr i te  ¢(t) for this ~A (t). It obeys the d i f fe ren-  

t ia l  equat ion 

~"(t) = A [~(t)]3/2 

t l/2 
, (2-306) 

and is subject  to 

~(1) = o , ~' (I) = -I , (2-307) 

and 

#(t) ÷ ~ as t ÷ o (2-308) 

A l though ~(t) is somehow cor respond ing  to the s i tuat ion of neut ra l  TF 

atoms, the t roub le  of  Eq.(305) s ign i f ies that it cannot  be used as a 
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paramet r i za t ion  of the potent ia l  V(r). For tunate ly ,  there is st i l l  a 

use for Eqs. (306) through (308), in as much as they of fer  a s imple and 

h ighly  prec ise method for ca lcu la t ing  A . Here is how it goes: #(t) 

possesses an expansion in powers of ~t °, w i th  a yet undetermined con- 

stant ~ and 

o = 7 + y = 1(7+ 7/7~) 

of the form 

• (2-309) 

1 4 4 / A  2 
#(t) = - - [ 1 - ~ t a +  9 (a~t°) z + ...] , (2-310) 

t 3 12+ 4a 2 

which is, of course, an immediate analog to Eqs. (180), (193), (192), 

and (190). The coef f ic ients  of the powers of ~t ° obey the recurrence 

re la t ion (196) af ter  rep lac ing y by o. The (numerical) range of conver-  

of this series is ~t°~0.6, or, an t ic ipa t ing  that ~ is c lose to gence 

unity, t~0.94. On the other  hand, #(t) can also be expanded in powers 

of (l-t) I/2, 

~(t) 4A;IA t 7/2 2A (I_t)9/2 = (l--t) + --~,I-- ) + - -~  

(2--311) 
A 2 

+ A ( 1 - t ) 1 1 / 2  + i--~(I-t) 6 + . . . .  

this series be ing convergent  for (l-t) 1"2 ! ~ 0.35, or, t ~ 0.88, when 

A is w i th in  the bounds of (303). There is a range of t around t=0.9 

where both expansions are converging.  This al lows to determine A and 

numer ica l ly  by forc ing the two expansions to agree w i th in  the accuracy 

to wh ich  they represent  solut ions to Eq. (306). Such a ca lcu la t ion  16 

resul ted in 

A = 32.729416116173 (2-312) 

and 

= 1.0401806573862 (2-313) 

Natura l ly ,  physics does not need this many decimals;  they are repor ted 

only in order  to demonst ra te  the marve lous prec is ion of this s imple 

method. Please note that  one cannot compute B and B in a s imi lar  way, 

because the expansions (164) and (193) converge for x~0.15 and x~30, 
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respect ively.  There is no overlap. 

The A of (312) y ie lds 

A -2/3 = 0.0977330 (2-314) 

so that we obtain, from Eq. (302), 

-ETF(Z,N)=0.768745 Z 7/3 _ 0.047310(Z-N) 7/3 

for N ~ Z (2-315) 

The correct ion to the neutra l  atom b ind ing energy is rather small; even 

for N=Z/2 it is only about one percent. 

Since A is large, the series of Eq. (275) does not converge 

rapid ly  (if at all) for weak ly  ionized atoms, and the swi tch ing from 

f(x) to ~(t) is po int less in this si tuat ion. Here we make use of the 

fact that the d i f fe rence between F (x) and fq(X) is small, when q>~o and 

X<Xo(q) . In par t icu lar ,  fq' (o) does not d i f fer  s ign i f i cant ly  from -B, 

so that fq' (o)+B is a poss ib ly  usefu l  expans ion parameter.  We use it 

in mak ing the ansatz 

fq(x) = F(x) + ~---[f' (o) + B] k fk(x) , (2-316) 
k=1 q 

where the fk(x) are subject  to 

fk(o) = o for k=I,2 .... (2-317) 

and 

f{ (o) = I , f~(o) = o for k=2,3 .... (2-318) 

To f irst order  in f '(o)+B, the d i f fe rent ia l  equat ion obeyed by fq(X) 
17 q requires 

d 
7 

3 F(x) 1/21 (x) = o 
- 2 [ ~ ]  fl 

J 
(2-319) 

One so lut ion is 

I I d (x3F (x)) , fo(X) = F(x) + ~ x F '  (x) - dx 
3x 2 

(2-320) 
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because 

d ~  ~ [--~--j x 2 x F(x) 

3x--- ~ d--x x - .--~-- F(x) = o 

However, inasmuch as 

fo(1) = I , f'o(1) = - ~B4 , 

(2-321 ) 

(2-322) 

fo(X) is not propor t ional  to f1(x). The Wronsk ian of the d i f ferent ia l  

equat ion (319) relates the two funct ions to each other: 

fo(X) f~ (x) - f'o(X) fl (X) = I (2-323) 

This is equivalent  to 

d fl (x) -2 
dx fo ~ = [fo (x)] (2-324) 

which has the consequence 

x dx' 
f1(x) = fo(X) f 

o [fo(X')] 2 
(2-325) 

This does, indeed, sat isfy the requi rements fl (o)=o and f{ (o)=I , so 

that we need not add a mul t ip le  of fo(X) on the r ight hand side. 

For large x, we have 

fo(X ) I d [ 1 4 4  G (y (X))] (12) 2 d - - [ 1 - y ( x )  + ...] 
3X 2 3X 2 

(12) 2 yy(x) = (12) 2 ¥~x- (¥+3)  
3 3 3 x 

(2-326) 

which uses Eqs. (180), (187), (184), and (192). This inserted into (323) 

or, equivalent ly,  (326) produces 

I I xO-3 for large x (2-327) 
fl (x) -- 488 y(y+o) 



85 

[o = 7+y, Eq.(309)] .  

In der iv ing Eq. (319) the f irst order approx imat ion (1+e) 3/2 
3 

I + ~  has been used for e=[ f~(o)+B] f l (X) /F(x) .  Consequent ly,  

fq(X) ~ F(x) + [f~ (o) +B] f1(x) (2-328) 

must  not be appl ied to x~x o, where e=-1. We can, however, supplement 

(328) wi th 

X 

fq(X) ~ q(1- ~O ) (2-329) 

which is val id  for X~Xo~ [This is obv ious ly  no more than the f irst term 

of Eq. (311) as it analogously  appears in ~l(t)]. Let us now join the two 

approx imat ions for fq(X), Eqs. (328) and (329), at a cer ta in x=x I. The 
! three unknown quant i t ies  Xo(q) , x1(q) , and fq(O)+B are determined from 

the requi rement  that fq(X) and its two f i rst der ivat ives are cont inu- 

ous at x=x I . This can be done expl ic i t ly  in the l imi t ing s i tuat ion of 

very smal l  q, s ince then both Xo(q) and x1(q) are large, which al lows 

to employ the large-x forms of F(x) and f1(x). Thus, we have the three 

algebraic equat ions 

0-3 
x I x I 

fq: 144 + [f~(o)+B] 48By(y+O) = q(1- ~O ) 
3 - I 

x I 

432 (°-3) X1-4 
! = , fq:  - -  + [fq(O)+B] 488y(y+o') -q/Xo (2-330) 

Xl~ 

f,,: (12) 3 18 Xl-5 
q s + [fq(O)+B] 48~y(y+O) = O ; 

X I 

the last one uses (o-3)(o-4)=18. These three equat ions imply 

and 

Xl o+3/2 y+17/2 37+ 7 ~  
- -  = = = 

x o+2 ~+9 48 o 
- -  = 0.9488 , (2-331) 

_ o+2 I/3 I/3 q-1 /3  
Xo a+372 [96(o+2)] q- = 10.32 • (2-332) 

as wel l  as 

-f' (O) = B + 1(96) - (Y+I) /3 8y(y+O)(0+2) -O/3 qO/3 = 
q 
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(2-333) 

= B + 8.05 x 10 -3 q2.59 

whereby ident i t ies like 0=¥+7 and yo=6 have been used. Of course, since 

these results are based upon the simple approximat ions (328) and (329) 

we should not take them too seriously. Nevertheless,  their structure 

is cer ta in ly  right. For instance, Eq. (332) says that the combinat ion 

ql/3xo(q) approaches a constant  as q÷o. This much we know already - the 

constant  is A2/3=I0.2320. The est imate for A 2/3 obta ined in (332) dif- 

fers from the actual value by less than one percent. 

Someth ing new is to be learned from Eq. (333). As a prepara L 

tion, we d i f ferent ia te  Eq. (252) wi th respect to q: 

~q[- fq(O) ]  = q7/3 d [  I ] = q7/3 ~q[ l (c r ) ] -2 /3  ;(2-334) 
dq ql /3xo (q) 

the latter equal i ty  is a consequence of the def in i t ion of l(q) in Eq. 

(264). Now Eq. (333) impl ies that 

d -2/3 (a-7)/3 qy/3 
q ~ [ l ( q ) ]  % q = (2-335) 

We infer that 

~(q) = A [1+(powers of qy/3)] (2-336) 

for values of q not too large. Then, of course, 

Xo(q) = A 2/3 q-I /3 [1+ (powers of qy/3)] , (2-337) 

and 

= 3 3 A,2/3 q7/3[ e2q2y/3 e(q) 7 B -  7 1+elqy/3 + + ...] , (2-338) 

which is an impl icat ion of (337) when it is inserted into Eq. (247). The 

chal lenge consists in ca lcu la t ing the coef f ic ients el, e2, ..., which 

determine the cor responding coef f ic ients in (336) and (337). In part i -  

cular, Eq. (246) suppl ies 

Xo(q ) = A2/3 q-I/311 + ~elqy/3 + ¢;7._J.Ye2q2y/3+ . . . ] - I  = 
(2-339) 
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o q¥/3+ o 2_ o+y ,q2¥/3+ 
= A 2/3 q-I/311_ 7ei ((7ei) -7--e2J ...] 

Then 

I (q) = [ql/3xo (q) ] 3/2 

30 qy/3 3 5 (~el) 2 = A [I- ~ e  I + ~(~ 
o+y q2~/3 

- --7--e2 ) 

(2-340) 

+ . . . ]  , 

and from combining (251) and (246) with (338) 

-f' (o) 7 q2 7 ~q 
q = ]e(q) + Xo(q) = (] - q )e(q) 

= _qi0/3 d [ q - 7 / 3  e(q)] 
dq 

(2-341) 

or, 

3 q-7/3 : qi0/3 ~q(_ 7 B  

-f' (o) = B + ~ A -2/3 q°/3[e I 
q 

+ 73 A-2/311+elqy/3+e2q2y/3+...]), 

+ 2e 2 qy/3 + ...] (2-342 

The comparison with (333) yields a first estimate for el: 

e I --- 0.75 , (2-343 

which, in view of the crudeness of the approximation used in arriving 

at (333), cannot be expected to have more significance than stating 

the order of magnitude. (We shall see below that the actual value is 

about ten percent larger.) 

A systematic computation of el, e2, ... starts from the ex- 
I pansion (316). Comparing powers of fa(o)+B in the differential equation 

obeyed by fq(X) produces 

£ 3/2-j £-j+I £-j+I 
fi(x I : 5-(3j2) EFIx)] (xl... J xlj2 fkl 

j =I k I =I kj =I 

x..fk.3 (x)6£'k1+'''+kJ (2-344) 
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The j=1 term on the r ight hand side is brought over to the left, so 

that 

_ 3 [ d2 y / ~ - / ~ ]  fl (x, 
dx 2 

= Z 3/2 .[F(x)]3/2-J ~-j+1 l-j+1 (x% ... 
7( j  I xI/2 > fh 
9=2 k I =I kj=1 

x- '- fk (x)6Z,k1+...+k. 
3 3 

(2-345) 

This r ight hand side contains f1(x), ..., fl_1(x) but not fl(x). The 

solut ions to the corresponding homogeneous d i f ferent ia l  equat ion are 

fo(X) and f1(x), given in Eqs. (320) and (325). With their  aid we can 

construct  Green's funct ion G(x,x') which sat isf ies 

d 2 
[ - -  - 

d x  2 
3/F~-~-/x] G(x,x' ) = 8 (x-x') 

G(x,x') = o and ~xG(X,X ') = o for x=o 

(2-346) 

It is given by 

G(x,x') = [fo(X')f I (x) - fo(X) f I (x')]O(x-x') (2-347) 

Thus x 
fl(x) = fdx' [fo(X')fl (x)-fo(X)fl (x')] 

o 

x [ (d-~22-3/F(x')/x') f£(x')] , 
dx' 

(2-348) 

where we refra ined from expl ic i t ly  insert ing the r ight hand side of 

(345). 

The use of Eq. (348) does not lie pr imar i ly  in expl ic i t ly  

ca lcu lat ing f2(x), f3(x), etc. but in studying their  structure. Recal l  

that F(x) can be wr i t ten as 

F(x) 144 G(y(x))= 144 ~--- o = i] +x___c~ [y (x) k] (2-349) 
x3 x3 L k=1 
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which is repeat ing Eqs. (180) and (193). As a consequence, fo(X) has the 

form 

f o ( X )  = 14__~4 1 x 3 ~ y y ( x ) [ 1 + ( p o w e r s  o f  y ( x ) ) ]  (2 -350)  

Inserted into (325) this implies 

fl (x) - 144 3 I x o x ~ (12)4 6y(y+o) [1+(powers of y(x))] , (2-351) 

of which we have seen the leading term in (327). Now we employ the re- 

currence formula (348) to conclude that 

fz(x ) = 144[_ 3 I x a ]Idz 
x3 (12) 4 ~y(y+o) [1+(powers of y(x))] , 

(2-352) 

where the constants d I obey 

d I = -I (2-353) 

and 

l-j+1 l-j+1 2y (3 2) - 
dz = (Zo+y)(Z-I) ~ ~ "> dk I 

j=2 k I =I kj =I 
" ' 'dk 61,k1+.  .+k j • j 

(2-354) 

This we recognize to be the recurs ion for the c k of Eq. (196), after y 

and o are interchanged. Consequent ly,  the d~s are the coeff ic ients that 

appear in the expansion of Eq. (310). That is 

144/x°t ~ {(t) = [ I+ d k ( a t ° ) k ]  (2-355) 

k=1 

This connect ion between the fz(x) 's and ¢(t), which is, of course, not 

accidental ,  is the clue to comput ing el, e2, ... of Eq. (338). We reveal 

its s ign i f icance by inser t ing Eqs. (349) and (352) into the ansatz (316), 

fq(X) = 14411+ ~ ( - [ f q ( 0 ) + B ] - -  
X 3 

k=1 

[x ° (q) ] O k x 
3 ~ )  ( _ _ ~  ,)kOdk ] + 

(12) 4 Xolq, 
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+ . . . .  (2-356) 

where the ellipsis indicates the terms containing "powers of y(x)." 

After introducing h by q 

I 
-fq(O) = B + 7(12) 4~8y (y+G) [hq/X O(q)]° (2-357) 

Eq. (355) is employed: 

fq(X) = 
co  

Z X O)k] 1443 [ I+ dk(a[h q ~ ]  

x k=1 

+... (2-358) 

A 2h3 #(hq ~ )  + ... 
= q [ i -~]  q 

where [l(q)]2=q[Xo(q)] 3 is used. What is exhibited in (358) is the part 

of f (x) that goes with the zeroth power of y(x). Likewise, an arbitra- q 
ry power of y(x), say [y(x)] m contributes 

[y(x)]m 144 [ c m + (powers of ~(hqX/Xo(q))°) ] 
x 3 

x 
~ a[~@q)]2 hq Cm[Y(X)] m ~m(hq x--~) 

(2-359) 

to fq(X). The functions ~m(t) thus defined are such that 

144/A 2 
~m(t) - [ I + (powers of ~t°)] (2-360) 

t 3 

We can now make explicit what supplements Eq. (358): 

x j 
fq(X) = q[l--~q)] 2 h~[~(hq x--~-~)+ Cm[Y(x)]m~m(hq x ~ q ) ) ]  

m=1 

(2-361). 

Whereas (316) is an expansion that is expected to converge rapidly for 

x not too close to Xo(q), the series of (361) is the faster convergent 

the smaller y(x) is. This identifies large values of x (i.e., x~x o) as 
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the domain of appl icat ion. 

It is instruct ive to make contact with the or ig inal  def in i -  

t ion of ~(t), 

_ I f (tXo(q)) ] (2-362) #(t) : ~l(q) (t) I q q 
q+o q÷o 

[see the comment to Eq. (305)]. Since 

y(tx o(q) ) J : ~(tx o(q))-Y[ 
q÷o q+o 

= o , (2-363) 

the combinat ion of Eqs. (361) and (362) reads 

(t) = h 3 ¢ (hqt) ] 
q 

q÷o 
(2-364) 

from which we learn that 

h ] = I (2-365) q 
q÷o 

This tel ls us what e I is. Equat ions (342) and (357) together say 

el + 2e 2 qy/3 +... = -[fq(O)+B] ly A2/3 q-a~3 

7(12)4 B(y+a) A2/3 hq 

: [ql/3Xo (q) 

(2-366) 

or, after making use of q l /3xo(q)=[ l (q) ]2 /3 , 

el + 2e 2 qy/3 7 (~)  4 A -2Y/3(hq A 2/3 
+ . . .  = ~ ~B(¥+o) [77~71 ) 

Now the l imit q÷o ident i f ies 

(2-367) 

7 A-2y/3 (_~)4 .e,13 (y+a) e I = ~ (2-368) 

With ~, B, and A from (313), (204), and (312), respect ively,  the nume- 

r ical va lue of e I is roughly 10% larger than the est imate of (343): 
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e I = 0.825908 (2-369) 

Note that Eq. (368) reveals the physical  s igni f icance of ~ and 6; that 

of B and A has been clear since Eqs. (67) and (301). 

The requirement fq(X=Xo(q))=o relates hq to yo(q), given by 

yo(q) -- Y(Xo(q) ) = 6[Xo(q)]-Y 

= BA-2y/3 q y / 3 [ ~ ] 2 y / 3  

(2-370) 

inasmuch as x = Xo(q) in Eq. (361) y ields 

{(hq) + f Cm[Yo(q)] m ~m(hq) = o. 

m=1 

(2-371) 

With the aid of ~' (I)= -I [which is Eq. (307)], we find to f irst order 

in yo(q), or, qy/3, respect ively: 

h q = I + c I Yo (q) ~I (I) + 0(Yo (q))2) 

= I - ~ A -2Y/3 ~I (1)qy/3 + 0(q2y/3) 

(2-372) 

where ci= -I has been used. In conjunct ion wi th Eq. (340) this has the 

consequence 

a _BA-2¥/3 )qy/3 . .)o (hq[ ]2/3)o = ( i+(7e I ~I (I) +. 

(2-373) 

o _6A-2y/3 ay/3 
= 1 + o ( . T e  1 ¢ 1 ( 1 ) ) _  + . . . .  

so that the order qy/3 in Eq. (367) is 

o _BA-2y/3 2e 2 = oe1( 7 e  I ~i(I)) (2-374) 

To proceed further, we need to know ~i(I). 

The insert ion of Eq. (361) into the d i f ferent ia l  eauat ion 

obeyed by fq(X) produces 

d 2 3 t-y 
[ - -  2 A / ~ - ~ / ~ ]  ~1 (t) = o , (2-375) 
dt 2 
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when terms linear in y(x) are identified. This is quite analogous to 

Eq. (319) , so that 

I 9o(t ) - tY[9(t)+ ~ t  %'(t)] 

is one solution of (375), the one corresponding to fo(X) of 

Wronskian of 91 (t) with 9o(t) is 

, I ,12, t 2 , 
9o(t)~1'(t) - ~o(t)91 (t) = ~-~-;4~o(o+X) Y 

(2-376) 

(320). The 

(2-377) 

which makes use of Eq. (360) ~ and the small t form of 9o(t), 

9o (t) = t ¥ I d 3q 2 d--{(t3% (t)) 

= 13 t-(2-Y) (Y) 2~t[1-c~t°+d2(°~t°)2+'''] (2-378) 

I ~_2 2~ to+Y-3 = - 7( ) o [I-2d 2 ~t°+..] 

Equation (377) now implies 

I ,12, I t '¥ 2] 
~1(t) = 9°(t) [91(I)/~°(I) - ~l-A-;4 cx°(°+Y)fdt' ( t  ~ )  ' 

(2-379) 

where 91(I) is determined by the t÷o form of 91 (t), statet in Eq. (360). 

In connection with (378) this requires that the square brackets in (379) 

possess the form 

- 3 t - ( O + Y )  [ I+ ( p o w e r s  o f  0~t° ) ]  
~o 

t,Y 1 1 ( y )  2 c ~ o  2 
91 (1)/90(I) - 3(°+Y)fdt't [- ~ ~ ]  

I 
~I (I)/9o(I) - ~ (o+y) fd t '  t -2(O-3) (1+4d2~t°) 

t 

(2-380) 

~O (G+¥) I I (~ )2  ~ O  t 'Y t-2 (O-3) fdt'{[- ~ ~ 1 2 _  
t 

(I+4d20~ t°) }. 
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In the la t te r  vers ion ,  the second in tegra l  is no longer  s ingu la r  at 

t=o, s ince the in teg rand  has the s t ruc tu re  

{ ... } = a2t  ' s [const. + (powers of o t ° )] (2-381) 

which  i n teg ra tes  to 

I I 
Idt' { ...} = fdt' { ...} + ~ z t T [ c o n s t . + ( p o w e r s  of at°)] 
t o 

I 

= ;dt' {. . .} + t - (m+x) (~tm) 2 [ cons t .+ (powers  of at°)] 
o 

The f i rs t  i n teg ra l  in (380) is 

_ ~ ( o + ¥ ) [  1 - t7 -2°  -t 7-°  
7-20 + 4d20 17-o ] 

(2-382) 

(2-383) 

_ ~ ( i + ~ d 2  o+x a) - 3 t - (o+x) (i+4d2 o+x at 0) 
-V-  a-6 y 

The consequence  of (380) is t he re fo re  

3 o+¥ 
91 (I)/~o(I) + ~-~(I+4d 2 --~--o,) 

I 1,12, t Y 1+4d2a t °  
- --~-3 (O+¥) ] d t {  [ -  ~-A- ;  20° ~lq--T~T] 2 } = 0 

~0 o ~o ~ t °+Y+l 

(2-384) 

Wi th  the a id of 9o(I) = - I /3 and, f rom (310) or (354), 

9 9/2 3 X 
d 2 = = = 12+4o2 o(2o+y) 4 2o+y 

, (2-385) 

th is says 

1 (1+3 ~ a )  91(1) = ~6 

1 l + 3 ~ t  ° 
+ o+x [dt { 

~o o t ~+¥-I  

t Y "1"12"2~0 ~ -~ -~ ] z }  
-[3~x-~; 

(2-386) 

Th is  e x p r e s s l o n  does not lend i t se l f  to fu r ther  a lgebra ic  s imp l i f i ca -  

t ions. 

The numer i ca l  va lue  of  91(I) ,  ob ta ined  by a me thod  ana lo -  
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gous to the one that produced A and or in Eqs. (312) and (313), is 

#1(I) = 0.3216868353717 , (2-387) 

wh ich  i l lus t ra tes once more the high prec is ion of the algor i thm. The 

Wronsk ian (377), at t=1, is employed in f ind ing 

~1'(I) = (4+¥)~i (I) - (~)4 ~o(o+~) (2-388) 

= 0.2869164052321 , 

whereas the d i f fe rent ia l  equat ion (375) suppl ies 

~1"(1) = 2Y41'11 ) - y l y + 1 ) 4 1 ( 1  ) 

(2 -389)  

= 0 .002936027410  

The a l g e b r a i c  s t a t e m e n t s  o f  (388) and (389) can be comb ined  i n t o  

4 1 ( 1 )  = 21 )4c~(o+y) + g ~1"(1) , ( 2 -390)  

w h e r e ,  b e c a u s e  o f  t h e  s m a l l n e s s  o f  ~1"(1) ,  t h e  l a t t e r  p a r t  i s  o n l y  a b o u t  

0.15% o f  t h e  sum. I n  c o n j u n c t i o n  w i t h  Eq.  ( 3 6 8 ) ,  t h i s  i m p l i e s  

6 1 A-2,~/3 [SA -2~ /3  41 (1) = 7 el  + g 6 ~1"(1) , (2 -391)  

which  we insert  into (374) to f ind 

_ 0 + 6  I ~1 ''(I) 
e2 14 e1211 .12,~ ] ; (2-392) 

~-6 2 [-Ej ~(o+y) 

here, the ~i"(I) term represents a 0.5% correct ion to 

0+6 
-~-  e12 = 0.671015 , (2-393) e 2 

resu l t ing in 

e 2 = 0.667554 (2-394) 

Natural ly ,  the subsequent  coef f ic ients  in (338) can be computed the 
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same way. 

The resul ts of this sect ion are summarized in 

-ETF(Z,N) = 0.768745 Z 7/3 

-0. 047310 (Z-N) 7/3 [ I+0. 825908 (I-N/Z) 0. 257334 

+0. 667554 (I-N/Z) 0.514668 

+ ... ] , (2-395) 

which is the weak- ion iza t ion  analog to the h igh- ion iza t ion  result  of 

Eq. (289) [and its supplement of Problem 7]. 

One last remark is in order. How could we get around wi thout  

making expl ic i t  use of the requi rement  -Xo(q)f~(Xo(q))  = q ? As appl ied 

to (361) it reads 

OO 

hq~' (hq) + > Cm[Yo(q)]m[hq~m(hq) - Ym ~m(hq)] 

m=l 

= - [ I(_~A) ]2 h-3 
q 

(2-396) 

Indeed, this together  wi th  (371) gives %(q) as a funct ion of yo(q), 

which can be conver ted into %(q) as a funct ion of q, whereaf te r  Eq. (340) 

ident i f ies el, e2, etc. Fortunately,  we came to know the re lat ion bet- 

ween f~(o) and hq in Eq. (356), so that we could avoid the more tedious 

(though, of course, equivalent) procedure based upon Eq.(396). 

Arb i t rar i ly  ionized TF atoms. We have spent some t ime on studying the 

analy t ic  form of such quant i t ies l ike e(q), Xo(q), and -f~(o) as func- 

t ions of q - both for q~1 and for q~o, which are the s i tuat ions of hi- 

ghly and weak ly  ionized atoms, respect ively.  These considerat ions,  how- 

ever, did not tel l  us how good are few-terms approx imat ions as in Eqs. 

(289) and (395). Let us, therefore, make the compar ison wi th the re- 

sults of numer ica l  in tegrat ions of the d i f fe rent ia l  equat ion obeyed by 

fq(X) for var ious values of q. 

We present  in Table 2 the outcome of such ca lcu lat ions for 

the n ineteen q values 0.95,0.90, .... 0.05 , supplemented by what we know 

for q=1 and q=o. The f ract ional  b inding energy 
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e(q)/e(o) = ETF(Z,N) /ETF(Z,Z)  (2-397) 

is add i t iona l l y  plot ted, as a funct ion of q, in Fig.4. We observe that 

1.0 

O.8 

0.6 

0 

S 0.& 

0.2 

00 I I I I 

0.2 0./-, 0.6 O.B 1.0 
q 

F i g . 2 - 4 .  The f r a c t i o n a l  b ind ing  energy  e(q)/e(o) as a f u n c t i o n  of q. 

removing 30% of the e lect rons from the neutra l  atom, reduces the b ind ing 

energy on ly  by I%; a reduct ion by 10% requi res the removal  of 65% of the 

electrons. Even when only 5% of the e lectrons are left, the b ind ing ener- 

gy is st i l l  more  than 50% of the neu t ra l -a tom one. Here is the quant i -  

ta t ive vers ion  of the qua l i ta t ive  remark that the innermost  e lect rons 

cont r ibu te  most  to the b ind ing energy, the outermost  least. 

From Eq. (286), (241) and Prob lem 7 we f ind that, for N<<Z, 

e(q)/e(o) N N 2 
1.489(N/Z)1/3 = I - 0.4236 ~ + 0.0909(~) + ... (2-398) 

The success ive approx imat ions  that  this represents  are compared to the 



98 

Table 2-2. TF quant i t ies  Xo(q) , 

1-q = 0, 0.05, ..., I. 

-fq'(O), and e(q)/e(o) for N/Z= 

N/Z x O (q) -fq'(O) e (q)/e (o) 

0 0 ~ 0 

0.05 0.416269 3.020996 0.537084 

0.10 0.685790 2.233243 0.662517 

0.15 0.934348 1.952470 0.742539 

0.20 1.179253 1.813524 0.800221 

0.25 1.428919 1.734116 0.844082 

0.30 1.689292 1.684993 0.878380 

0.35 1.965691 1.653119 0.905616 

0.40 2.263681 1.631819 0.927406 

0.45 2.589715 1.617337 0.944875 

0.50 2.951825 1.607410 0,958847 

0.55 3.360561 1.600602 0.969946 

0.60 3.830452 1.595965 0.978668 

0.65 4.382486 1.592853 0.985410 

0.70 5.048683 1.590815 0.990503 

0.75 5.881272 1.589530 0.994227 

0.80 6.973385 1.588763 0.996824 

0.85 8.513784 1.588345 0.998508 

0.90 10.92728 1.588149 0.999475 

0.95 16.10273 1.588081 0.999908 

I ~ B=1.588071 I 

actual  values in Fig.2-5. We see that the quadrat ic  approx imat ion  repro- 

duces the actual  data a lmost  per fec t l y  even for N~Z. [ Incidental ly,  the 

inc lus ion of the next term, 0.0024369(N/Z) 3,18would make the dev ia t ion  

unrecogn izab le  in Fig.5.] 

In contrast,  the per formance of the weak ion izat ion ex- 

pansion [Eqs. (338), (369), and (394)], 

1-e(q)/e(o) = I + 0.8259 qy/3 + 0.6676 q2y/3 + (2-399) 
0.06154q7/3 . . . .  

is s ign i f icant ly  worse; see Fig.6. ObviouslY,  the coef f ic ients  in this 

expansions do not get small as rapid ly as the ones in (398). One needs 

a few more terms in (399) for a h igh qual i ty  approx imat ion over a large 
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Fig .2 -5 .  Comparison of the  l i n e a r  and quadrat ic  approximations 

of Eq.(398) with the  ac tual  numbers ( c rosses ) .  

range of q¥/3. At this t ime, only the numer ica l  va lue of e 3 = 0.550066 

has been ca lcu la ted 19, whereas e 4, e 5, ... are not known as yet. This 

va lue for e 3 leads to the dashed curve in Fig.6. 

Va l id i t y  of the TF model. The de ta i led  d iscuss ion  of the TF model, 

wh ich touched upon all its impor tant  aspects,  has made us fami l iar  w i th  

the proper t ies  of TF atoms. In order  to improve the descr ip t ion  we must  

now f ind out what  the de f ic ienc ies  of the model  are. 

The approx imat ions  that  de f ine  the model  are those which 

brought  us from Eq. (40) to Eq. (41 . They are: (i) the (highly) semi- 

c lass ica l  eva lua t ion  of the t race in Eip accord ing  to the rec ipy of Eq. 

(I-43); and (ii) the d is regard  of e lec t ron-e lec t ron  in terac t ions  ex- 

cept for the (direct) e lec t ros ta t i c  one (in par t icu lar ,  we did not care 

for the exchange energy). Of the two, the f i rst  one is the more ser ious 

one, because it leads to an incor rec t  t reatment  of the most  s t rongly  
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Fig .2-6 .  Comparison of the l i n e a r  and quadrat ic  approximations of 

Eq.(399) with the  ac tua l  numbers (crosses ) .  The dashed curve is  

the  corresponding cubic approximation.  

bound electrons, the ones close to the nucleus that cont r ibute most to 

the energy. To make this point, let us recal l  that the appl icat ion of 

Eq. (I-43) (i.e., the evaluat ion of traces of unordered operators by phase 

space integrals) is just i f ied when commutator  terms, as they appear in 

the order ing process, are negl ig ib le.  In the present  context  this re- 

quires that the commutator  of the momentum and the potent ia l ,  which 

equals i t imes the gradient  of the potent ia l ,  be "small." Small  com- 

pared to what? Physical ly,  this oradient  is small if the potent ia l  does 

not change s ign i f icant ly  over the range important  for an electron. Sin- 

ce the quantum standard of length, associated wi th an indiv idual  elec- 

tron, is its deBrogl ie  wave length, l, a small gradient  means 

I~ ~ v l  << Ivl <2-4oo) 

Substant ia l  changes in V occur on a scale set by the d is tance r, so 
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that cr i ter ion (400) requires that 

<< r (2-401) 

On the other  hand, I is the inverse momentum (we ignore factors of two 

and pi for this k ind of reasoning),  which in turn is given by the square 

root of the potent ia l ,  see Eq. (42). In short, we have, as cr i ter ion 

for the va l id i ty  of the TF model, the re la t ion 

r ~ >> I (2-402) 

Upon in t roduc ing TF var iables,  this reads 

Z I/3 Ix f (x) I I/2 >> I (2-403) 
q 

First, we learn here that, for a given x, the TF model  is re l iab le only 

if Z is large enough. Second, there is in format ion about the regions 

where the approx imat ion  cannot be trusted. 

At short  d istances,  f (x) p rac t ica l ly  equals unity, and the q 
le f t -hand side of (403) is of the order of one, when x ~ Z -2"3, ! or r 

I/Z. Consequent ly ,  there is an inner region of st rong b inding where the 

TF approx imat ion  fails. Indeed, the innermost  e lectrons are descr ibed 

incorrect ly  in the TF model. 

Then, near the edge of the atom at X=Xo, fq(X) has the l ine- 

ar form of Eq. (329). Now the lef t -hand s ide  of (403) is of the order of 

one, when iX-Xol~Z-2/3/q 2, or Ir-rol%I/(Zq2). Thus we f ind the outer  

region of weak b ind ing to be also t reated inadequate ly  in the TF model. 

The s i tuat ion is, of course not bas ica l ly  d i f fe rent  for neutra l  atoms, 

a l though the argument  has to be modif ied. For q=o, the TF funct ion F(x) 

appears in (403). Its large-x form F(x)~I /x  3 impl ies that the cr i ter ion 

is not sat isf ied, once x is of the order Z I/3," or r~1. 

In Figs.7 and 8 plots of the radial  densi t ies 

D(r) = 4~r2n(r) (2-404) 

are used to i l lus t ra te these observat ions concern ing the va l id i ty  of 

the TF model. P lease note that the regions of fa i lure shr ink wi th  in- 

c reas ing Z. We conlcude that (in some sense) the TF approx imat ion  be- 
20 comes exact for Z+~. 

Nice, but in the real wor ld  Z isn't  that large, the more so 

Z I/3, which obv ious ly  is the re levant  parameter.  It ranges mere ly  from 
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F i g . 2 - 7 .  Regions of r e l a b i l i t y  and f a i l u r e  of t h e  TF model i n  

an i o n i z e d  atom {q=I /2) ,  i l l u s t r a t e d  by t h e  r a d i a l  d e n s i t y  as 

a f u n c t i o n  of t h e  TF v a r i a b l e  x. 

one to roughly f ive over the whole  Per iod ic  Table. Clearly,  modi f ica-  

t ions aimed at improv ing the TF model  are cal led for. Al l  fo l lowing 

Chapters  are devoted to their  d iscussion.  The TF atom is thereby the 

leading approximat ion,  and the supplements to the TF model  wi l l  all be 

regarded as small  correct ions.  For this reason it was necessary  to 

spend so much t ime wi th  a deta i led study of the TF model. 

It is impor tant  to apprec ia te  that the density,  wh ich  was 

used in Figs.7 and 8, is the r ight quant i ty  to plot for this purpose. 

The TF pred ic t ion  (51) 

nTF(r) = I [_2(V+~)]3/2 (2-405) 
3~ 2 

I (2Z/r) 3 " 2 - /  for r÷o 
3~ 2 

is c lear ly  very much in error at small  d istances. Also, for an ion of 
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F i g . 2 - 8 .  L i ke  F i g . 7 ,  f o r  a n e u t r a l  atom. 

degree of ion iza t ion  q, we obta in 

nTF(r) ~ I [2Zq(1_r/ro)]3/2 for r<r O 
3~ 2 

~ F ( r )  = o for r>r ° 

(2-406) 

for the dens i ty  around the edge of the atom. This is a sharp boundary  

instead of the quan tum-mechan ica l l y  correct  smooth t rans i t ion  into the 

c lass ica l l y  forb idden domain, where the real dens i ty  decreases exponen-  

t ial ly. In the s i tuat ion of neut ra l  atoms, the large-r  behav io r  of the 

dens i ty  is 

nTF(r) ~ I [ 2 ~ 144 ]3/2 = 243 I ~ - -  , (2-407) 
3~2 r x 3 8 r 6 

where  the large-x form of F(x) is employed. Again, this is not the cor- 

rect exponent ia l  dependence on the distance. 

The pr inc ipa l  lesson consis ts  in s ta t ing that the real  den- 
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sity is not of the form 

n = nTF + ( a small correction) (2-408) 

As a consequence, the TF density functional of Eq. (95) cannot be used 

as the starting point when looking for corrections. In contrast, the 

TF potential is very much like the real effective potential, inasmuch 

as it behaves like -Z/r for r÷o and like -(Z-N)/r for r+~, being struc- 

tureless in between. The structure is in the second derivative of the 

potential (related to the density), not in the potential itself. There- 

fore, we must find modif ications of the TF potential functional of Eq. 

(45) in order to overcome the insuff iciencies of the TF model. If this 

is so, why does the vast majori ty of people working on TF theory use 

the language of density functionals? As far as I can see, the reasons 

are historical ones. In the or ig inal  work by Thomas and Fermi 21 the 

principal variable was the density, whereas the effective potential 

played the role of an auxil iary quantity. This remained so over the 

years in basically all presentations of the subject, of which Gomb~s' 

textbook 22 is the most prominent one. Then, in 1964, the socalled Ho- 

henberg-Kohn theorem 23 (of which we shall sketch a proof in the next 

section) tr iggered the development of a density functional formalism. 

Because of this theorem, density functionals appear to be well  foun- 

ded theoretically, in contrast to formulations based upon the concept 

of the effective potential, which is widely regarded as an intuit ive 

approach (our introduction certainly is in this spirit) lacking a "ri- 

gorous" theoretical foundation. In the fol lowing section, which conti- 

nues the "general formalism" that we left after Eq. (40), we shall see 

that this preconception is wrong. The potential functional is as well  

defined as the density functional, and for the reasons given above it 

is the preferable formulation in atomic physics. 

Density and potential functionals. For a proo± of the aforementioned 

Hohenberg-Kohn theorem (we shall state it below), we return to the ma- 

ny part icle Hamilton operator of Eq. (I-7), where we replace the nucleus- 

uy an arbitrary external potential Vext(~), electron potential ~Z / r 

and split Hmp into the kinetic energy operator Hkin, and the interac- 

tion energy operators Hex t and Hee: 

N N N 

= j~1  2 + ~ - - -Vex t ( r j ) +  {~----" I = Hmp '= ½ PJ 0=I j,k=1 rjk 



105 

= Hki n + Her t + Hee 

(2-409) 

Di f ferent  ground states I~o > wi l l  correspond to d i f fer ing choices of 

Vex t. In order to s impl i fy  the argument, we shall assume that, except 

for the i r re levant  poss ib i l i ty  of a reor ientat ion of all spins, the 

ground states are unique (a sl ight, and otherwise innocuous, change of 

the external  potent ia l  would destroy any degeneracy anyhow). Thus, the 

densi ty  in the ground state, 

n(~') : ~ (d~2') (d~3')... (d~N') I<~)~½ ÷' . ÷' ,r 3, .,rNi~o>I 2 

+ ~ ( d ~ ) ( d ~ ) . . .  (d~)  [<r~,r',r~ .... rNI~o>I 2 

+ ... (2-410) 

+ f(drl)...  (drN_ I) l<r~,r 2 ..... rN_ I ,r I~o>l 2 

Nf ÷, ... ÷, ÷ ÷ . 4, = (dr2) (dr N) I<~'~', - ' - 2  " 'rN[~o >12 

(the lat ter equal i ty  makes use of the ant isymmetry of the wave function, 

and a trace af fect ing the spin indices only is understood impl ic i t ly) ,  

is a funct ional  of the external  potent ia l  V 
ext" 

Two d i f ferent  external  potent ia ls,  Vex t and Vext, wi l l  lead 

to two d i f ferent  ground states I~o > and I~o> , since the respect ive 

SchrSdinger  equat ions are di f ferent.  (The si tuat ion ~ext = Vext + const. 

is not interest ing, since we consider  only potent ia ls  that are 

cal ly di f ferent) .  The expectat ion values of H and ~ are min imized 
mp mp 

by I~o > and I~o>, respect ively,  so that 

<~oIHmpI~o > - <~ol~mpI~o > < <~oIHmp-~mpI~o > (2-411) 

and 

<~olHmpI~o > - <~ol~mpl~o > > <~oIHmp-~mpI~o > , (2-412) 

which are combined into 

<~olHmp-~mpI~o > < <~olHmp-~mpI~o> (2-413) 

Now we insert  
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H - 3  mp mp 

and obtain 

N 

= Hext - ~ext = ~--(Vext(~j )- ~ext(~j )) 
j=l 

(2-414) 

~olHmp-~mpl~o > 
N 

= ~ ( d ~ ) . . .  (d~) (Vex t(~i)- ~ext(rj)) 
j=1 

× . . . . .  2 

= f(d~') [Vext(~')- ~ext(~')]n(~') , (2-415) 

and likewise for I~o >. The implication of (413) is therefore 

f(d~') [Vext(~')- ~ext(~')][n(~')- ~(~')] < o , (2-416) 

from which we conclude that n ~ n. Different external potentials not 

only produce different ground states but also different ground-state 

densities. Consequently, a given n corresponds to a certain Vex t which 

is uniquely determined by n. In other words: Vex t is a functional of n. 

And since the ground state I~o> is a functional of Vex t, it can be re- 

garded as a functional of n as well. Then the expectation values of 

Hki n and Hee in the ground states are also functionals of the density. 

Here then is the Hohenberg-Kohn theorem: there exist universal (i.e., 

independent of Vex t) functionals of the density Ekin(n) and Eee(n), 

so that the ground-state energy equais 

E(n) = Ekin(n) + /(d~')Vext(~')n(~') + Eee(n) , (2-417) 

where n is the ground-state density. The minimum property of <~IHmpl~ > 

implies that the energy E(n) is minimized by the correct ground-state 
% 

density; trial densities n, which must be subject to the normalization 

S(d~')n~(~ ') = N , (2-418) 

yield larger energies E(~) than the ground-state energy E(n). It is 

useful to include the constraint (418) into the energy functional by 

means of 

E(n,~) = Ekin(n) + f(d~')Vext(~')n(~') + Eee(n)- 
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-~( N - f (d~)n ) , (2-419) 

since this E(n,~) is s ta t ionary  under  arb i t rary  var ia t ions of both the 

densi ty  n and the Lagrangian mu l t ip l ie r  ~. 

Before proceed ing  to construct  the re lated potent ia l  funct i-  

onal, a few remarks are in order. The Hohenberg-Kohn theorem is a very 

general  one; in part icular ,  the speci f ic  forms of Hki n and Hee never 

enter• The pr ice for the genera l i ty  is paid in form of a total  lack of 

knowledge concern ing the st ructure of the densi ty  funct ionals Ekin(n) 

and E (n). The theorem states no more than thei r  existence. Obvious-  
ee 

ly, the deta i led form of these funct ionals must depend upon the speci- 

fic Hki n and Hee that are invest igated [one could, for instance, con- 

sider re la t iv is t ic  cor rect ions to the k inet ic  energy, or, in appl ica-  

t ions to nuc lear  physics, ref lect  upon fermion- fermion in teract ions 

d i f fe rent  from the Coulomb form of (409)]. Also, no technica l  proce- 

dure is known that would  enable us to per form the step from H to E(n). 
mp 

One must rely upon some phys ica l  insight, when const ruc t ing  funct ionals 

that approx imate the actual  E(n). 

The k inet ic  energy in the ground state of H of (409) is 
mp 

the expecta t ion  va lue 

N I 2 

Ekin = <~o[Hkin l~o > = < ~ o I ~ P j  {~o > , 
j=1 

(2-420) 

which, in conf igura t ion  space, appears as 

Eki n = ~ N  S (d~')f (dry)... (dr~)V'~o (r',r~ .... r N) 

• ~ ' % ( ~ ' , ~  .... ~ I  (2-421 

= f(d~'l (d~"1½e (~'-~"1 ~'-~" nlll(~';r"l 

Here, once more, the ant isymmetry  of the wave funct ion has been used, 

and we have in t roduced the one-par t ic le  densi ty  mat r ix  

n(1)(~';P ') Nf(dr~) ~' * ÷, ~ ÷, ÷, = + (drN)9 O +" +, , • .. (r ,r 2 ..,rN)~o(r',r 2 .... rN) , 

(2-422) 

which is an immediate genera l iza t ion  of (410), so that the densi ty  

i tsel f  is the d iagonal  part of n(1)(~ , + ;r") , 
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n(~') = n (I)(~' ;~') (2- 423) 

Let us now attempt to in terpret  n(1)(r '.÷" ,r ) as the matr ix  element of an 

ef fect ive densi ty  operator, 

_ I p 2 _ V ( ~  ) _ ~)i~,, > n(1)(~';~ ") = 2<~' lq( ~ (2-424) 

(A more careful  d iscuss ion  hereof  wi l l  be presented in Chapter  Four.) 

The ef fect ive potent ia l  V(~) that appears here is unspec i f ied at this 

stage, except for remark ing that it is a funct ional  of the density,  
÷ 

n(r), because the densi ty  matr ix  on the lef t -hand side is such a func- 

t ional. The factor of two is the spin mu l t ip l i c i t y  which we now choose 

to make expl ic i t  instead of fur ther assuming that a t race on spin indi- 

ces is left implicit .  Note that V is determined wi thout  the opt ion of 

adding a constant,  s ince Eq. (423) has to hold for the g iven density. 

The d iagonal  vers ion of Eq. (424) showed up ear l ier ,  in Eq. 

(20). We are c lear ly  back to the p ic ture  of par t ic les mov ing indepen- 

dent ly  in an ef fect ive potent ia l  V. The notat ion estab l ished then is 

useful  here, too. In part icular,  we in t roduce the independent  par t ic le  

Hami l ton operator  

÷ ÷ I p2 V(~) (2-425) H(r,p) = ~ + 

just as in Eq. (3). 

Eki n = f(d~') (d~") [I~,.~,, 5 (~ ' -~" ) ]n  (I)(~' ;~") 

= f(d 'l 1½p 2 2 

I 2 
= t r  ~ p  D ( - H - ~ )  , 

The kinet ic energy of (421) is then rewr i t ten as 

(2-426) 

where we remember that the t race operat ion includes mu l t ip ly ing  by the 

spin factor. The quant i ty  E I of Eq. (7), 

E I = t r (H+~)q(-H-~) (2-427) 

is a funct ional  of V+~, thus a funct ional  of n, as V=V(n). The k inet ic  

energy (426) is conta ined in (427), 

Eki n = E I 

= E I 

- t r  ( V + ~ )  ~ ( - H - ~ )  

- f (d~')(V(~') +~)n (~') 

(2-428) 
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This we insert  into (419) and arr ive at 

E(n,~) = E I (V+~) - ](d~') (V(~') - Vext(~ ' ) )n(~ ' )  

(2-429) 

+ Eee(n) - ~N 

In the present  context, V is st i l l  regarded as a funct ional  of n. There- 

fore, (429) is the same funct ional  as in (419), we have done no more 

than reorganize the r ight-hand side. Consequent ly ,  the funct ional  (429) 

is s tat ionary under var ia t ions of n and ~ around their correct  values, 

just as (419) is stat ionary. An in f in i tes imal  var ia t ion of ~ induces 

a change in E(n,~) g iven by 

8~E(n,~) = ( ~ E  I (V+~) - N)8~ = o ; (2-430) 

it is, indeed, zero for the same reasons that impl ied Eq. (13). Now con- 

sider a var ia t ion of the density: 

6nE(n,~) = ~(d~')SnV(~')n(~')  - ~ (d~')6nV(~')n(~') 

- / (d~') (V(~') - V e x  t(~'))6n(~') 

+ f (d~')6n(~') Vee(~') 

= ~(d~' ) [ -V(~ ' )+ Vext ( r  ) + V e e  (~')]Sn(~') 

(2-431) 

where Eqs. (14) and (25) have been employed. The stat ionary proper ty  of 

E(n,~) thus impl ies 

V = Vex t + Vee (2-432) 

In words: the ef fect ive potent ia l  equals the sum of the external  poten- 

t ial  and the ef fect ive in teract ion potent ia l ,  Vee , def ined by Eq.(25), 

(dr' + 6nEee(n) = f ÷ )Sn(r,)Vee(~, ) (2-433) 

Note in part icular ,  that V is always a local (i.e., momentum indepen- 

dent) potent ial .  

So far, V has been regarded as a funct ional  of the density. 

Because of the c i rcumstance that the cont r ibut ions in (431), that ori- 
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g inate  in va r i a t i ons  of V, take care  of  themse lves ,  we can equa l l y  we l l  

t rea t  V as an i ndependen t  va r iab le .  The ene rgy  f unc t i ona l  

E(V,n, ( )  = E I (V+~) - f ( d ~ ' ) ( V - V e x t ) n  + Eee(n) - (N (2-434) 

is o b v i o u s l y  s t a t i ona ry  under  i ndependen t  i n f i n i t e s i m a l  v a r i a t i o n s  of 

V,n, and (. If we do not  wan t  to have  bo th  V and n as i n d e p e n d e n t  quan -  

t i t ies ,  we have the op t i on  of  e l i m i n a t i n g  one of the two. The step f rom 

(434) back  to (419) is done  by f i r s t  so l v i ng  Eq. (20) for  V, t he reby  

e x p r e s s i n g  the  p o t e n t i a l  in te rms of  the  dens i ty ,  and then  us ing  th is  

V(n) in (434). L ikewise ,  to ob ta in  a f unc t i ona l  o f  the p o t e n t i a l  a lone,  

one has to use Eq. (432), in w h i c h  V is a f unc t i ona l  o f  the dens i t y ,  
ee 

to express  n as a f unc t i ona l  of  V. Th is  n(V) then  e l im ina tes  the  den-  

s i ty  f rom (434) l eav ing  us w i t h  a po ten t i a l  f u n c t i o n a l  E(V,C) .  

Let  us i l l u s t r a t e  t hese  ideas w i th  the r e s p e c t i v e  TF func-  

t iona ls .  S t a r t i n g  f rom 

ETF(V,n , ( )  = f(d~) (- I ) [_2 (V+() ] 5/2 
15~ 2 

Z 
f (d~) (V+ ~) n 

(2-435) 

( N  , 

÷ 

I ÷ ÷ n( r )n(~ ' )  
+ ~ f (dr) (dr') I ~-~' I 

whe re  Vex  t is now the p o t e n t i a l  ene rgy  of  an e l e c t r o n  w i t h  the nuc leus ,  

-Z/r,  we get the d e n s i t y  f unc i t ona l  of  Eq. (95), a f te r  f i rs t  i n v e r t i n g  

[Eq.(51)]  

I 3/2 
n = - - [ - 2 ( V + ( ) ]  (2-436) 

3~ 2 

to 

_ I V = ~(3~2n)  2/3 - ( , (2-437) 

wh i ch  then  a l lows to rewr i t e  the f i r s t  and second te rm in 

d ing ly .  On the o the r  hand, if 

v z , [  ÷) = - -- (dr' n(r ') 
÷ ÷ 

r I r-r' I 

is so lved  for  n, 

(435) accor -  

(2-438) 

1 V 2 ( V +  Z n = - ~ ~) (2-439) 
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(this is, of course, Poisson's equation), we can e l iminate n from the 

second and third term in (435) and are led to the TF potent ia l  funct io- 

nal of Eq. (45). Of course, wi th in  the f ramework of the TF model, the 

three funct ionals E(V,n,~),  E(n,~), and E(V,~) are per fect ly  equiva- 

lent, but I repeat: as a basis for improvements over the TF approxima- 

tion, the potent ia l  funct ional  is the preferable one. 

We have invest igated ear l ier  the scal ing propert ies of the 

TF model. Let us now see, what  one can state about the behavior  of 

the exact densi ty  funct ionals Ekin(n) and Eee(n) under scale t ransfor-  

mat ions of the density, 

n(~ ' )+n (~') : b3 n ( ~ ' )  (2-440) 

T h e  TF approximat ions to Eki n and Eee 

intu i t ive ly  expect: 

scale in the manner that one would 

(& in (n ) )TF  = f (d~') 1 (3~2n(~,))5/3 
I 0~ 2 

-3 f(d~'  ) I o ÷ ÷ ~ ( 3 ~ b 3 n  (~r') ) 5/3 
I 0~ 2 

= 2z (Eki n (n))TF ' 

and l ikewise 

I (d~" n (~') n (~") 
(Eee(n.))TF = 2 ] (d~') ) I F'-~''I 

+ a[Eee(n)]TF 

For the exact funct ionals,  the equat ions 

Eki n(n ) = ~2 Ekin(n) 

and 

Eee(n ) = # E e e ( n )  

do not hold, however; even their  combinat ion 

(2-441) 

(2-442) 

(2-443) 

(2-444) 

Ekin(n ) + E e e ( n  ) = ~2 Ekin(n ) + ~ Eee(n) (2-445) 



112 

is only true if ~=1+e wi th an in f in i tes imal  E. This surpr is ing obser- 

vat ion has been made only recently, by Levy and Perdew. 24 Please note 

that the statement (445) is, indeed, only needed for such ~ 1 ,  in or- 

der to der ive the v i r ia l  theorem 

2 Ekin(n) = - Eee(n) + f(d~')n(~')~ ' .~ '  Vext(~') (2-446) 

from the min imum proper ty  of the dens i ty  funct ional  (417). 

As a f i rst step towards proving these remarks about Eqs. (443) 

through (445), we recal l  that to any given densi ty  there correspond 

uniquely  a cer ta in external  potent ia l  and a cer ta in ground state. Let 

us keep the notat ion Vex t and 14o> for the ones related to the actual  

ground-state dens i ty  n, and wr i te Vext ~ and I ~ >  for the ones that go 

wi th the scaled densi ty  n . Thus I~o~> obeys 

(Hkin + H ~ext + Hee) I~o ~> = Eo~ I~o ~> , (2-447) 

where E ~ is the ground-state energy for n . Clearly, if we t ransform 
o 

I~o > accord ing to 

+, . + ,  3 ~ / 2  ÷ . .  ~ 1 ~ o  > , <r I . . . .  rNl~o > ÷ <~r1' ,. , i2-448) 

then the densi ty  is scaled as in Eq. (440). Inasmuch as 

÷ + !  + ÷ 
3 N / 2  <~r1,, .... ~rN[ = <r1' , .... r~IU(~ ) , (2-449) 

where the un i tary  operator  U(~) is g iven by 

I N ÷ + ÷ + 
U(p) = exp { i ~ - - - ( r j . p j + p j . r j )  

j=1 

logp } , (2-450) 

we can read (448) as 

l~o> ÷ u(~)I~o> 

The point is that this scaled 

(2-451) 

I~o> is not equal to I ~ >  . This emerges 

from cons ider ing the Schr~d inger  equat ion obeyed by U(~) I~o>, which is 

immediate ly  obta ined from the one sat is f ied by I~o >. We have 

U(2) (Hki n + Hex t + Hee) U -I (~) U(2) [~o > = EoU(~)I~o>. (2-452) 
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The act ion of U upon ~j and pj is simply 

u(~) ~ u -I(I~) = ~ ~j 
] 

+ U-I I + U(~) pj (~) = ~ pj , 

so that 

u -I = !  
U(B) Hki n (~) p2 Hkin ' 

U(~) H U-I (~) = I-- H , 
ee ~ ee 

and 
N 

U(~) Hex t U "I (~) = > Vext (B~ j) 
j=1 

(2-453) 

(2-454) 

(2-455) 

Consequent ly,  

(Hki n + ~ZU(B)HextU-I (B) + ~Hee)U(B)14o> = B2EoU(~)I~o > , 

(2-456) 

which, in v iew of the factor B mul t ip ly ing Hee , is not of the form re- 

qui red for I ~  > in Eq. (447). Thus, indeed 

u(~)I%> ~ I %  ~> , (2-457) 

for ~ I .  Nevertheless,  l~2>v and U(~) I~o> are not unrelated. In part i -  

cular, they give r ise to the same density, n (r), when inserted into 

(410). This impl ies the equal i ty  

<~2 IH ~ 1 % ~ >  = <~ I u -I(~) ~ ~ u(~)1%> (2-458) ext o ext ' 

and for the same reason 

U-1 <~o [ Hext I~o> = <~o ~ I U(~) Hext (~) [~o~> (2-459) 

We are now prepared to employ the min imum proper ty  of the expectat ion 

value of the Hami l ton operator  of  Eq. (447) in the form 

<~O~ I (Hkin + H~ext + Hee) I~o ~>  = < 
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<~o I U-I(~)(Hkin+He~xt+Hee)U(~) ~o > , (2-460) 

which, as a consequence of Eqs. (454) and (458), says 

Ekin(n ) + E e e ( n  ) =< ~2 Ekin(n) + ~ Eee(n) (2-461) 

The equal sign holds only for ~=I, in the first place. Since the right 

hand side always exceeds the left hand one for ~ I ,  however, the two 

sides must agree up to f irst order in ~=~-I, at least, so that the 

equal sign actual ly  appl ies to ~=I+~ wi th an inf in i tes imal  ~. This is 

the statement we made at Eq. (445). Another way of expressing the same 

fact is 

d (n)  + (n ) ]  2 (n) + (n) (2-462) d-~[Ekin Eee I = Ekin Eee 
~=I 

We can also exploi t  the min imum property of the expectat ion value of 

the Hami l ton operator  of Eq. (456). Here we have 

~2 -1 
<~o I U-I (~) (Hkin + U(~)Hex t U (~) + ~Hee)U(~)J~o > 

(2-463) 

<~o ~ I (Hkin + ~2U(~)Hex t U -I (~)+~Hee) I~o ~ > , 

or with (454) and (459), 

~2 Ekin(n) + ~2 Eee(n) _~ Eki n(n ) + ~ Eee(n ) , 

where, again, the equal sign is true for all ~'s that di f fer from uni- 

ty at most inf in i tesimal ly.  

Equat ions (461) and (464) can be combined into two state- 

ments about Eki n and Eee individual ly,  namely 

(~-I) [Eee(n ~) - ~ Eee(n)] ~ o 

and 

2 = 
(~-I) [Eki n(n ) - Eki n(n)] < o 

(2-464) 

It seems natural  to assume that the lef t-hand sides in (465) and (466) 

are of second order in ~=~-I for small  g. If this were true, these equa- 

t ions would mean that 

(2-466) 

(2-465) 
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d (n )  I - E (n) > o (2-467) 
d-~ Eee ee 

~=I 

and 

d Ek in(n ) I - 2 Ekin(n) < o (2-468) db ~=I 

As a mat ter  of fact, we shal l  see below that equal signs have to be 

wr i t ten  in (467) and (468) instead of ">" and "<". Consequent ly ,  the 

lef t -hand sides in (465) and (466) are, at least, of order g~, the re- 

spect ive square brackets of order g3. Therefore,  also in Eq. (461) the 

equal i ty  sign holds up to order g3, at least. These remarks go beyond 

the resul ts of Ref.24, where Levy and Perdew stopped at stat ing (465) 

and (466). 

For a proof  of what  has just been said, we have to turn to 

the potent ia l  funct ional  EI(V+~). In Eq. (216) we found that the TF ap- 

prox imat ion to E I responds like 

(El (V+~) ]T F + ~ 5v/2-3 [El (V+~.) ]TF , (2-469) 

when V and ~ are scaled accord ing to Eqs. (211) and (214), 

V(r) ÷ bY V(~r) , ~ ÷ ~ (2-470) 

A l though the exact El(V+{) does not behave l ike (469) for arb i t rary  v, 

it does so for v=2: 

for 

E I (V+%) ÷ 2 El (V+{) (2-471) 

÷ ÷ 2 ÷ V(r) ÷ V (r) = V(br) 

(2-472) 

We demonst ra te  this by f i rst  observ ing that 

I p2 2 ÷ Z 
n(- [ - ~ V(~r) - ~ {) 

= - 

I p2 ÷ U-I = U ( ~ )  n ( -  ~ - V ( r )  - ~) (~) 

(2-473) 
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where U(~) now denotes the one-par t ic le  vers ion of 

U(~) = exp {i [ ( r .p  + p.r) log ~} 

This i s  used in 

El(V+{) 

(450) , 

= t r (1 p2+ V(~)+~)~(- 1 p2_ V(~)-~) 

I p2 + I p2 2 ÷ 2 ÷ t r (~ + ~2V(~r)+~2~)q(-  [ - ~  V(~r) -~ ~) 

I v(~)+~) (- yp  -v(~)-~) (~) = ~2tr U(~) (~p2+ H I 2 U-1 

(2-474) 

= ~2 EI(V+~ ) , (2-475) 

or 

EI(V ~ + ~2~) = ~2 EI(V+~ ) , (2-476) 

indeed. [The invar iance of the t race under cycl ic permutat ions has been 

employed in the last step of (475).] 

Before proceeding, it is instruct ive to show where the at- 

tempt of repeat ing the argument for v~2 fails. The analog of (473) would 

require an operator  (not necessar i ly  a uni tary one), U (~), such that 

U~I ÷ U (~) ~ (~) = ~r , (2-477) 

÷ U~I - ~ / 2  ÷ U ( ~ )  p (~) = p 

Unfor tunately,  there is no such operator, except for v=2, as emerges 

from cons ider ing the commutator  of the t ransformed quant i t ies:  

,-v12_ ÷ -I ++ I-v12 r ÷] [~ p ] U  = i I (2-478) i ~  + =  [~ p : U , 

This is a contradict ion,  unless v=2. 

In the sect ion about the scal ing propert ies of the TF model  

we remarked that a scal ing t ransformat ion of the ef fect ive potent ia l  

V(r) must  be accompanied by a corresponding t ransformat ion of the ex- 

ternal  potent ia l  Vext(r).  In that ear l ier  context, this was achieved 

by changing Z appropr ia te ly  [Eq. (213)], because the only Vex t conside- 

red then was the Coulomb potent ia l  -Z/r. In the more general  present  

discussion, we preserve the structure V-Vex t by scal ing Vex t l ike V in 

Eq.(473), 

Vext (~  ) ÷ Vext ,~(~ ) = ~2 V e x t ( ~ )  (2-479) 

The densi ty  is, of course, scaled as in (440). Under these s imul tane- 
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ous transformations of V,n,~, and Vex t, the potential-density functio- 

nal of (434) behaves as described by 

E(V,n,~) ÷ E (V,n,~) = E(V ,n ,~2~) 

= ~2{EI(V+ ~) - ~(d~')(V(~') -Vext(~ ' ) )n(~ ' ) -~N} 

+ E e e ( n  ) (2-480) 

Since E(V,n,~) is stationary under infinitesimal variations of V,n, and 

~, all first order changes must originate in the scaling of Vex t. [The 

same argument was also applied to ETF(2) of Eq. (219).] Thus, 

d-~d E (V,n,~) i = ](d~')n(~') ~ Vext, ~(~')I , (2-481) 
~=I ~=I 

or with (479) , 

d 
d-~ E2 (v'n'~) I 

~=I 
= (dr')n(~') [2 Vext(r ')+r'-V'Vex t (~')]. 

(2-482) 

On the other hand, Eq. (480) implies 

d 
d-~ E2 (v'n'~)I = 2 {E I 

~=1 
(V+~)- f (dr'÷) (V(~')-Vex t(~')) 

× n(~')-~N}+ ~ Eee(n ) 1 
~=I 

(2-483) 

The equivalence of these two right-hand sides, combined with the virial 

theorem (446), yields 

d Ee e(n ) I - E (n) 2 (n)-2{E 1 (V+~)-f (dr')Vn-~N} . d-~ ee = Ekin 2=I 
(2-484) 

The last step consists of recognizing that for the actual V,n, and ~, 

the contents of the curly brackets equals the kinetic energy. This emer- 

ges from Eq. (428). Consequently, the right-hand side is zero. We arrive 
at 

d (n)[  = E (n) (2-485) d-~ Eee 2 ~=I ee ' 
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and as a consequence of (462), 

d (n )  I = 2 (n) d-~ Ekin Ekin 
~=I 

(2-486) 

Indeed, the statements fo l lowing Eq. (468) are just i f ied. 

Please be aware of the fo l lowing menta l  trap. If the densi ty  

is e l iminated from E(V,n,~),  so that we are left wi th the potent ia l  

funct ional  E(V,~), one could th ink that the resu l t ing k inet ic  energy, 

Ekin(V,~) = E I (V+~) - f (d~')V(~')n(~') - ~N (2-487) 

scales accord ing to 

Ek in(V ,~2~) = ~2 Ekin(V,~) , (2-488) 

inasmuch as [Eq. (14)] 

6 V EI(V+~) = f(d~')6V(~')n(~')  , (2-489) 

together  wi th  (471), impl ies 

n(~') * ~3 n ( ~ ' )  , (2-490) 

if V and ~ are scaled as in (472). This is not so, however, because the 

potent ia l  funct ional  that is to be inserted into Eq. (487) for n(r') is 

not the one obta ined from (489), but the one that emerges from 

6 n Eee(n) = f(d~')6n(~') [V(~') - Vex t(~')] (2-491) 

[Eqs. (432) and (433)]. In the TF approximat ion,  for instance, this is 

the Poisson equat ion 

I V , 2  ÷ + 
n ( ~ ' )  = - ~ ( V ( r ' )  - Vext(r '))  (2-492) 

in which the scal ing of V and Vex t [Eqs. (472) and (479)] produces 

n(r') ÷ n(~r' ) , (2-493) 

d i f ferent  from the des i red form of (490). Therefore,  Eq. (488) is not 

true, not even for ~'s that d i f fer  from uni ty  by an in f in i tes imal  amount. 
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The k inet ic  energy by i tsel f  is not a centra l  quant i ty  in the potent ia l  

funct ional  formal ism. What we have just seen is an i l lust rat ion of this 

remark. 

Relat ion between the TF approx imat ion and Hartree's method. Somewhere 

at the beg inn ing  of Chapter  One there is the promise to discuss the con- 

nect ion between TF theory and HF theory "to some extent in Chapter  Two." 

This t ime has f inal ly  come. 

Har t ree 's  25 basic idea consists in approx imat ing the ground- 

state wave- func t ion  by a product  in which each factor refers to just 

one of the electrons: 

< ~ I '  ' ' " " "  ' ,r 2 ,r N i~o > ~ ~i(~i)~2(~2) ..~N(~N) (2-494) 

The ~j's are supposed to be orthonormal,  

f(d~') ~j*(r') ~k(~') = 5jk , (2-495) 

so that the wave funct ion (494) is proper ly  normal ized to unity. The 

requ i rement  of ant isymmetry  is not sat is f ied by (494). Consequent ly,  

exchange effects are not t reated correct ly.  In the present  context, 

where we want  to make contact  wi th the or ig inal  TF model,  neg lect ing ex- 

change is consistent.  We are actual ly  ta lk ing about Hartree's approxi-  

mation, not about the Har t ree-Fock model, which does include exchange. 

This res t r ic t ion is not essent ia l  for the discussion. The argument can 

be repeated for a compar ison of HF theory wi th the proper  extension of 

the TF model  that includes the exchange interact ion, wh ich wi l l  be de- 

r ived in Chapter  Four. At this moment  we are content wi th the simple 

TF model  and Hartree's ansatz (494). 

With Eq. (494) we obtain approx imat ions to the expectat ion 

values of the three parts of the many-par t ic le  Hami l ton operator  (409). 

These are given by 

and 

Eki n = < %  IHkin I~ O> 

N 
I , .~, 

~ - - -  f (d~') ~ ~'~j (~') ,j 

j=1 

(2-496) 

Eext = <~olHextl ~o  > 



120 

~"" f (d~') 
j=1 

~j*(5') Vex t(~') 0j (~') 
(2-497) 

as well as 

Eee = <0o I Hee I ~o > 

N N 
. +  -~. 

I r ' - r "  I j=1 k=1 
k~j 

- - 0 k ( ~ " ) ]  

x 0j (5') (2-498) 

Since the description does not pay attention to the exchange energy, we 

do not have to be pedantic either when it comes to excluding the self- 

energy. In other words: it is perfectly consistent to include the k=j 

term in Eq. (498). The approximation to the ground-state energy is then 

E = <0olHmpl~o > ~ EHartre e 

N 
~ ( d ~ '  I_+, ,(~,).V 0j (~' (~' (~')0j (r') = ){2 V ~j )+0j* )Vex t 
j=1 

N 

+ ~0jl *(~') [ ~--~(d~")0k*(~") I F'-~"II O k(~'')]0j (~')} 
k=1 

(2-499) 

The as yet undetermined 0j's are now chosen such that EHartre e is sta- 

tionary under infinitesimal variations of them. Thus 

N , I , ÷ ,  N + ÷ 

~ f ( d ~ ' ) 6 0 j  (~') {- ~V 2+Vext ( r  ) + ~ f ( d r " ) 0 k * ( r " ) - -  
9=I k=1 E~,+I _ r  II 

× ~k(~")}0j(~') = o (2-500) 

The variations 6~j* are not arbitrary but subject to 

f(d~')8~j*(~') ~k(~') = o , (2-501) 
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which is a consequence of the orthonormalization (495). Therefore, Eq. 

(500) implies 

N (~,, I 1 ,2 + (~ ' )  +~---~ ( d ~ " ) , k *  ) *k  (~'') }~ j  (~ ' )  
{- gV Vex t k=1 l~'-~"I ¢2-502) 

N 

= > ejl ~l (~') 
/=I 

where the constants sjl are the Lagrange mulitpl iers of the constraints 

(495). The single-particle wave-functions ~j and the sjl are to be de- 

termined simultaneously from Eqs. (502) and (495). 

The hermitian property of the differential operator {...} in 

(502) is employed in demonstrating that the matrix (sj/) is hermitian: 

Ejl = f(d~') ~/*(~'){...} ~j(~') 

= ~(d~') ~j(~'){...} ~l*(~') = e~j 

(2-503) 

Another observation is the nonuniqueness of the solution to (502) and 

(495). If ~j and Sjl are one solution, then 

N 
~j = ~- -  uj/ ~£ (2-504) 

/=I 

and N 
= u L  

k,m=l 

(2-505) 

is another one, whereby (uj/) is any unitary matrix, 

N 

) Umk = 6jk 
m=l 

(2-506) 

It is essential here that the density, that appears in (502), is in- 

variant under such a unitary transformation: 

N 
~*(~') ~k (r') (r') = ~k 

k=1 
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N 

=> ~k*(~') ~z(~'l = n ( ~ ' )  (2-5071 
k=1 

[The approximate wave-function (494) is obviously not invariant under 

(504). This is nothing to worry about, because as soon as (494) is anti- 

symmetrized, the effect of (504) reduces to the mulitplication by a 

phase-factor.] 

Since (s41)j is hermitian, we can choose (U4/)j such that 

(~j/) is diagonal, 

sj/ = Ej 6j/ (2-508) 

Then Eq. (502) is Schr~dinger's equation in appearance, 

~ ~ (~') (2-509) {_ ?,2 + V(~,)}~3(~, ) = ej ~j 

where the effective single-particle potential V is 

N 
* I 

V(~') = Vext(~') + T--f(d3")~k (3")13'-3"I ~k(r") ' (2-510) 
k=l 

which is equivalent to 

N 

> ~k* (3') ~k (3') 
k=1 

4rcI V'2(V(3')-Vext(3') ) (2-511) 

Let us now look at the Hartree energy. It is 

N 
• I ,2  ( 3 ' )  

EHartree = j~=1 f (d3')~j* (~') {- ~V +Vex t 

I (V(~') - (3')) }~j (~') + ~ Vext 

N N 
= ~ ] ( d 3 ' ) ~ j  (3') 7- -  ejl ~/(r ) 

j =I /=I 
(2-512) 

- l f  (d3') (V(~') -Vex t 
N ¸ 

(3 ' ) )Z~ j * (3 ' )~ j  (3') 

j=l 

where both (502) and (510) have been used. With the aid of the ortho- 
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normal i ty  of the ~j 's and wi th Eq. (511) we obta in 

N 

EHartree = ~=I ejj ~ f(d~')[~' (V(~') - V e x  t (~,))]2 . (2-513) 

This wi l l  look even more like the TF potent ia l  funct ional  after we use 

N N N 

> ejj = gjj = ej , 

j =I j =I j =I 

(2-514) 

% 

in conjunct ion wi th the fact that the E. are the N smal lest  e igenvalues 
3 

of the s ing le-par t ic le  Hami l ton operator  

H = ~I p2 + V(~) , (2-515) 

to wr i te  

N 
ejj = tr H q(-H-~) 

j=1 

, (2-516) 

where, of course, ~ is such that the count of occupied states equals 

the number of electrons: 

N = tr q(-H-~) (2-517) 

If we combine (516) and (517) in the now fami l iar  way, 

N 

= tr(H+~)q(-H-~) - ~N ejj 

3=I 

= E I (V+~) - ~N , (2-518) 

then 

EHar t re  e = E 1 (V+~) - 8~  f (d~') [~' (V(~') - V e x  t(~'))]2- ~N. 

(2-519) 

It becomes clear now what the fundamenta l  d i f ference is bet- 

ween the TF approach and Hart ree 's  method. The latter asks: what are 

the opt imal  s ing le-par t ic le  wave funct ions to be used in (494)? 
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26 
The answer is g iven by the Har t ree equat ions (502). But suppose we 

do not care that much for the ~i's. Then we can equal ly  wel l  put the 

quest ion: what  is the best e f fect ive potent ia l  in (519)? We reply  imme- 

diately: the TF potent ia l ,  if EI(V+~) is evaluated in the semic lass i -  

cal limit. Does this mean that the TF model  is an approx imat ion to 

Hart ree 's  descr ip t ion? No, it is rather  the other  way round: the Har- 

t ree p ic ture  conta ins more deta i l  than it should. In v iew of all the 

approx imat ions made before ar r iv ing at (519), there is abso lu te ly  no 

point  in being ext remely  prec ise when eva luat ing  EI(V+~). 

Summing up: the TF model  and Har t ree 's  method are real ly  

two independent,  though related, approaches. N o n e  is a pr ior i  the bet-  

ter or worse one. Whereas I do not want  to go as far as Lieb does ["... 

TF theory is wel l  def ined.( . . . )  - a state of af fa irs in marked con- 

t rast  to that of HF theory."27] ,  I do have the impress ion that in apply-  

ing TF methods one is more conscious about the phys ica l  approx imat ions 

that enter the development .  

In one respec t  the Har t ree detour  over the s ing le -par t i c le  

wave funct ions is super ior  to the TF phase-space integral:  the Schr~din-  

ger equat ion (509) t reats the st rongly  bound electrons correct ly  wi th-  

out any fur ther ado. We shal l  see in the next Chapter  how the TF model  

can be modi f ied,  in a s imple way, in order  to handle these innermost  

e lectrons properly.  Wi th  this improvement  the TF descr ip t ion  is in no 

way in fer ior  to Hartree's.  

P lease do not miss how natura l ly  we have been led to a poten- 

t ial  funct ional,  Eq. (519), not to a densi ty  funct ional.  Here is, once 

more, support  for our v iew that TF theory is best thought  of as formu- 

lated in terms of the ef fect ive potent ia l .  Then the dens i ty  is not a 

fundamenta l  but a der ived quant i ty.  

Problems 

2-I. For the genera l i za t ion  of the independent -par t i c le  Hami l ton  ope- 

rator of Eq. (3) to 

I )2 v (~ )  , H = : ( ~ -  ~(~)  + 

e 2 
where ~ = ~-~ = 1/137.036.. .  is Sommerfe ld 's  fine s t ructure constant  

and A is an ef fect ive vec tor  potent ia l  (in a tom ic  units),  show that the 

analogs of (14) and (20) are 
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~I EIP = ~I El 
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5(~')=2<r' ]  [ (p-~A)~(-H-E)+~(-H-E) (p-~A)] I~'> . 

Then genera l ize Eq. (25) to read 

6Eee = f (d~') [6n(~')Vee(~') - 0.63.Aee] 

Next conclude that, instead of 

is now 

since 

E = Eip - S (d~')Vee 

= Aext + Aee ' 

(30), the stat ionary energy expression 

(~')n(~')+~S ÷ ) ee(r' ee ' (dr' A ÷ ).j(r') + E 

wi th a given external  vector  potent ia l  Aex t. 

of E I depend on A? 

How does the TF vers ion 

< E = S ( d S ) [ p ( 5 ) ¢ ( 5 ) -  1 ÷ + = ~-~ (V¢ (r))  21 , 

where the equal sign holds to f irst order in 6~ and 6~. Conclude, that 

the self force vanishes [Eq. (86)], and also the self torque, 

f CdS) ~ (5) 5 × ( - ~  (5)) = o 

2-3. Wri te a computer  program for the TF funct ion F(x) as out l ined 

around Eq.(200). Use it to conf i rm 

Use (dS) = (dS') and (~ (5 , ) ) 2  = (~,~(~,))2 to wr i te  the pr imed 

energy as 

E' fCd~ ' l [ pG '  ÷ ÷ ÷' I ÷ = +6e+6exr ) ~ ( ~ ' ) _ ~ ( ? , ~ ( ~ , ) ) 2 ]  

5 = 5' + 6~ + 6~×r' 

2-2. Another  appl icat ion of the stat ionary proper ty  of the e lectrosta-  

tic potent ia l  funct ional  of Eq. (78). Instead of ~(~), insert ~(~'), 

w h e r e  r '  i s  r e l a t e d  t o  r t h r o u g h  a n  i n f i n i t e s i m a l  t r a n s l a t i o n  b y  6~ 

and an in f in i tes imal  rotat ion around 6~, 
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~dx F(x) = 1 .80006394  
O 

co 

fdx [F(x) ]  2 = 0 .61543464  , 
O 

fdx [ -F  ' (x)] 3 = 0 .35333456  , 
O 

co 

~dx/~ ' -~ - / -x  = 3 .915933  
O 

2-4. W i th  the c o m p u t e r  p r o g r a m  of P r o b l e m  3 check  that  the  m a x i m u m  of 

xF(x) occurs  at x=2 .104025280 ,  whe re  F ( x ) = 0 . 2 3 1 1 5 1 4 7 0 8 .  

2-5. Th is  m a x i m u m  of  xF(x) is r e l a t i v e l y  broad,  so tha t  

F" (x)/ [F(x)]  z = [x F(x)] - I /2 ~ cons tan t  

An a p p r o x i m a t i o n  to F (x) is t h e r e f o r e  r e p r e s e n t e d  by  the  so lu t i on  of  

~"(x) = =~6[~(x)]2 , x = const.  , ~2 

sub jec t  to F(o)=1 , ~ (~ )=o  , and (to f ix  the v a l u e  of ~) 

fdx x 1 /2 [~ (x ) ]3 /2  = I 

O 

F i n d  t h i s  ~ ( x ) .  28 How good i s  t h i s  a p p r o x i m a t i o n  when i t  i s  emp loyed  

in c a l c u l a t i n g  the  numbers  of  P rob lems  3 and 4? 

2-6. Inser t  %1(o) of  Eq. (283) in to Eq. (274) to f ind ~i'(o) and ~2' (o) 

as the c o e f f i c i e n t s  in 

~l'(o) = - I + #i ' (o) I + ~2'(o) 12 + ... 

C o m p a r e  w i t h  Eqs. (280) and (281). 

2-7. F ind  ~2(t) f rom Eq. (278); then  eva lua te  ~3(o).  Use it to show tha t  
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(i) in Eq. (285) : 

0((N/Z) z) = ( 1 2 - - -  
21067 

60~2 
524288) (;)2+ 0 ((N/Z) 3) + ~ 

(ii) in Eqs. (286) and (289): 

2 223 262144, N z 3) 
0((N/Z)2) = (~+ 30~2 ~ J  ( ) +0((N/Z)  

(iii) in Eq. (287) : 

22 2883584) N 2 ~) 0((N/Z)2 ) = ( 19019+  ( ) + 0((N/Z) 
90~ 2 2025~ 4 

2-8. Use the recurrence re la t ion (278) to show that 

el(t) ~ (l-t) (51+2)/2 for t ~ I 

Look back at Eq. (311) and not ice that, indeed, the f i rst occurence of 

A is in the (1-t) 7/2-term, and of A 2 in the (1-t) 6-term. 

2-9. Show that, for I>A , el(t) has a pole, at t=tl>o, of the form 

400 tl 
~(t) ~ 12 (t-tl) 2 for t ~ t I 

AS I + % t i ÷ I  , SO that ¢~(t)~l [~(t) ]  3/2 for t1<t ~ I. Use this to de- 

monst ra te  that 

1 - t l - ~  7 d~ _ (~u9)  2/5 

o /I 4 .5/2 

for I>> A 

2-10. Upper and lower bounds to A -2"3 ! can be obta ined from Eq. (301) when 

it is combined wi th  the inequal i t ies of (242). A sui table tr ial  funct ion 

f(x) is given by 

i F ( x )  for o<  x=1< x I 
f (x) 

I 

X~oo (x2-x) for x I < x , 

where q is fixed, x ° is arbi t rary,  and x I and x 2 are such that f(x) and 

its der iva t ive  are cont inuous. For q~>o, x I is suf f ic ient ly  large to jus- 
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t i fy the use of the asymptot ic form (179) 

implies 

4 432 
X 2 = ~ X  I and x14 = q-7~ O 

Then der ive 

co  

2 ~dx If(x)]5/2 
5 I/2 

O x 

2 2 (12) 5 
= B 

7 35 7 
x I 

and 

1 ~dx[f' (x) + ]2 = B 56 
2 0  x17 

Putt ing everyth ing together you should have 

for F(X~Xl). Show that this 

+ 2(X_~o)5/2 (4)3.~13,5~-9/3,~; 

Xo +7 ( )2 xl 

(12) s 30 8~ + 3 Xo 
- [ 7  4 x ~ I  ] x17 3/3 

3 3 A-2/3 q7/3 
> 7 B -  7 , for q÷o . 

It is  then useful  to switch from x ° to a new independent parameter,  I, 

by set t ing XoE12/3q -I/3. Check that then x i=(432)I /4 1 I/6 q-I/3, so 

that, for all I>o, 

A-2/3 7 f2 /3  8 (56~_ i-7/6 
> ~ ~ 3/3 30) 

Opt imize I and find the lower bound on A -2/3 of (303). Show that, for 

this opt imal  I, the rat io x2/x ° does not equal unity. Consequent ly,  the 

tr ial  f(x) does not change its sign at X=Xo, as the actual  f(x) does. 

Impose x2=x ° and demonstrate that a lower bound on A -2/3 emerges, which 

is worse than the previous one. 

For an upper bound on A -2/3 use the tr ial  funct ion 

~F ' (x) + q/x O 

g(x) = ~ -q /Xo~1-x /x  2) 

for o~x~x I 

for Xl~X~X 2 

for x2~x 

Make sure that g is cont inuous and obeys Eq. (243). Then evaluate the g- 

funct ional  of (242). You should get 
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6t ]7/3 I )I/3[ I ( ~  
A-2/3 < I [  (5t'1)(3-t) (I - ~ t ~ - - -  16 + 191t - 74t 2 ) 

+ _74tl/3(1 _ 1  t ) 1 / 3  (1 - t  4/3 )] , 

I 
where the range of t=x l /x  2 is ~ < t ~ 1. Find (numerically) 

va lue for t and thus the upper bound on A -2/3 of (303). 

into 

(t) = ~ f (t x o(q)) I 
q q q÷o 

2-11. Insert  Eq. (316) 

and der ive (352). 

the opt imal  

2-12. Der ive Eq. (462) d i rect ly  from Eqs. (433), (432), and (428). 

2-13. Because of the homogenei ty  and isotropy of the physica l  three- 

d imens iona l  space, the densi ty  funct ionals Ekin(n) and Eee(n), which 

appear in Eq. (417), have the same numer ica l  va lue for n(~') and the in- 

f in i tes imal ly  t rans la ted and rotated n(r') = n(~' + 6g + 6~×r'). Combine 

this wi th  the s tat ionary proper ty  of (417) to show that there is no net 

force, 

(dr' (r') (-V Vex t [ )n IF')) --o 

and no net torque, 

f (d~')n(~')~' × (-~'V (~')) = o  ext 

exerted on the system by the external  potent ial .  Are you reminded of 

Problem 2? 

2-14. Show that the dens i ty  funct ional  of the k inet ic  energy is given 

by 

1 (~n)Z/n , Eki n(n) = f (d~) 

if there is only one electron. This does scale like (443). Why is there 

no cont rad ic t ion to the general  s tatement that Eki n does not obey (443)? 



Chapter  Three 

STRONGLY BOUND E L E C T R O N S  

In the preced ing Chapter  there was a sect ion ent i t led "Val idi-  

ty of the TF model,"  in wh ich  we found two regions of fa i lure of the 

TF model: (i) the inner region of s t rong binding, where r does not ex- 

ceed ~I/Z; and (i i) the outer  region of weak b ind ing around the edge 

of the atom (r larger than ~I, for a neutra l  atom). Of these the f irst 

one is more important  because of the enormous b ind ing energies of elec- 

trons that are close to the nucleus. Consequent ly ,  the leading correc- 

t ion to the TF model  consists of an improved handl ing of the st rongly 

bound electrons. This is the topic of the present  Chapter. 

Qual i ta t ive  argument. If we simply exclude the cr i t ica l  v ic in i ty  of 

the nucleus when evaluat ing the r - in tegra l  of Eq. (2-44), then the TF 

vers ion of E I is replaced by 

I 5/2 
IEIlTF S ~ f(d~)(- I - -~) [ -2(V+~)]  

• r ~ 1 / Z  

I Z ] 5/2 
~(EI)TF - f(d~)(- 1--~-~) [-2 (- ~) (3-I) 

r~l/Z 

= CEIl T F  + c z 2 , 

wi th  C a constant  of order unity. Here we have made use of V~-Z/ r  for 

small  r, which states, once more, that the dynamics are dominated by 

the nuc leus-e lec t ron  in teract ion if r is suf f ic ient ly  small. The third 

in i t ia l  of the subscr ipt  TFS stands for Scott, who (in 1952) was the 

f irst to present  a d iscuss ion of this leading correct ion to the TF 
1 energy, 

Our simple qua l i ta t ive  argument (which is a var iant  of the one 

given by Schwinger  2) says that the TF energy is supplemented by an ad- 

d i t ive term propor t iona l  to Z 2, i.e., of re lat ive order Z2/Z 7/3 = Z -I/3 

as compared to the TF contr ibut ion. This is cons is tent  w i th  the obser- 

vat ions of the Introduct ion,  where we have seen such terms in Eqs. (I- 

22) and (1-84), the numer ica l  value of C being 1/2 in both equat ions. 

More ev idence in favor of a Z 2 term is suppl ied by Fig.2-2, where  the 

smooth TF curve would  be shi f ted down by the amount of 2 C , in which 
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event the agreement  wi th  the HF crosses would  be s ign i f icant ly  impro- 

ved. 

Scot t 's  result ,  

ETFs(Z,N ) = ETF(Z,N) + 1 Z 2 , (3-2) 

is ident ica l  w i th  the one of the Introduct ion.  In v iew of the pr imi t ive  

models of Bohr atoms, wi th  or w i thout  shielding, that are used there, 

it may be puzz l ing  that the numer ica l  va lues of the coef f ic ients  agree. 

This mystery  is eas i ly  resolved: all that mat ters is the Coulombic 

shape of the e f fec t ive  potent ia l  for r+o. The models of the Int roduc-  

t ion are, certainly,  rea l is t ic  at these small d istances. But there is 

even more to it: s ince one can easi ly  imagine that  the sl ight dev ia t ion 

of the e f fec t ive  potent ia l  f rom its l imi t ing form -Z/r  + constant  is 

i r re levant,  Scot t 's  resul t  is ant ic ipated to remain val id, when his 

reasoning is abandoned in favor of a more conv inc ing one. We postpone 

the p resenta t ion  of Scot t 's  or ig ina l  argument unt i l  later. 

One remarkab le  feature of Scot t 's  cor rec t ion is its independence 

of the number  of electrons, N. This is, of course, a consequence of the 

c i rcumstance that the smal l - r  shape of the ef fect ive potent ia l  does 

not depend on N, or, again, the most  s t rongly  bound electrons are hard-  

ly aware of the more weak ly  bound ones because the Coulomb forces of 

the nucleus are so strong. 

First  quant i ta t i ve  der iva t ion  of Scot t 's  correct ion.  For a quant i ta t ive  

t reatment  of the s t rong ly  bound electrons we spl i t  El(~) [cf. Eq.(2-7)] 

into two parts, 

E I (~) = t r (H+~)~(-H-~) 

= tr (H+~) ~ (-H-~s) 

+tr(H+~) [17 (-H-~)-O (-H-~s) ] 

(3-3) 

- E + E 
s ~ s  

The separat ing b ind ing-energy  ~s d is t ingu ishes the st rongly  bound elec- 

trons f rom the rest of the atom, the respect ive  cont r ibut ions to E I be- 

ing E s and E ~  s. This ~s is not a un ique ly  def ined quant i ty ,  but it is 

not a rb i t ra ry  either. It has to be small  compared to the typ ica l  s ingle- 

e lect ron Coulomb energy (%Z 2) but large on the TF scale: 
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Z4/3 << ~s << Z2 (3-4) 

In this f irst quant i ta t ive  d iscuss ion we simpl i fy  matters by 

assuming that for the evaluat ion of E the Coulombic approx imat ion V(r) 
s 

~-Z/r suff ices. The effects of the deviat ion of V(r) from this l imi t ing 

form wi l l  be deal t  w i th  later. At the present stage we are content wi th 

the remark that said approx imat ion can always be just i f ied if ~s is 

chosen large enough. 

Thus we have 3 

Es ~ tr(~p2 Z 1 2 Z -~+~)~(- ~P +~-~s ) (3-5) 

The step funct ion in Eq. (5) selects the states wi th b inding energy lar- 

ger than ~s" Since we are back to the Bohr atom (without shielding),  

this means that a cer ta in number of Bohr shel ls is summed over. If the 

last one included in the sum has pr inc ipal  quantum number n , then its 
S 

1 2/n2 exceeds ~s whereas that of the s ing le-e lect ron b ind ing-energy ~Z _ s 

next shell  does not: 

1.2, 2 ½Z2/(ns+1)2 ~ /ns > ~s > (3-6) 

This s i tuat ion is i l lust rated by the sketch presented as Fig.1. Another 

way of wr i t ing  (6) is 

% 

,,,I 
r 

-y2Z2/(ns+l) 2 

-y, Z2/n 2 __ _ ~ ( n s + l ) t h  'nsth shell I 

Fig .3 -1 .  Concerning c o r r e c t i o n s  for  s t r o n g l y  bound e l e c t r o n s ;  see  t e x t .  
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Z 2 
< ( ) I /2 < n + I , 

ns ~ s  s 
(3-7) 

or, when  we i n t r oduce  a k ind  of con t i nuous  v e r s i o n  of  n s, 

v s _ z / / T ~ s  , ( 3 - 8 )  

t hen  

n s = [Vs] = [ z / / ~ s ]  , (3-9) 

w h i c h  uses the G a u s s i a n  n o t a t i o n  for the la rges t  i n teger  c o n t a i n e d  in 

. Now we look back  at Eqs. (I-9) and (I-10) to f ind the c o n t r i b u t i o n  
s 

to E I f rom the s t rong l y  bound  e lec t rons .  It is [with m=n s and ~=o in 

Eqs. (I-9) and (1-10)] 

E s = - Z2[v s] + ~ N  s , (3-10) 

whe re  
2 1 3 I I 

N s = ~ ( [Vs  ] + ) - ~ ( [ v  s] +~)  (3-11) 

is t h e  to ta l  numbe r  of spec i a l l y  t r ea ted  s t rong l y  bound  e lec t rons .  I ts 

a p p r o x i m a t e  c o n n e c t i o n  w i t h  s t 

2 v3 2 Z 2 3/2 
Ns ~ s = 3 ( 2 ~ s  ) ' (3-12) 

or  

I Z 2 ( 3 N s  ) -2/3 
~S 2 ' (3-13) 

i nse r ted  in to  the re l a t i ons  (4), says 

I << N << Z ; (3-14) 
s 

N s is a smal l  f r a c t i o n  of  Z. In pa r t i cu la r ,  if N<<Z,  then  al l  e l ec t rons  

shou ld  be r e g a r d e d  as s t rong l y  bound,  and the i n t e r e l e c t r o n i c  i n te rac -  

t ions  shou ld  be t r ea ted  as a smal l  pe r tu rba t i on .  

Now we turn  to E s of Eq. (3), the  c o n t r i b u t i o n  to E I f rom the 

more  w e a k l y  bound  e lec t rons .  For  these  we expec t  the  TF e v a l u a t i o n  of  

the t race  by means  of the h i g h l y  s e m i c l a s s i c a l  p h a s e - s p a c e  i n teg ra l  to 

be jus t i f i ed .  Le t  us t h e r e f o r e  check  in de ta i l  tha t  there  is no s ign i -  

f i can t  c o n t r i b u t i o n  to E ~  s f rom the v i c i n i t y  of  the nuc leus .  F i rs t  ob- 

serve  tha t  E ~  s can  be w r i t t e n  as 
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E s = tr(H+~)N(-H-~) - t r(H+~s 

+ (~s-~) tr (-H-~s) , 

or wi th Eqs. (2-7) and (2-9) , 

) q ( -H-~  s) 
(3-15) 

E ~  s El (~) - E 1(~s ) + (~S-~)N(~s) 

= - ~Sd~' N(~') + (~s-~)N(~s) 

Then employ the ident i ty  

(Es_~)N(Es) = ~Sd~, d--~T { d  (~ 

to arr ive at 

E~E s I d N(~ = S d E ,  ( E , - E )  

(3-16) 

'-E)N(E') } (3-17) 

' )  (3-18)  

The TF vers ion of N(~'), given in Eq. (2-50), is easi ly di f ferent iated, 

producing 

° - f(d l }Sd ' 1 / 2  ( 3 - 1 9 )  

For small r, where V~-Z/r, the integrand in (19) is ~r -I/2, whereas it 

is ~r -5/2" in Eq. (I). It has been reduced by two orders of r. This is 

the f irst mani fes ta t ion of the strong cancel lat ions for r÷o that are 

inherent in the structure of ESE s in Eq. (16). As an immediate conse- 

the contr ibut ion to E ~  s from r~I/Z is about (~s-~)2/Z 2 - with quence, 

a numerical  factor of order uni ty - which amount is small compared to 

Z 2 because of the relat ions (4). Indeed, the v ic in i ty  of the nucleus 

does not contr ibute s igni f icant ly  to E ~  s. In other words: the split- 

t ing of E I into E s and EE~ s successfu l ly  separates the strongly bound 

electrons from the rest of the atom. 

We are now just i f ied in evaluat ing E TF wise, i.e., by means 
~Es 

of the semic lass ica l  phase-space integral. In Eqs. (I-35) and (I-36) we 

find the re levant results, 

2 v3 (3-20) 
N(~S) = ~ s 
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and 

-El ((s) + (s N((s) = Z2 Vs (3-21) 

In combinat ion wi th  (10) the change in energy caused by our improved 

t reatment  of the s t rongly  bound electrons is 

AsE = E s - EI(~s) + ((s-C)N(Cs) 
(3-22) 

= z2(Vs II Nsl 

2 3  
The cont inuous terms Z2Vs - (~v  s come f rom the removal  of the incorrect  

TF t reatment  of these innermost  electrons, whereas the d iscont inuous 

terms -Z2[Vs]+(Ns(=Es ) or ig inate in the correct  quantum mechan ica l  des- 

cr ip t ion of these e lectrons which has been used to evaluate E . 
s 

The AsE in (22) obv ious ly  depends on the par t icu lar  va lue of 

Vs, that is on the par t icu lar  choice made for (s" On the other  hand, 

EI(~) in (3) is c lear ly  independent  of ~s" What happened ? The result  

for E in (10) contains cont r ibut ions from the shel l  s t ructure of the 
s 

cor respond ing  Bohr  atoms. But no shel l  ef fects are taken into account 

in comput ing E~( s. Consequent ly ,  in order  to be consis tent  we must  dis- 

card the shel l  s t ructure in Es, but retain all smooth (as a funct ion of 

v s ) parts. 

Let us f irst look at the d i f fe rence Vs-[Vs] , wh ich suppl ies the 

neut ra l -a tom va lue of AsE , when (=o. A plot of this indented funct ion 

of v s is shown in Fig.2. It is v is ib ly  of the form 

I 
v s - [v s] = ~ + osc i l la t ion . (3-23) 

Vs -[Vs] 

I I I 

I I I 

I I I 

I I I 

£ 

1 2 3 

F i g . 3 - 2 .  The d i f f e r e n c e  Vs-[Vs] as a f u n c t i o n  of v s. 

As a mat ter  of fact we know this "osci l lat ion."  It appeared ear ly in 
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the In t roduc t ion .  A c c o r d i n q  to Eq. (I-14) we have 

U 
S 

1 1 1 1 
D s] = ~ + (u s - 5) - [(v s- 7)+  71 

I - ½> , 
= ~ + < 9  s 

(3-24) 

or  w i th  P rob lem I-2, 

Vs - [Us] = ½ - £  1-!- Tun s i n ( 2 ~ m V s )  (3-25) 

m=1 

Consequen t l y ,  r emov ing  the Boh r - she l l  a r t i f ac t s  is done by the rep lace-  

ment  
I 

Us - [Us] ÷ 7 (3-26) 

In Eq. (22) th is  rep roduces  Sco t t ' s  co r rec t ion ,  wh i ch  is the an t i c i pa ted  

resul t .  What  remains  to be shown is that  the te rm p r o p o r t i o n a l  to g in 

(22) does not  con t r ibu te ,  wh i ch  means  that  it is en t i r e l y  made  of osc i l -  

la t ions due to the Bohr  she l ls  and does not  con ta in  a smooth  part.  

Upon m a k i n g  use o f  (24), the cub ic  d i f f e r e n c e  

2 3  2 3 2  1 3 1  1 
~V s - N s = ~V s - ~ ( [VS ]+ ) + 6 ( [VS ]+  ) 

(3-27) 

appears  as 

2 3 
~v s - N s s I (<Vs - 1 2 I~  = 2v <v s- 7> - 2v s 7> - ) 

2 1 2 
+ ~ <Vs_ 1> (<Vs - 7> _ ¼) 

(3-28) 

4 
These  resu l ts  of P rob lem I-2: 

(-1 )m 1 
(~m) 2 c o s ( 2 E m y )  = <y>2 12 ' 

m=1 (3-29) 

(-1)m s i n ( 2 ~ m y )  2 <y>(<y>2 _ 1) 
(~m) 3" = ~ , 

m=1 

are then used in a r r i v i ng  at 

3 s s 

oo 

= - 2 V 2 s T ! ~ m  s i n ( 2 ~ m V s )  

m=l 
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- 2V s ~ ( ~ )  2COS (2~ m v s) 
1t1=1 

oo 

+ ~ ( ~ - - m )  3sin (2T~ m V s) 
Ill=] 

(3-30) 

e4 

N 

LU 
I 

/. 

I I I I 

TF 

TFS 

0 I _  I I I _ I 

0 25 50 '75 100 125 
Z 

Fig .3-3 .  Comparison of the  TFS p r e d i c t i o n  (341 with the  corresponding 

TF one, Eq . (2-160) ,  and with HF binding energies (crosses];  see also 

Fig. 2- 2. 
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2 3 
It is now obvious, that ~ s - N s  is, indeed, ent i re ly  composed of osci l -  

lations. Consequent ly ,  the analog of (26) is here the rep lacement  

2 3 
- ÷ 0 ( 3 - 3 1 )  ~v s N s • 

Both this and (26) then turn Eq. (22) into Scot t 's  resul t  

I Z 2 
AsE = ~ (3-32) 

The TFS pred ic t ion  for the neu t ra l -a tom b ind ing energies is thus 

I Z 2 Z7/3 I Z 2 
-ETF S =-ETF - ~ = 0.768745 - ~ (3-33) 

In Fig. 3 the quant i t y  

-ETF S 
1 2 yz 

- 1.537 Z I/3 - 1 (3-34) 

is p lo t ted in addi t ion to the cor respond ing  TF curve and the HF crosses, 

wh ich  we have seen earl ier, in Fig.2-2. There is no doubt that Scot t 's  

cor rec t ion represents a s ign i f icant  improvement  of the theory. 

Scot t 's  or ig ina l  argument. Scott  I regarded the cor rec t ion  for the strong- 

ly bound electrons as as "boundary effect" analogous to the decrease in 

par t ic le  dens i ty  near the wal l  of a cavity. The "boundary" in Scot t 's  

reason ing is a t  the locat ion of the nucleus; in other  words: it is due 

to the s ingu lar i ty  of the Coulomb potent ia l .  Consequent ly ,  he is con- 

cerned wi th  the dens i ty  and the count of electrons. This leads him to 

regard N s as the number of spec ia l ly  t reated e lectrons (which is a cor- 
2 3  

rect interpretat ion) and to th ink of ~ s  as the number of e lect rons re- 

moved from the incorrect  TF dens i ty  (which is a m isconcep t ion  since 

there is more to the TFS densi ty,  as we shal l  see be low - the count of 

e lect rons is not a f fected by the sp l i t t ing  of E I into E s and E ~ s ) .  

Scott  then conc ludes that v must  be chosen such that the d i f fe rence 

2 3 s = 31/3 I/3 . . . . .  = 1.442, 2.446, Ns-~V s vanishes. These ~s are v s , 15 421/3 

3.476,.. .  if one corrects  for the f i rst  Bohr shel l  only, the f i rst  two 

ones, the f i rst  three ones, ..., respect ively.  The cor respond ing  resul ts 

change in energy are AsE/½Z2=0.884 , -  0.932, 0.952, ... In gene- for the 

ral: if there are n s Bohr shel ls in the atom, ~s equals 
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i 3 1 i I /3 
s = [ (ns+ 3 ) - (ns+ 3 )] 

+ I 
_~ (ns+ 1) _ i~ / (n  s 3) 

(3-35) 

and A E is g iven by 
s 

As E = Z 2 (v s-[vs ]) = Z 2 (Vs-ns) 

~ 1 Z 2 ( 1 _ 1 / ( n  1 
= 3  s + 3  )) ' 

(3-36) 

I Z 2 which approaches 3 in the l imit ns+~. Now, in the real atoms of the 

Per iod ic  Table there are only very few Bohr shells (at most two), so 

that this l imit is problemat ic.  Certain ly,  the re l iab i l i ty  of the nume- 
I r ical  va lue of the factor  2' as der ived by Scott, is quest ionable.  A 

typ ica l  react ion is that of March in his 1957 rev iew ar t ic le :5" i t  seems 

d i f f i cu l t  to give a complete ly  c learcut  demonst ra t ion  of the case." Just 

this was de l ivered - in the spir i t  of the t reatment  repor ted above - by 
6 

Schwinger  in 1980 (Ref. 2). 

One reads occas iona l l y  that the f irst Bohr shel l  cont r ibutes 

88%, the second another  5%, etc., to the Scott  correct ion.  Both this 

and the re la ted remark, that there is a res idual  energy change of order  

Z 5/3 due to the s t rongly  bound electrons,  or ig ina te  in Scot t 's  reason- 

ing which leads to Eq. (36). Now that it has been unders tood that Scott  

was s imply pay ing too much at tent ion to the osc i l la tory  cont r ibut ions 

from the Bohr shells, it is clear that these statements are wrong. The 

deta i led shel l  ef fects in Eq. (22) have no phys ica l  s igni f icance. They 

are noth ing more than a nuisance, inasmuch as we have to be par t icu lar -  

ly carefu l  when ex t rac t ing  the smooth, non-osc i l la to ry  contr ibut ion.  

TFS energy funct ional.  So far we have been mere ly  concerned w i t h  the 

change in energy resu l t ing from the improved t reatment  of the s t rongly  

bound electrons. It is now t ime to study the cor respond ing changes in 

the ef fect ive potent ia l  and the density. The star t ing point  is, as al- 

ways, the s ta t ionary  energy funct ional,  wh ich  now wi l l  incorporate the 

Scot t  correct ion.  For this purpose it is necessary  to go beyond what  

we have done above because we must  take into account the sl ight devi -  

at ion of the e f fec t ive  potent ia l  f rom its l imi t ing Coulomb shape. It 

wi l l  then be poss ib le  to demonsta te  that Scot t 's  energy term - ~ Z 2 is 

not a f fec ted by this deviat ion. 

In eva luat ing the cont r ibu t ion  to E from one of the st rongly 
s 
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bound electrons, characterz ied by its pr incipal ,  its angular, and its 

magnet ic  quantum number (n, l, and m, respect ively) ,  we can treat the 

d i f fe rence between V(r) and -Z/r as small, so that the energy of said 

e lectron is given by 

_ + z (£) 12 
En,/, m 2n 2Z2 + ~(d~) (V ~) l~n , / ,m , (3-37) 

where ~n/m is the cor respond ing wave funct ion of the Bohr atom. Then, 

if ~s is such that  there are n s f i l led Bohr shells, we obta in  for E s 

(the factor  of two is the spin mul t ip l ic i ty)  

n 
s n-1 £ 

Es = Z ~ - ~ ( E n , £ , m + ~ )  (3-38) 

n=1 Z=o m=-/ 

When Eq. (37) is inserted, we meet the sum 

n 

Ps(r) = 2 l~n,/,m(r) , (3-39) 

n~1 /,m 

which is, of course, the densi ty  of the specia l ly  t reated st rongly  

bound electrons. Because each closed / -subshel l  is spher ica l ly  symme- 

tric, Ps depends only  on r, the magni tude of the d is tance vector  r. The 

integral  of  Ps (r) is equal  to the total  number N s of Eq. (I I), 

n n 

(d~)Ps (~) = 2 = 2n 

n=1 /,m n=1 (3-40) 

2 1 3 1 1 
= NS = 5 ( n s  +Y)  - g l n s  +~)  

Also we know the integral  of Ps(r) t imes Z/r, since this is the negat ive 

of the potent ia l  energy of a Bohr atom with n s f i l led shells. The v i r ia l  

theorem equates it to twice the b ind ing energy, thus 

+ Z Z 2 (3-41) (dr) ~ Ps(r) = - 2 2n (- = 2 n s 

n=1 

Put t ing all these bits of in format ion together, we arr ive at 

E s = - Z 2 ns + f (dr)÷ (V +~)Z Ps + ~Ns = (3-42) 
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= S (d~)VPs + Z2ns + CNs (3-43) 

This has to be supplemented bv the TF evaluation of E , obtained from 

Eq. (16) by inserting the TF expressions for El(() and NqC), Eqs. (2-44) 

and (2-50), or equivalently by performing the ~' integration in Eq. (19). 

Either way the result is 

E s f(d~){ 15~ 21 [-2(V+~)]5/2 + I 2[-2(V+Cs)]5/2 

(3-44) 

+{Cs_~)_~[_ 2 (V+Cs)]3/2} 
3~ 

Consequently, at this stage the new expression for E I 

E I = S (dE) (- 1 )  [-2 (v+~)]5/2 
15~ 2 

is 

+ f (d~) { 1 [-2 (V+~s) ] 5/2 
15~ 2 

+ f (d~)VQ s Z2ns + + ~N s 

+ (~s_~)_~[_2 (V+~s) ]3/2} 
3~ (3-45) 

of which the first term is the previous TF result, the remaining ones 

its modification. 

Since we are now taking into account that V(r) deviates (slight- 

ly) from -Z/r, the relation (6) between ~s and n s has to be reformulated 

appropriately. All electrons in the ns-th shell have a binding energy 

larger than ~s' whereas those in the (ns+1)-th shell have a smaller one: 

Min(-Ens,/,m) > ~s > Max (3-46) l,m /,m (-Ens+1'/'m) 

These energies refer to strongly bound electrons, so that there is no 

m dependence [because V(~) is spherically symmetric in the vicinity of 

each nucleus of a molecule, the more so in our discussion concerning a 

single isolated atom], and little 1 dependence is expected [otherwise 

it wouldn't  be stronlgy bound electrons that we are talking about]. We 

shall therefore simplify matters by using averages over the shells in- 

stead of the maximum and minimum in (46). Thus 
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with 

~I > ~s > ~2 ' 

~j ~ - 2 Enj,Z,m ) 

3 L m  

(3-47) 

(3-48) 

where 

n I = n s , n 2 = n s + I 

Upon uti l izing the definit ion of En,£, m in Eq. (37), the ~j 

= Z 2 Z 2 

~J 2n---~. - f (d~) (V + 3) I~nj[av(r) 
3 

where 

I~njl 2 (r) H I > 21 (~) 12 
av 2n~ l,m ~nj ,l,m 

(3-49) 

's appear as 

(3-50) 

(3-51) 

is the average single-electron density in the nj-th shell. It is sphe- 

rically symmetric for the same reason for which Ps(r) of Eq. (39) has 

this property. So we can interpret (51) as taking the average over the 

angular dependences. Obviously, there is the connection 

n )--s 2 
Ps(r) = 2n [ ~n 12 (r) (3-52) 

a v  

n=1 

which emerges immediately when Eqs. (39) and (51.) are combined. The well 

known Coulomb wave-functions are used in finding 

2 Z 3 
i~njIav (r) =T~ X ~ 

-2Zr 4e  , for nj 

+ I 2] e-Zr ~2 [1-Zr ~(Zr) 

= I ,  

, for nj=2 

(3-53) 

2_~[ 1 4  -]Zr4 +8(Zr)2_ ~(Zr)16 3+~_~(Zr)4 4]e-2Zr/3, 

for nj=3 , 

which il lustrate the general structure of these averaged densities. As 

a consequence of their definition, they are normalized to unity 
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f (d~)l~nj 12av(r) = I , (3-54) 

wh ich can easi ly be checked exp l ic i t ly  for the examples given above. 

Clearly, the E I of Eq. (45) st i l l  contains all those spur ious 

Bohr-shel l  ef fects that have to be removed in order to obta in correct-  

ly the Scott  correct ion.  For instance, if V( r )~-Z/ r  is used to ca lcu la te  

the cont r ibut ion to E 1 from the terms refer r ing to the st rongly  bound 

electrons, the resul t  (22) emerges wi thout  the replacements (26) and 

(31). It would be des i rab le  to per form such an expl ic i t  de le t ion of 

the unphys ica l  Bohr-she l l  ar t i facts in the express ion for E I in (45) 

itself, so that all der ived quant i t ies would automat ica l ly  be free of 

the spur ious Bohr-she l l  osci l lat ions.  Unfor tunate ly,  it seems to be 

impossib le to extract  the smooth part  out of E 1 of (45) wi thout  destroy-  

ing the funct ional  dependence on the ef fect ive potent ia l  V(r). Never-  

theless, one can remove most  of the unwanted Bohr-shel l  s t ructure by 

per forming a sui table average over ~s" Indeed, one easi ly  imagines 

that the rep lacements  (26) and (31) are the resul ts of averaging over 

~s wi th  an appropr ia te ly  chosen weight  function. To avoid a possib le 

misunderstanding,  let me emphasize that this averaging over ~s is not 

the essence of the TFS model; it is mere ly  a technica l  procedure for 

e l iminat ing the unphysica l  Bohr-sh~l l  effects. In doing so, however, 

use is made of the fact that ~s is not a phys ica l ly  uniquely  def ined 

quant i ty,  but is [within the l imits of Eq. (4)] qui te arbitrary. Of 

course, one is free to employ any (reasonable) prescr ip t ion  for the 

averaging; depending on the par t icu lar  appl icat ion there may be one that 

is espec ia l ly  expedient.  [Later in the development  (Chapter Five) 

we shall  arr ive at a formulat ion which correct ly  incorporates the Scott  

cor rect ion wi thout  any reference to a separat ing b inding energy like 

~s.] 
In Ref.7, the average over ~s is per formed wi th  un i form weight  

on the energy scale. This is natura l  since the energy is the fundamen- 

tal quant i ty.  Then, for a given number of specia l ly  t reated Bohr shells 

ns, the mean E I is just hal f  the sum of its extreme values, 

= ½ ( E ~  1 + E ~  2) + E s , (3-55) E I 

where ~I and ~2 are the l imi t ing values for ~s' Eq.(47). Appl ied to the 

structures appear ing in Eq. (22) this averaging procedure produces 

+1 I 
VS - [~S ] ÷ ~ (nl - ns) ~(n  2 - n s) = y (3-56) 
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and 

2 3  1 , 2 3  1 2 3  
- ÷ + ( ~ n  2 - N s) ~v s N s ~ n  I - N s) 

2 I 
= ~ (n s + ~) , 

(3-57) 

wi th n I and n 2 from (49), and N s from (40). Obviously,  the average (55) 

is good enough to s imulate the replacement  (22), but too simple to also 

reproduce (31), instead of which we now have (57). Some of the Bohr- 

shel l  ef fects are left; Nevertheless,  the procedure (55) suff ices for 

many appl icat ions of the TFS model. 

It is advantageous to genera l ize Eq. (55) to 

J 
E I = ~- -w j  E ~ j  + E s 

j=1 

(3-58) 

where ~I and ~2 s igni fy  what they did before [Eqs. (47), (48), and (50)], 

whereas C 3, ~4' ..., ~j are in termediate values of ~s' for which nj is 

a (non-integer) number between n1=n s and n2=ns+1. The cor responding 

I~n.l~ v that appear in the genera l izat ion of Eq. (50) are appropr ia te 

(linear) averages of l~n11~ v- and I~n212av" The values of the ~j and 

their  weights  w are chosen such that in the appl icat ion of interest  
3 

all Bohr-shel l  osc i l la t ions are removed completely.  Obviously,  (58) re- 
1 

duces to (55) when J=2 and w1=w2= ~. Another  example is J=3 wi th  

+ ! (3-59) n3 = ns 2 

and 
I 4 (3-60) 

w I = w 2 = _ ~ , w 3 = ~ , 

which is the s implest  average capable of s imulat ing the replacements 

(26) and (31), see: 

I _ns) _~ (n2_ns  ) +~ (n3_ns  ) u s - [Us] ÷ - ~(n I 

I 2 _ I 

= 0 - 6 + 3 2 ' 

(3-61) 

and 

2u3 _ I ,2 3 _ 1  2 3 _Ns) 4 2 I 
s - NS ÷ 6 ~ n l - N s )  (~n2 +~[~(ns+2)  3-Ns) = 
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= - ~x~1  2(ns+l) +74 ×l (ns+l)  = 0 , (3-62) 

indeed. P lease note that the weights  w I and w 2 are negative. This is 

d is tu rb ing  but, unfor tunate ly ,  unavoidable.  Some addi t ional  d iscuss ion 

is conta ined in Problem 3. The occurence of negat ive weights  requires 

par t icu lar  caut ion to make sure that, for instance, the resu l t ing  den- 

si ty is posi t ive. 

Let us now imagine that we accept Eq. (58) and, w i thout  knowing 

of Eq. (22) , use i t  to f ind the change in energy produced by the correc- 

t ions for  the st rongly bound electrons. We insert  V~-Z/ r  into the terms 

re fer r ing to these innermost  e lectrons and f ind 

2 J r Jx ~- 2 3  
AsE = Z I Z w j n  j - nsl - ~ [ ~ w j ~ n j  -Ns l  (3-63) 

9=I j=1 

Can we give sense to this express ion desp i te  of the apparent  ambigui t ies 

in choos ing the va lues of n. and w.? Yes, of course, since (63) is c lear- 
3 3 

ly to be in terpreted as the in junct ion to remove the Bohr -she l l  osci l -  

lat ions from the cor respond ing express ion 

A s E  = Z 2 ( V s -  [Vs]) - ~ ( ~ v : -  ~s]-2n21 (3-64) 

n=1 

We are thus led back to Eq. (22), and ident i fy ing the smooth content  

gives Scot t 's  cor rec t ion  (32), as we have seen above. In general  terms: 

in an a lgebra ic  result,  such as (63), the averag ing over ~s is to be 

unters tood as the demand to construct  the respect ive unaveraged expres- 

sion in terms of v s and [Vs] , here: Eq. (64), and to remove the spuri-  

ous Bohr -she l l  osc i l la t ions  from it. We shal l  meet examples for this 

procedure as we proceed. 

We are now set to f ina l ly  wr i te  down the TFS energy funct ional.  

It is obta ined from the TF funct ional  (2-45) by rep lac ing the TF vers ion  

of E I by the TFS express ion (58). So we have  

J 
= E ~ j  + E 2 - ~N (3-65) ETF S ~ w j  + E s , 

j=1 

which can be spl i t  into the TF energy funct ional  plus its modi f icat ion,  

ETF S = E T F  + A s E , (3-66) 
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with [this is Eq. (2-45)] 

ETF = I(d~) (- I___1__)[_2(v+~)]5/2 I (v+Z) 2 
15rc 2 - ~--~ (dr) [~ ] - ~N (3-67) 

and 
J 

3~ 
j=l (3-68) 

+ S(d~)Vps + z2n s + ~N s 

TFS density. As before we find the density by considering the response 

Of E I to infinitesimal variations of the effective potential, 

6VE I = J (dr)6V(r)n(r) , (3-69) 

which is Eq. (2-14). The situation is different from the TF one, now, 

because in addition to the explicit dependence on V there is an impli- 

cit one, hidden in the ~j: 

6 v ~j = - f(d~)6V ~n31~v , (3-70) 

which is a consequence of Eq. (50). This V dependence of the ~j gives 

rise to a contribution to the density 

,.J, DE 
> Wj ~ (-l,njl 2 (r)) 
j=1 ~J av 

J 2 
= > wj Qj [~njlav(r) 

j=l 

(3-71) 

where we have introduced [see Eq. (44)] 

= (3-72) Qj - ~ j  E j (~j-~)S(d~) ~ [-2(V+~j)] I/2 

Equation (71) has to be supplemented by the part of the density that 

is obtained from the explicit dependence of E 1 on V, 
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J 3/2 1 2 [-2 ¿V+~) ] 3/2 -~----wj {-J-~ [-2 (V+~j) ] 
3~ 3re 

j=1 

+ Ps 

+ (~j-~)~[-2(V+~j)] I/2} 

(3-73) 

J ~j 
= ~=IWj ~ ~ d~' (~'-~)-~[-2(V+~')] -I/2 + Ps 

The second version makes use of E as given in Eq. (19) and emphasizes 
~ j  

the strong cancellations that occur for reo. The total electron density 

is the sum of (71) and (73). It is conveniently split into a density of 

the innermost electrons, nIME, and the rest of the atom, n: 

n = niM E + ~ , (3-74) 

where 
J 

nIME = Ps + 7 wj Qj I~nj 12v (3-75) 
j=1 

and 

J ~j 
7 w j  f 21v+ ')l -I/2 
j=1 ~ 

J 
1 [-2 (V+ ~)] 3/2 - ~ w j  {3~[ -2 (V+ ~j)] 3/2 

3r~ 2 
j=l 

(3-76) 

+ (~j-~)~[-2(V+~j)]  I/2} 

Because of said cancellations ~ is proportional to r I/2 for r+o, so that 

the density in the close proximity of the nucleus is entirely given by 

niM E. In particular, 

n(r=o) = niM E(r=o) 

_ (2Z) 3 ns I J 
4~ [7 n' 3 +~/ Wj Qj 1__/__] 

n'=l j=1 2nj 5 

(3-77) 
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which uses 

Z 3 4 
i~nj 12 (r=O) = 

av 4~ n. 5 
3 

, (3-78) 

as i l lustrated for n.=I,2, and 3 in Eq. (53). We shall  have to say more 
3 

about n(r=o), but a few checks of consistency are in order, first. 

Consistency. The integrated densi ty must equal the number of electrons. 

Is this so? The integrals over (d~) of (75) and (76) are 

J 
f (d~)niM E = N s + ~ wj Qj (3-79) 

9=I 

and 

J I [_2 (V+~j) ] 3/2} 

9=I 

J 
- >  wj Qj , 

j=1 

(3-80) 

respect ively,  where Eqs. (40) and (50) as wel l  as the def in i t ion of Qj 

in (72) have been made use of. Consequent ly,  

5(d~)n 5(d~) { I [_2(V+~)]3/2 J I /_[_2(V+~ )]3/2} + N  
= 3~ 2 - ~- -w j  3~ 2 j s 

j=1 

(3-81) 

On the other hand, the count of electrons is, accord ing to Eq. 

given by 

(2-12) , 

N = ~ E I , (3-82) 

which for the TFS model  reads 

N f(d~) I ~[_2 (V+~) ] 3/2 J ÷ = - / ~ w j  f (dr) I--~-[-2 )]3/2 
3~ 2 3~ 2 (V+ ~ j + N s 

j=1 

(3-83) 
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It is, indeed, equal  to the in tegrated density. Note, in par t icu lar ,  

that this is t rue for any choice of ~alues for the %j and wj. Ne i ther  

does n s, the number  of shel ls of spec ia l ly  t reated st rongly  bound elec- 

trons, matter. In other words: the statement  

(dr) n = N (3-84) 

holds independent  of the averag ing procedure selected for the removal  

of the spur ious Bohr -she l l  osci l la t ions.  

In Chapter  Two, it was argued that Eq. (84) is equiva lent  to 

s tat ing that E I does not depend on V and { indiv idual ly ,  but only  on 

their  sum V+~ [see af ter  Eq. (2-23)]. Here, E I is the sum of its TF ver- 

s ion and A E of Eq. (68) 
s 

E I = f(d~) (- I ) [-2(V+~)] 5/2 + A E (3-85) 
15~2 s ' 

so that the quest ion is whether  AsE is a funct ion(al)  of V+~. Since 

S(d~) VPs + ~N s = f (d~)(V+%)Ps (3-86) 

and 

V+%j = (V+~) + (~j-~) 

Z 2 
= (V+~) + 2 ~(d~) (V+~){~n. 12 

2n o 3 av  
3 

(3-87) 

the answer is af f i rmat ive.  

Then there is the exol ic i t  dependence of AsE , and therefore 

of El, on Z, the nuc lear  charge. But E I must  not make any reference to 

the external  potent ia l  (here: -Z/r), it is solely determined by the ef- 

fect ive potent ia l  (plus ~, as we have just recal led).  This is essent ia l  

in re la t ing the Z der iva t ive  of the energy to the e lec t ros ta t ic  inter- 

act ion energy of the nuc lear  charge and the e lectrons 

Z ~Z E = f ( d ~ ) ( -  Z) n(~) (3 -88 )  

This is Eq. (I-96). We have al ready made use of it, repeatedly,  not in 

the form of Eq. (88), but in one where  the r ight -hand side is expressed 

in terms of the potent ial .  It emerges from (88) when Poisson's equat ion 

is used and two par t ia l  in tegrat ions are performed: 
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Z ~ z E  
_z ~ z = ~(d~) ( ~) [ _ ?2(V +~)] 

z ~ z : ~(d~) [-(V+~)] ( - ?2) (_~) (3-89) 

Z 
: - Z ( V + r  -) I r = o  ; 

the last step recognizes Z6(~) as the source of the Coulomb potential 
-Z/r. If we, however, stop after the first partial integration, the re- 
sult is 

Z ~ z E  I + -z r) .7 z 

+Z 2} 
: ~, ~ {- ~ f(d~iE~(v ~11 

(3-90) 

orl in view of Eqs. (66) , (67), and (68), 

Z ~Z ETFS = Z ~z(ETFs-As E) , 

for the TFS energy, 

(3-91) 

which requires 

Z ~Z &s E = o (3-92) 

[Please do not miss that we have done nothing more than reverse the 

steps of Eq. (2-229).] 
There are various Z dependences in 5E s, Eq. (68). Besides the 

explicit Z 2 terms in (68) and in (50), there is also the Z dependence 

of the COUlOmb densities I~n. i2v and Ps" They are of the structure Z 3 
times a function of Zr, so t~at 

I l~njl2av(r I I]~njl2 (r) l a v  
= (3 + ~.~)  Z 

~a PS (r) PS (r) 
(3-93) 

This has the consequence 

Z ~Z {5 (d~)V Ps + Z2ns } = 
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- S(d~)V(3+r.V)ps + 2Z2ns 

A part ia l  in tegrat ion turns the integrand into 

(3-94) 

-> -> 

[3V - ~ ' (~ V)]Ps : [-r. VV]p s 

: [-r~r V]P s : [V-~r ( rV) ]  p 
S 

(3-95) 

which in conjunct ion wi th (41) produces 

Z 7Z {~(d~)VPs + Z2ns } 

: ~(d~) [V +~ -  (rV)] Ps 

(3-96) 

The analog of Eq. (41) for a single Bohr shell, 

Z 2 Z 2 Z 2 
~(d~) ~ I~ njIa v = (-2)(---2n2j) - n.2 

3 3 

, (3-97) 

can be employed in wr i t ing ~j as 

Z 2 
~j : -  { 2 + S(d~)V[~ n' [2av } 

2n. 3 
3 

, (3-98) 

af ter wh ich the steps from (94) to (96) can be repeated wi th the neces- 

sary changes. The outcome is 

~Z + Z ~ 2 Z ~j = - f(dr) [V+r-~-~r(rV)] I~n la v 
3 

(3-99) 

This, Eq. (96), and the def in i t ion of Qj in (72) together produce 

J 2 ̧ 
Z TZ AsE = f ( d ~ ) [ v + Z - - ~ ( r V ) ]  [ P s + ~ W j Q j l ~ n .  Iav] 

j:1 3 
• (3-100) 

or wi th  (75), 
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= f (d l - 1 r nIME (3-101) 

This has to be reconci led¢ in some sense, Wi th Eq. (92), o therwise the 

TFS model  would  be in ternal ly  inconsistent.  

Let us recal l  that, for a spher ica l ly  symmetr ic  dens i ty  n(r), 

as is the s i tuat ion for an iso lated atom, Poisson's equat ion 

1 V 2 (V + Z 
- 4-~ ~) = n(r)  

is solved by 

Z (r') 
V + ~ = f (dr') n 

(3-I 02) 

_ S(d~,) n(r') (3-103) 
+ ÷ r> ' Ir-r '  [ 

where r> denotes the larger one of r and r'; the lat ter ident i ty  is 

based upon the spher ical  symmetry of the density. The contents of the 

square brackets of (101) can be wr i t ten as 

z ~r ~ z V + ~ -  (rV) = - r ~ - ~ ( V + ~ )  , (3-!04) 

which, in connect ion wi th (103), draws our a t tent ion to 

I r) 0 , for r < 
I - = I 

- r ~ r  r> I ~ ~(r-r') (3-105) 

, for r > r '  

Therefore,  

I 
Z ~Z AsE = f (d~)(d~' )n iME(r)n(r ' )  ~ ~(r-r') (3-106) 

Since the range of in tegrat ion over r' is l imi ted by r and a fur ther 

in tegrat ion over r we ighted by niME(r) is required, only those values 

of r' cont r ibute  for which niME(r') is of s igni f icant  size. Consequent -  

ly, (106) is wel l  approx imated when n(r') = n iME(r  )+n(r') is rep laced 
% 

by niME(r ' ) ,  because n is e f fec t ive ly  zero where niM E is large. Af ter  

this replacement,  the in tegrand can be symmetr ized between r and r', 

so that 

Z ~Z ~S E = 1 f (d~)(d~' )n iME(r)n iME(r ' )  ! = r> 
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1 niM E (r) niM E (r') 
= ~ f (d~)(d~') (3-107) 

This is the e lec t ros ta t ic  energy of the charge d is t r ibut ion due to the 

innermost  electrons• Since n i M E ( r )  e q u a l s  a f a c t o r  Z 3 t i m e s  a f u n c t i o n  

of  Zr (just as 0 s and i~n. 12 av do individual ly) , we have 
] 

Z ~Z AsE = Z x { a posi t ive number } , (3-108) 

this "number" being composed of the par t icu lar  values of ns, wj, and ~j. 

We have, thus, found that the impl ic i t  Z dependence of AsE is assoc ia ted 

wi th  an energy of order Z - per fect ly  neg l ig ib le  on the scale set by 

Z 7/3 (TF) and Z 2 (Scott). In other words: Eq. (92) is obeyed wi th in  the 

accuracy of the TFS model; there is no internal  inconsistency. 

Fine, but d idn' t  we just b low it? Certainly,  AsE is Scot t 's  
1 2 

correct ion,  it equals ~Z ; and, being independent  of N, there is no dif- 

fe rence between its par t ia l  and its total  der ivat ive wi th respect to Z. 

Shouldn ' t  we, consequent ly ,  obta in  

Z ~ZAs E = Z 2 ? (3-109) 

Or is, af ter  all, Eq.(92) the correct  statement? The puzz l ing answer is: 

al l  three equat ions - (92),(108), and (109) - are true. 

This is so because the respect ive lef t -hand sides have di f fe-  

rent meanings.  Equat ion (92) is der ived in the f ramework of the general  

formal ism: we start  w i th  a funct ional  of V and ~, which is speci f ied by 

a given number of electrons, N, and a given external  potent ial ,  here 

-Z / r ;  then we ask for the change in energy when this external  p o t e n t i a l  

is var ied inf in i tes imal ly ,  here done by vary ing Z to Z + 6z; of course, 

there are induced changes of V and ~ [so that, e.g., the second inte- 

gral  in (67) st i l l  exists],  but the s ta t ionary proper ty  of the energy 

funct ional  under var ia t ions of V and ~ impl ies that these induced 

changes do not contr ibute to the change in energy to f irst order; the 

general  answer 

• 6VextE = f (d~)6Vex t n  (3-110) 

[see Eq. (2-434)] appears as Eq. (88) in the present  context; it leads to 

Eq. (92), wh ich we now read cor rect ly  as the change in AsE caused by var-  
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y ing noth ing but the st rength of the Coulomb potent ia l  of the nucleus. 

In the TFS energy funct ional  this externa l  potent ia l  -Z/r  occurs on ly  

in the second term of Eq. (67). Therefore,  the Z, wh ich  is conta ined in 

(68) both exp l ic i t l y  and impl ic i t l y  in the C. and in the Bohr-a tom den- 
3 

si ty Ps' and w i th  respect  to wh ich  we d i f fe ren t ia te  in Eq. (I08), must  

posses a d i f fe rent  s igni f icance. It makes re ference not to the external  

potent ia l  -Z/r, but to the e f fec t ive  potent ia l  V, in the sense of 

z = (-rv) I = -S(d~)r(v+()8(~)  , 
r=o 

(3-1 11) 

where we have added the (otherwise innocuous) constant  ~ in order to 

emphas ize the dependence of AsE on the sum V+~. Consequent ly ,  the dif- 

ferent ia t ion in Eqs. (I08), or (101), rea l ly  means a var ia t ion  of the 

(Coulomb part of the) ef fect ive potent ia l ,  and not of the nuc lear  charge. 

Of course, for the actual  V, the Z of (111) must  equal the Z of the 

Cou lomb potent ia l  of the nucleus, but not so for the t r ia l  potent ia ls  

that we are free to use in AsE of Eq. (68). Now that we have recognized 

that the Z in (68) changes when the ef fect ive potent ia l  is var ied, we 

must also take into account the cor respond ing add i t iona l  cont r ibu t ion  

to the density,  label led n z. It emerges from Eqs. (I01) and (111), when 

combined into 

f(d~)6Vn z ~ AsE ~vZ 

= S ( d ~ ) S V  (-r6(~))~z AsE 

(3-112) 

as 

Z ~ (r'V(r'))] I (r') [V(r') + r' ' n Z(r) = - r6(7) ~ S (d~')niM E ~r' 

(3-113) 

and has a lmost  no  s igni f icance,  because the product  rS(r) is e f fect ive-  

ly zero. Its only use consists in the poss ib i l i t y  of eva luat ing the re- 

sponse of E I to an arb i t rary  var ia t ion  of V in the standard way  of Eq. 

(69), where the inc lus ion of n z into the densi ty  enables one to consi -  

der var ia t ions of the k ind 8V = - 6Z/r. We then obta in f rom (69) the in- 

tegrated vers ion  (101) that we know already. Note, in par t icu lar ,  that 

n Z in tegrates to zero, and that its on ly  cont r ibut ion to the potent ia l  

is an addi t ive constant  for r=o [see Eq. (103)], where V is inf in i te,  

anyhow. In short: as long as we remember  that Eq. (I01) must  be taken in- 

to account when var ia t ions of the l imi t ing Coulomb part of the ef fect ive 
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potential are considered, we can forget about n Z. 

As to Eq. (109), we need only remark that it does not refer to 

the energy functional (68), but to its numerical value for V=-Z/r. In- 

deed, we have calculated Scott's correct ion by simply inserting the Cou- 

lomb potential into A E. This raises the question, whether we can do 
s 

better than that. How does one account for the deviat ion of V from its 

l imit ing Coulomb shape when evaluating the Scott term? The clue is Eq. 

(89) which relates the energy to the small-r form of the potential. In 

the TF model we exploited this equation in connection with the scaling 

properties of the TF energy functional. In the fol lowing section we 

shall do the analogous thing for the TFS model. 

S calin@ properties of the TFS model. AS in Chapter Two, we consider 

staling transformations that replace the actual V,~, and Z according to 

V(r) ÷ v V(~r) , 

v 
÷ ~ ~ , (~>o) (3-114) 

Z ÷ ~ - I  Z , 

which repeat Eqs. (2-211), (2-213), and (2-214). Again, the stationary 

property of the energy functional, here: the TFS functional (66), im- 

plies that all first order changes must originate in the scaling of Z 

[the Z of Eqs. (88) and (89), to be precise]. Thus 

6 ET~FS = 6~(v-I) Z ~Z ETFS ' (3-115) 

8 as in Eq. (2-220) , or with (89) , 

T• 
Z 

8 E FS = - 5~(v-1) Z (V+~)  [ , (3-116) 
r = o  

where ~=I+6~ with an inf initesimal 6~ is understood. On the left-hand 

side of (116), 

6 E~F s = 6 E~F s + 6 AsE~ , (3-117) 

we already know 6 ETF from the earlier investigations, 

5 i 5/2 
6 ET~ F = { (~9-3) f (d~)  1- 2) [-2(V+C)] 

1 5~ 
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~!{/ z 2 - ( 2 v - 1 )  (d~) [ ~ ( V + ~ ) ]  - v(N}61~ , (3-118) 

which is the left-hand side of Eq. (2"222). For the evaluation of 6 AsE~, 

it is useful to prepare some tools first. 

The scaling of Z [either the explicit statement in (114) or 

the (identical) result of inserting the scaled V into (111)] has an ef- 

fect on the Bohr-shell densities l~n Jf v~ and given Ps' by 
3 

2 ( r )  + 3 ( v - 1 )  ( u-1 r )  (3 -119)  

I~njla J~n'l~v/3 

A consequence thereof is 

{](d~)V(r) Ps(r)}~ = 4 v - 3  f(d~)V(~r) ps(~ u-1 r) 

4v-3 -3(v-1) [(d;V-1~)V(~r)Ps(V-lr) = # (3-120) 

v = ~ ~ (d~) V (#2-Vr) ps (r) 

so that 

6 {f(d~)VPs}~ : 6~{vf(d~)VPs + (2-v)~(d~)(r~rV)Ps } (3-121) 

= 6 # { 2 ( v - 1 ) J ' ( d ~ ) V P s  + ( 2 - v ) J ' ( d ~ ) ~ r ( r V ) P s  } 

An analogous statement holds for the integral appearing in Eq. (98), im- 

plying 

# = 6 # { 2 ( v - 1 ) ( j  ( 2 - v ) f  ÷ ~ 6 Cj - (dr) ~-~ (rV) 

or, more conveniently for the sequel, 

@nj J2v~ ' (3-122) 

5 (-u~.) = 6~(V_2){~j + f(d~)~r(rV) j~ n l av~2 ~ 
3 

(3-123) 

I t  is used in exhibiting the scaling behavior of E ~ j  

died in the concise form (19): 

, preferably stu- 
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8 E ~ 
~ j  

: 6 {  - S Id~l ~! d~' (~'-~v~)-~[-2(~VV(~r)+~v~)] I/2} 

5v-3 ÷ - V  .1~ 

S (dr) S 3d~ ' (~'-~)[-2(V(r)+~)] 1/2} 

(3-124) 

~E 
5 ~j. 

= 8 ~ ( ~  - 3)E j + 8~j 6 

With Eq. (72) and (123) this supplies 

E ~ (5v-3) ~ j  6 ~ J  = 6~{ E - (v-2)Qj [~j + f(d~)~r(rV)l~n. 12av ] } 
3 

(3-125) 

This combines with both Eq. (121) and 

{ Z2ns+~Ns }~ + V~Ns} 6 = 8~{2 (~-1) Z2ns 

to 

8 &S E~ = 6~{(5v-3)AS E - (~-2~.[7~,Q, ~.~ + ½S (d})Vps j 3 3 J 

(3-126) 

I 3 
+5 (d~)niME~r(rV) +2  Z2ns +2  ~Ns]} (3-127) 

Together with Eq. (118), we then conclude from Eqs. (116) and (117) that 

5 3 z 
(~v-3)ETF S + (~-2)~N+ (v-1)Z(V+r) 1 

r=o 

½ 7, 2 
+ (v-2) (d~) [~ (V + ~) ] (3-128) 

J ÷ ~ I 2 3 
= (v-2) [~-j=lWjQj~j +1  S (d~)Vp s + f (dr)niME~-~(rV) +~Z n + ~ N  s] 

which, finally, states the scaling behavior of the TFS model. 

Please observe that the terms on the right-hand side of Eq. (128) 

all refer to the specially treated strongly bound electrons. Therefore, 

replacing ETF S by ETF and setting the right-hand side equal to zero 
should reproduce the corresponding statement about the TF model. Indeed, 
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what is obta ined is (a rewr i t ten vers ion of) Eq. (2-222). There it was 

not iced that the most useful  choice for v is v=4. This is st i l l  true. 

Af ter  employ ing 

(Z,N) = - ~ ETF S(Z,N) 

[this has appeard ear l ier as Eq. (2-225)] 

for v=4, 

J 
= 2[ wjQj~j +~ ] (d r )VOs 

(3-129) 

and Eq. (89) , Eq. (128) reads, 

(3-130) 

÷ 8 1 2 3 
+ f (dr) n i M S ~  (rV) + ~Z n s- ~NsT~ETF S (Z ,N)], 

where it is made expl ic i t  that we are now interested in the dependence 

of ETF S on Z and N. This general izes Eq. (2-226). 

Second quant i ta t ive  der ivat ion of Scott 's correct ion. Unt i l  now we have 

always been content wi th the approx imat ion V~-Z/ r  when evaluat ing the 

Scott  correct ion. It is t ime to pay at tent ion to the d i f ference between 

V and its smal l - r  Coulomb part. In general, V(r) is given by Eq. (I03). 

We rewri te it by using the ident i ty  

obta in ing 

1 1 1 1 1 1 
~> = ~,~(r '-r)  + ~q(r-r ')  =--r' - (~' -~)q( r - r ' )  , (3-131) 

I _ I  Z n(r') f (d~')n(r') (~, ~)~ (r-r') (3-132) V(r) = - r  + 5(d~') r' 

The f i rst integral  appeared in Eq. (99), it equals - ~zETFs(Z,N).  

the second one we wr i te  v(r), 

For 

so that 

V(r) = Z ~ETFS v(r) (3-134) 
r ~Z 

In this 'form, we shall insert  it into the r ight-hand side of Eq. (130). 

It is thereby not necessary to keep track of more than the f irst order 

in V+Z/r,  since the TFS model  is based on the physical  argument that 

this is a small  quant i ty  for the strongly bound electrons [see Eq.(37)]° 

I 1 
v(r) = f(d~')n(r ' )  (?, -~)~( r - r ' )  , (3-133) 
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From Eq. (50) we get 

Z 2 ~. - + ~ETF_____~ S + 
3 2n2 ~Z nj 

3 

(3-135) 

with 

~n. - f(d~)v(r) [~n.[2v (r) 
3 3 

(3-136) 

being the average of v (r) over the n.-th Bohr shell. When evaluating 
3 

the integral, that gives Q5 in (72), to first order in v, another aver- 

age of v(r) is also met, 

2n 2. 
- -  f(d Iv(r) 4 

nj 5~ 2 2n. ' 
3 

(3-137) 

where the range of integration is r<2n~/Z, of course. Then 

2n 5 n 2 

QJ = (~j-~)z-~2 [I-5z-~2(~n-~'n )] ' 
J J 

(3-138) 

which in conjunction with (135) and (129) 

5 

Qj = n 3 nz-~2 3 - [3~nj -5~n, ] + ~ETF----~S~z 
3 

~ETF S 2n 5 5n 2 

+ ~----~ Z3211 --~Z2 (~n.-~n)] , 
3 J 

produces 

2n 5 
J 

Z 2 

to first order in v and ~ETFs/~Z. Further we have 

~ETFs - ~ , 
(d~)VPs = - 2Z2ns ~Z Ns s 

(3-139) 

(3-140) 

where 

~s 

n s _ 

= f (d~)v(r) Ps(r) = ~ 2 n  '2 Vn. 

n'=l 

(3-141) 

Then there is the quantity 

f (d~)niM E (r)~r I rV (r) I = 
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-- f (d~) [%  J 2 3ETFS 
+~--wjQj[~njlav][--~-Z 

j=1 

(rv) ] Dr 

3 ETF S J 
(N s +~--wjQj)~ - 8 (rv)/3r ~Z 

j=1 

J 
- 7 wjQj 3 (rv)/~r , nj 

j=1 

(3-142) 

which to first order in V+Z/r is given by 

÷ ~ETF S 
(dr)miME ~r (rV) = 8Z ~ (rv)/3r 

J 2n 5 (3-143) 

-~j=lWJ (n~+ Z-~2 ~ETFs" ~ETF S ~ N  ~ t ~-~-z - -+  ~ (rv)/~r nj). 

We are now prepared to evaluate the right-hand side of (130). The out- 

come is 

[7 - 3 (z-~ + ~ ) ]  ETr s (Z,N) 

J 3 J ~ (Z ,N)-/---~--wjmj 3 = Z 2 { ~ w j n j  ms} + 2(~Z + ~ ) E T F  S 
- -gNs} 

j=1 9=I 

J 
~>--wjn~ (~nj-5~nj + 2~(rv)/~r n.) 

j=1 3 (3-144) 

+ ~s + 2~(rv)/~r s} 

J 
22 ~ETFS~N(Z'N) { Z w j n ~ ( 3 ~ n  ' _ 5~'~ + 2 ~(rv)/~r nj)} 

j = I 3 n Z 

where the various curly brackets have to be replaced by their "smooth 

parts" according to our general recipy for removing the spurious Bohr- 

shell oscillations. The first two such expressions in (144) are the fa- 
I miliar ones of Eq. (63) - we know that they are replaced by ~ and 0, re- 
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spectively. We do not know the cor responding numbers for the two ex- 

pressions referr ing to v; for tunately,  we do not need them, because 

the averages of v are essent ia l ly  equal to Z t imes a number. 

To make this point  let us look back at the def in i t ion of v(r) 

in Eq. (133) and insert  n=niME+~ [Eq. (74)] to spl i t  v(r) into ViM E and 

V, correspondingly.  As stated repeatedly,  niM E has the structure: Z 3 

t imes a funct ion of Zr. This impl ies immediate ly  that V iM E equals Z 
% 

t imes a funct ion of Zr. Concern ing v, we f irst remark that the small-r  

behavior  of ~, which is relevant here, is given by 

J 
~(r) ~ ~ - -w j  I 2 Z -I/2 ~(~j - ~) ~ (2~) 

j=1 

J Z 2 2 I 

2~ 2 
6 ~ n  , 

j=1 3 

(3-145) 

J 
8~ 2 j/n Z 3 

j=1 

also of the form: Z 3 t imes a funct ion of Zr, so that ~, l ike VIME, equals 

Z t imes a funct ion of Zr, at least for the small r of importance. Since 

the essent ia l  measure of d is tance is Zr in both (136) and (137), we have, 

as announced above, 

{~nj; ~'nj" ~s ; ~(rv)/~r nj ; ~(rv)/~r s } 

= Z × { a cor responding number } 

(3-146) 

Consequent ly ,  the contents of the third and fourth cur ly brackets in 

(144) are to be replaced by aiZ and a2Z, respect ively,  wi th a I and a 2 

being numbers that are (practically) independent of Z (if they don' t  

van ish to begin with). 

We then arr ive at 

[7 - 3 (z~z ÷ N ~ ) ]  ETr s ~Z,N) 

I Z 2 I ~ (Z ,N) 
= ~ - a 1Z - a 2 ~ ~ ETF S 

(3-147) 

This extends Eq. (2-226), the cor responding equat ion obeyed by ETF(Z,N), 
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for which the r ight -hand side in (147) is zero. Upon inser t ing the an- 

satz 

ETFS(Z,N) = ETF(Z,N) + Z 7/3 ~ e k ( N / Z )  Z -k/3 (3-148) 

k=1 

into (147), we f ind 9 

I Z 2 1 
ETFS(Z,N) = ETF(Z,N) + ~ - ~ aiZ 

1 1 
- ~ a 2 ~ ~ ETF(Z,N) + ... (3-149) 

I Z 2 
= ETF(Z,N) + ~ + 0(Z) 

Indeed, here is Scott 's term again; and the cont r ibut ion to ETF S of or- 

der Z is ut ter ly  ins igni f icant ,  because our model  contains phys ica l  ap- 

prox imat ions a l ready at the order Z 5/3 (of wh ich the l ion's share be- 

longs to the exchange energy; see Chapter  Four). Thus, there is not the 

s l ightest  doubt  left about Scott 's  cor rect ion to the energy; we have 

checked, in detai l ,  that v(r), the dev ia t ion of the ef fect ive potent ia l  

from itS l imi t ing -Z/r  shape, does not contr ibute to the energy above 

the order Z 3/3 (notwi thstanding the l ikely poss ib i l i ty  that a I and a 2 

are both equal to zero). 

Some impl icat ions concern ing energy. The Scott  term is independent  of N, 

wi th  the consequence 

( Z , N )  = 3 ~-~ ETF s ~ ETF(Z,N) , (3-150) 

or after using Eq.(129), 

~TFs(Z,N) = ~TF(Z,N) (3-151) 

This is to say that the descr ip t ion of the outer  reaches of the atom 

has not been altered. Another  way of looking at the same th ing is to 

state that the ion izat ion energy required to str ip Z-N electrons of f  

the neutra l  atom, E(Z,N)-E(Z,Z),  is the same for an TF atom and an TFS 

atom: 
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ETF(Z,N) - ETF(Z,Z ) = ETFs(Z,N ) - ETFs(Z,Z ) (3-152) 

This is qui te reasonable  since the modi f i ca t ions  that d is t ingu ish  the 

TFS model  from the TF model  refer exc lus ive ly  to the deep in ter ior  of 

the atom. 

Next, let us check if the v i r ia l  theorem for Coulomb systems 

2Eki n = - Epo t = - (Eee + ENe) (3-153) 

holds in the TFS model, as it should. This is another cons is tency test. 

For this purpose, we return to Eq. (128) and set v=2 [recall that in a 

general  theory this is the only reasonab le  va lue for v, as pointed out 

around Eq. (2-477)]. This produces 

Z I Z ]2 
2ETFs + Z ( V + ~  ) I 8z f (d~) [~ (V+~)  = 0 . (3-154) 

r=o 

The second term is equal to the negat ive of the in teract ion energy of 

the electrons w i th  the nucleus, ENe, whereas the thi rd is the negat ive 

of the e lec t ron-e lec t ron  in terac t ion  energy, Eee, so that 

2ETF S = ENe + Eee = Epo t , (3-155) 

which, in combinat ion  wi th  ETF S = Eki n + Epot, 

(153). Every th ing is alr ight. 

We are now just i f ied in wr i t ing  

immediate ly  impl ies Eq. 

1 Z 2 
Ekin(Z,N) = - ETF S(Z,N) = - ETF(Z,N) - ~ (3-156) 

and 

ENe(Z,N) = Z~Z ETFs(Z,N) : Z~Z ETF(Z,N) + Z 2 , (3-157) 

so that 

E (Z,N) = E (Z,N) 
ee TFS 

= 2ETF (Z,N) 

- Ekin(Z,N) - ENe(Z,N) 

- Z~Z ETF(Z,N) 
(3-158) 

It turns out, that both E.. and E. d i f fer  from their  TF values by an 
2Kln se 

amount p ropor t iona l  to Z ; in contrast,  E is the same in the TF and 
ee 

the TFS model. In other  words: the e lec t ros ta t ic  energy of the e lect ron 

cloud remains unchanged by the Scott  correct ion; what  is a l tered is the 
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kinet ic energy of the electrons and the interact ion energy of the nu- 

cleus with the electronic atmosphere of the atom. 

For a neutral  atom, N=Z, we have ETF(Z,Z)='(3/7) (B/a)Z7/3, so 

that the relat ive sizes of these var ious energies are 

E ee : Eki n : (-ENe) 

7 a Z-1/3) a Z-I/3) = 1 : 3 ( I - ~  ~ : 7 ( I - ~  

= I : 3(I - 0.65/Z I/3) : 7(1 - 0.56/ZI/3). 

(3-159) 

These proport ions approach the TF l imit of 1:3:7 [Eq. (2-238)] rather 

slowly; for Z in the range of the Per iodic Table, i.e. ZI/3~5, the de- 

v ia t ion from this l imit is signif icant. For instance, in mercury  (Z=80), 

the proport ions are 

Eee : Eki n : (-ENe) = I : 2.55 : 6.09 (3-160) 

Electron densi ty at the site of the nucleus. It has been said a l ready 

that the densi ty  of the electrons at r=o is f inite in the TFS model, 

whereas it grows inf in i te (proport ional to r -3/2) in the TF model. Let  

us now make sure that the TFS predic t ion for n(r=o) is not only finite, 

but gives the correct numerical  amount. 

Upon inser t ing Eq. (139) into Eq. (77), we have 

n o 
(2Z)3 n ~  I + ~ w j  I + I__(_~8 + 8 

H n(r=o) = 4 ~ [  ,3 2n 2 Z 2 8Z 8-N)ETFs (Z'N) 
n j=1 

+ 3/2 J w 5 ~, - ~  ) 
Z 2 ~ j (7 nj n. 

j=1 3 

(3-161) 

5 8ETF s (Z,N) J 2 
Z 2 8N ~--wjn j  ($nj - {nj ) ] 

j=1 

We conf ine ourselves to the s i tuat ion of a neutral  atom, when 8ETFs/SZ 

=-(B/a)Z4/3~ Z and 8ETFs/SN=0, for which 

no/(2Z)4~3 
n s . . . .  

n' =I n' 3 a Z + 
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J 3/2 5 ~, _ ~ ) } , 
+ - -~  { ~ w j ( ~  nj nj 

j=1 

(3-162) 

where the delet ion of the unphys ica l  Bohr-shel l  osc i l la t ions in the two 

cur ly-bracket  terms is cal led for. In the f irst express ion this is done 

wi thout  much effort. Accord ing to the general  recipy [expla ined at the 

examples of Eqs. (63) and (64)], we wri te 

-n-s-- I/__ J I ~ [2sl I I 

n'3 + ~ w J  2n }  ~'=I  2v n,3 + ----2 
n'=1 j=1 s (3-163) 

= I_ /_  I I 

n,3 + ----~ - 2v n '3 
n'=1 s n'=[Vs]+1 

n'=1 n'3 + osc i l la t ion 

The last equal i ty  makes use of 

I _ I I S sin (2~kVs) 3~/42 ~ cOs (2~kvs) 

+in,3 2 v 3 + 
n'=[V s] 2Vs s k=1 ~k Vs k=1 (~k) 2 

3 ~ _  sin (2~kVs) 
+-~  2_ VS k=1 (ok) 3 

+ . . .  , ( 3 - 1 6 4 )  

the der iva t ion  of which is presented as Problem 4. Consequent ly,  the 

contents of the f irst pair of cur ly brackets in (162) are to be repla- 

ced by 

1.2020569. (3-165) I 

n'=l n'3 "" 

[In terms of Riemann's Zeta funct ion this sum is ~(3).] At this stage, 

we have I0 

n o / ~  3 - 1.2021 - 1.7937 Z -2/3 + ... , (3-166) 
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-I 
where the el l ips is indicates the terms of order Z in (162) [recall 

that, as stated in (146), Vn. and ~ .  are propor t iona l  to Z]. Note that 
3 

the coef f ic ient  of the Z - 2 ~  3term is almost five t imes as large as the 

cor responding one for a Bohr atom, which, accord ing to Problem I-5, 

equals (I/2) (2/3) 2/3=" 0.38. The mutual  repuls ion of the electrons makes 

the densi ty  decrease near the nucleus. 

In Table I the HF predic t ions 11 for n o are compared to the 

asymptot ic  value, the f irst term on the r ight-hand side of (166), and 

to the TFS resul t  (166). We observe that the asymptot ic  value is ap- 

H_~F and T_FS predic t ions for 4~no/(2Z)3 for Z = 17,34 .... Table 3-I. 

..,102. The columns DAV and DTFS give the deviat ions,  in percent, 

of the asymptot ic  va lue and the TFS one from the HF number. The 

d i f fe rence between the HF and the TFS resul ts is l isted in the 

column 0(I/Z). 

Z HF DAY TFS DTFS 0(I/Z) 

17 1.0291 16.8 0.9308 -9.6 1.672/Z 

34 1.0816 11.1 1.0311 -4.7 1.715/Z 

51 1.1063 8.7 1.0716 -3.1 1.766/Z 

68 1.1205 7.3 1.0944 -2.3 1.776/Z 

85 1.1303 6.3 1.1093 -1.9 1.784/Z 

102 1.1375 5.7 1.1199 -1.55 1.797/Z 

proached rather slowly, and that the d i f fe rence between the HF and the 

TFS numbers is only a few percent  for atoms that are not too small. In 

the last column of Table 1 this d i f ference is recognized as equal ing 

about 1.8/Z for large values of Z. This is a reassurance that Eq.(166) 

does d isp lay the  correct  constant  and Z -2/3 term, indeed. 

Look ing back at Eq.(162) we thus conclude that the term I/Z, 
1 2  

which or ig inates in the Scott  cor rect ion of ~Z to the energy, only  

accounts for about hal f  of the I/Z term supplement ing Eq. (166). The 

remain ing contr ibut ion,  however, cannot be produced correct ly  by the 

second cur ly -bracket  term in (162), because there are addi t ional  cor- 

rect ions on this level of approximat ion.  In part icular,  it is necessa-  

ry to inc lude into the descr ip t ion the changes of the wave funct ions 

to f irst order  in v(r), wh ich means that Es, the energy of the s t rongly  

bound electrons, has to be eva luated to second order in the d i f ference 

V-(-Z/r). 12 For the energy cons iderat ions it was suf f ic ient  to use the 

f i r s t -o rder  express ion (42). Another  cont r ibut ion ar ises from modi f ica-  
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t ions due to the inc lus ion of the exchange energy (to be descr ibed in 

Chapter  Four), wh ich  causes a change of the potent ia l  of  re lat ive size 

I/Z at smal l  d istances. In short: at the present  stage we are unable 

to predic t  the I/Z supplement  to the TFS pred ic i ton (166) accurately.  

What we can do is make a numer ica l  estimate. For example, when 

1 0.82 Z-2/3 2 + - - ( I -  ) (3-167) 

is added to the r ight -hand side of (166), the agreement  w i th  the HF 

pred ic t ions is bet ter  than 1.0; 0.5; 0.1 percent  for Z larger than 3; 

11; 18, respect ively.  

1.2 

o 

r- 

0.6 

| i i I ! i 

x xx / TF:S 

O.Z,  ~ ..... ~ i i I i 

0 30 50 90 
Z 

Fig. 5-4. HF p r e d i c t i o n  (crosses;  for  z = 1 , 2  . . . .  , I 0 2 )  and TFS r e s u l t  

(smooth curve) for  4nno/(2Z) 3 . 

For i l lust rat ion,  Fig. 4 shows the HF and TFS pred ic t ions for 

4~no/(2Z) 3, and Fig.5 disolays~ the HF resul ts for the erder-of -Z -I con- 

t r ibut ion a long w i th  the smooth curve cor respond ing to the in terpo la t ion 

(167). P lease note that Fig.5 indicates that n o contains an osc i l la tory  

part. This is the f irst t ime dur ing the deve lopment  that we are con- 

f ronted w i th  a man i fes ta t ion  of the atomic shel l  structure. 
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Fig.5-5 .  HF p r e d i c t i o n  (crosses;  for  z = 1 , 2  . . . . .  102 )  and i n t e r p o l a t i o n  

(167) (smooth curve) for 0(I /Z)/Z -I = [4~no/(2Z) 3 -1 .2021 + 1.7937Z -2/3] 

/Z -I The HF pred i c t i ons  for i n e r t  gas atoms are represen ted  by s t a r s .  

Numer ica l  procedure. The T FS dens i ty  of Eqs. (74) 

in Poisson 's  equation, 

- ( 7 6 )  is to be used 

I V2 Z 
- ~-~ (V +~) = n = n i M  E + n , (3-168) 

in order  to ca lcu la te  the TFS potent ia l ,  V. Inasmuch as the dens i ty  in- 

volves not on ly  the potent ia l  and the min imum b ind ing energy,~, but also 

the parameters  ~j and Qj, so lv ing Eq. (168) under  the boundary condi t ions 

- Z , for r + o , (a) 
r V(r) ÷ (3-I 69) 

-(Z-N) , for r ÷ ~ , (b) 

is a cons iderab ly  more complex numer ica l  task than it is in the TF model  

of the preced ing Chapter.  The pr inc ipa l  compl ica t ion  is that the ~j and 

Qj are not independent  quant i t ies,  but are given in terms of in tegrals 

invo lv ing V(and ~); these are Eqs. (50) and (72). 

Before any ca lcu la t ion we must  decide upon the number of shel ls 
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of strongly bound electrons to be corrected for, that is: we choose a 

value for ns. Then there is the question of how to average over ~s so 

as to remove - to the desired extent - the unphysical Bohr-shell arti- 

facts, that is: we make a choice for the number J of representative 

values for ~s' which are called ~j (j=1•2,...,J~2). Along with J we 

select appropriate weights w. to be used for the averaging. To each j 
3 

there corresponds, in Eq. (50)• a certain principal quantum number nj 

and its Bohr-shell  density l~n I~ v. For n=ns• and n2=ns+1• which are 

integers• these can be found i~ Eq (53); for the non-integer numbers n3.. 

we use appropriate (linear) averages of I~n11~ v~ and l~n212 as • .nd av' 
remarked after Eq. (58). "Appropriate" means• of course, f itt ing for the 

purpose for which the computation is made; in the typical situation the 

choice for J• wj nj• and l~nol 2 wil l  be dictated by the part icular • av 
Bohr-shell  osci l lat ions that 3one wants to remove. These decisions being 

made the numerical procedure is the following. 

For posit ive ions, N<Z, the search for V begins with a reason- 

able guess for ~ as well  as for the ~j and Qj (j=1 .... ,J). For instance, 

one can use for ~ the corresponding TF value• and for the ~j and Qj the 

numbers obtained from Eqs. (135) and (139) when the various averages of 

v(r) are neglected. Then, with these guessed ~,~j, and Qj, starting at 

a suff icient ly large distance (where n=o) with the known asymptotic form 

of V, Eq. (169b), one integrates the differential equation (168) inwards 

and compares the evaluations of the integrals for the ~j and the Qj with 

the init ial guesses, thereby obtaining improved values of these parame- 

ters. Further, one checks if (169a) is obeyed, and the outcome of this 

test leads to an improved ~. Then one tries again with the new parame- 

ters. For an init ial guess not too bad, this scheme is rapidly conver- 

ging. 

For a neutral atom, N=Z, we know that ~ is zero as it is in 

the TF model. But we have less knowledge about the asymptotic form of 

V. For large r, which means outside the region of strongly bound elec- 

trons, the density has the TF form (with ~=o), given by the first term 

i n t h e  second version of (76), and the potential now satisfies the TF 

equation 

I ?2 I 3/2 
4~ V = (-2V) for r large (3-170) 

3 2  

Thus, asymptot ical ly V must be equal to a rescaled TF potential, 

V(r) = 4 VTF(~r ) , (3-171) 
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with ~ close to unity. Again, for given parameters - now they are ~, 

~j, and Qj - one integrates the d i f ferent ia l  equat ion for V inwards 

and by i terat ion improves their  values. 

Numer ica l  results for neutra l  mercury. For i l lustrat ion,  such a calcu- 

lat ion has been per formed for neutral  mercury, for which N=Z=80. For 

the sake of simpl ici ty,  the simplest averaging procedure was chosen, 

the one wi th J=2 and w1=w2=1/2. The ini t ia l  guesses for the var ious 

quanti t ies, as they are obta ined from Eqs. (135) and (139) are compared 

wi th their  actual values in Table 2. For this choice of w.'s, the se- 
3 

cond cur ly-bracket  term on the r ight-hand side of Eq. (144) does not qa- 

nish [look back at Eq. (57)] which has the consequence that, upon ne- 
13 

g lect ing the terms conta in ing averages of v(r), the energy emerges as 

3 B Z7/3 (I + 2ns+1 7/3 
ETFS -= 7 ~ ~ )  (3-172) 

2 
+ Z2 II--2 +---~+2ns+1 (2ns+1) ] 

28Z 2 

3 B Z7/3 + I Z 2 (Z4/3 
7 a ~ + 0  ) 

Accordingly,  the energy der ivat ive needed in (135) and (139) is 

2n +I 
~ETFs ~ B Z 4/3" (I s 4/3 I 

+ ~--~----)jz + Z + ~(2ns+1) (3-173) 
~Z a 

For the scal ing parameter  ~, the natura l  in i t ia l  guess is ~=I. As we see 

in Table 2, the ini t ia l  guesses for ~E/~Z,E,~, as wel l  as ~I and QI dif- 

Table 3-2. Compar ison of in i t ia l  guesses (IG) wi th actual values 

(AV) and their  dev iat ion (DEV) in percent; for N=Z=8o, ns=1, J=2, 

WI=W2=1/2. 

Quant i ty  I G AV D EV 

-~E/~Z 547.9 550.5 -0.47 

-E 18560 18340 +1.2 

1.0000 1.0045 -0.45 

~I 2652.0 2788.0 -2.8 

~2 252.1 443.6 -43.0 

QI 0.8828 0 . 8 6 6 7  -4.4 

Q2 2.521 5 . 1 1 5  -51.0 
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fer only by a smal l  amount from the actual  values, whereas the agree- 

ment is much poorer for ~2 and Q2" This could have been ant ic ipated, 

because the in tegrat ions to be per formed for ~2 and Q2 cover a much 

larger range of r than the ones for (I and QI" In this larger range, 

neg lec t ing  v(r) causes a s ign i f icant  error, wh ich it does not for the 

small  r assoc ia ted wi th  ~I and QI" This s i tuat ion is improved, however, 

when the ca lcu la t ion is repeated for a larger va lue of Z. As noted in 

Ref.7, for a Z ten t imes larger, the percentage dev ia t ion is smal ler 

by a factor of 5 (for E) to 15 (for ~2 ). 

150 , , , , 

120 

90 

60 
£3 

30 

I I I I 

O0 0.05 0.1 0.25 &5 1 

r 

F i g . 3 - 6 .  Comparison of r a d i a l  d e n s i t i e s  D=4~r2n f o r  n e u t r a l  mercury.  

Smooth curve  TF; curve  w i th  s t r u c t u r e :  TFS (wi th  t h e  parameters  of 

Table  2) .  The a b s c i s s a  i s  l i n e a r  in  t h e  square  r o o t  of r .  

This computat ion for neutra l  mercury  also suppl ies a TFS densi -  

ty, wh ich is compared to the cor respond ing TF densi ty  in Fig.6. In or- 

der to s t re tch the smal l - r  region where the in terest ing s t ructure is 

located, the absc issa in this plot  is chosen l inear in the square root 

of r. The two radial  densi t ies d i f fer  s ign i f icant ly  for r~0.2. Please 

note in par t icu lar  that the TF dens i ty  is much larger in the immediate 

v ic in i ty  of the nucleus at r=o. Of course, one must not take this TFS 

densi ty  too ser ious in the in termediate  region, where we see two sharp 

peaks. These or ig ina te  in the slLm-over-j term in the second vers ion of 
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Eq. (76), and are consequent ly  ar t i facts  of the typ ical  TF d iscont inu i ty  

assoc ia ted wi th the square root. Another  averag ing scheme wi l l  na tura l ly  

result  in a TFS dens i ty  that looks d i f ferent  in this in termediate  region. 

f , -  

I ,  

I-.- 

> 

"C 

U.. 

1.014 I 
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1.006 

1.004 
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1.000 

0.9915 i 
0 

I I 1 I 

I I I I 

0.05 0.1 02 5 0.5 1.0 
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Final ly,  let us see whether  the statement in the paragraph after 

Eq. (2-408) is, indeed, true, namely that the potent ia ls  obta ined in the 

extensions of the TF model  do not d i f fe r  much from the TF potent ia l  it- 

self. Here we have the f irst example of such an extension: the TFS mo- 

del. In Fig. 7, a plot is presented not of the TFS and the TF potent ia l  

- they wou ld  be ind iscernab le  - but of their  ratio. We observe that 

this rat io is c lose t o u n i t y ,  the maximal  dev ia t ion  be ing hard ly  more 

than one percent. In contrast,  the respect ive  densi t ies d i f fer  by an 

enormous amount for r~0.1 as i l lus t ra ted in Fig.6. Thus we are r ight  in 

p re fe r r ing  the potent ia l  over the densi ty  as the fundamenta l  quant i ty.  

As a mat ter  of fact, up to date all at tempts of der iv ing  Scot t 's  correc-  

t ion in the f ramework of "densi ty funct ional  theory" have been unsuccess-  

ful (unless some ad-hoc mod i f i ca t ions  of the theory are in t roduced - a 

s t ra tegy that is hard ly  acceptable) .  

F i g . 3 - 7 .  Ra t io  of p o t e n t i a l s ,  VTFS/VTF, as a f u n c t i o n  of  r f o r  n e u t r a l  

mercury  ( t he  TFS parameters  being t h o s e  of Tab le  2) .  The a b s c i s s a  i s  

l i n e a r  i n  t h e  squa r e  r o o t  of r. 
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Problems 

3-I. To prove Eq. (25) w i thout  mak ing  use of Prob lem I-2, f i rst  note 

that  one can express [~s] as an integral  invo lv ing Di rac 's  Del ta  func- 

tion: 

s S [V s] = I = S dv 6(n'-v) , 

n'=l Vo n '=-~ 

w i th  0<Vo<1. Then employ Poisson 's  ident i ty  

> 6(n'-v) = ~ - - - e  i2rumv = I + 2 > cos(2runp) 

n ' =-~ m=-~ m= I 

per form the v in tegrat ion,  and arr ive at Eq. (25). Repeat  this procedure 

to evaluate 

[Vs] 
T n 2  
n'=1 

and der ive Eq. (30). 

3-2. AS an i l lus t ra t ion of Scot t 's  "boundary effect" argument,  cons ider  

N non- in te rac t ing  part ic les,  res t r ic ted to the one-d imens iona l  mot ion  

a long the x-axis, and conf ined to the range 0Sx~a. These par t ic les occu- 

py the N states w i th  least energy, one per state. Compare the TF appro- 

x imat ion  to the dens i ty  and the energy w i th  the exact  results. Note, in 

par t icu lar ,  that the requi rement  of van ish ing  wave funct ions at x=0 and 

x=a cause the exact energy to be larger than the TF result. Repeat  for N 

par t ic les conf ined to the in ter ior  of a th ree-d imens iona l  sphere, and 

observe that  there is much less s t ructure in the dens i ty  than in the 

prev ious one-d imens iona l  si tuat ion. Why? 

3-3. S imula te  the rep lacement  (31) w i th  the aid of  a weight  funct ion 

W(Vs) , 

2 3 
fdVs W(gs) (~Vs - Ns) = 0. 
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Since N s is constant for ns<~s<ns+1 (ns=1,2,...), it is natural  to 

choose W(Vs) per iodic in ~s: 

W(Vs) = f (Vs - [Vs ] )  --- f(~) 

Then the range of integrat ion covers one or more periods of w. Conclude 

that f(~) must obey 

I 1 3 _ I  1 
f d~ f(~) (ns+~) 3 = (n s +5) ~(n s +y) 
o 

for ns=I,2,3, . . . .  Show that any such f(~) also simulates the replace- 

ment (26). Evaluate 

I 
f d~ f(~)(I-2~) 2 
o 

and conclude that f(~) cannot be non-negat ive for all ~. 

3-4. Use a procedure simi lar to the one of Problem 1 to der ive 

> 
n'=[Vs]÷1 

° > 7  f(n') = fd~f(v) + 2 dvf(v) cos(2mnv) 

Vs m=1 Vs 

Then integrate by parts repeatedly to find 

> 
n'=[Vs]+1 

~ sin (2may s) 
f(n') = fdvf(v)  - f ( V s ) /  ~m 

VS m=1 

I f, ~ cos (2nmv s) 

- ~ (Vs) m= I (~m) 2 

I f. ~ sin (2n/n~ s) 

+ 4 (VS)m= I (~m) 3 
+ . . .  

= fdvf(v) + osci l lat ion. 
V s 

Speci fy  f(9) = ~ , and arr ive at Eqs. (164) and (163). 



Chapter  Four 

QUANTUM CORRECTIONS AND EXCHANGE 

In Chapter  Two we learned that the TF energy of an atom is propor-  

t ional  to Z7/3; in Chapter  Three it was estab l ished that the leading 

correct ion to this TF energy is propor t iona l  to Z 2 = Z7/3/Z I / 3 " "  . In this 

Chapter  we shal l  be concerned wi th  the second correct ion which, not 

surpr is ingly,  suppl ies a term of order Z7/3/Z 2/3 = Z 5/3 to the b inding 

energy of atoms. It wi l l  account for the d i f ference between the inte- 

ger -Z  HF crosses and the cont inuous TFS curve in Fig.3-3. 
< 

There are two d i f ferent  cont r ibut ions to this Z 5/3 term. The f irst 

or ig inates in what we cal led "quantum correct ions"  when d iscuss ing the 

re lat ion between quantum mechanica l  t races and semic lass ica l  phase 

space integrals [see af ter  Eq. (I-43)]. It thus means an improved eva- 

luat ion of the t race in 

E I (V+ ~) = t r ( lp  2 + V +  ~)~( _1p2  - V -  ~) (4-I) 

This E I is, however, only part oZ  the energy funct ional  (2-434), 

E(V,n,~) = E I (V + ~) - ] (d~') ( V - V e x t ) n  + Eee(n) - ~N, (4-2) 

in wh ich  the e lec t ron-e lec t ron in teract ion energy Eee is also the ob- 

ject of approximat ions.  So far it was suf f ic ient  to be content wi th  the 

Coulomb energy 

Eee(n) ~ ½ S(d~) (d~,) n(~)n(~') (4-3) 
i r-r i 

but now it w i l l  be necessary  to include the exchange energy as wel l  (in 

an appropr ia te  approx imate way). This is the second cont r ibu t ion  to the 

Z 5/3 term in the b ind ing energy. 

Since both AquE , the change in energy due to the quantum correct ions,  

and Eex , the exchange energy, are of the same order, namely Z 5/3, con- 

s istent models must  not prefer  one over  the other. We shal l  therefore 

ref ra in from cons ider ing  those extensions of the TF model  which include 

e i ther  only AquE (the "Thomas-Fermi-yon Weizs~cker  model") or Eex (the 

"Thomas-Fermi-Di rac model") .  Instead we shal l  aim at a descr ip t ion  in 

which the TFS model  is supp lemented by both the quantum correct ions and 

exchange. 
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Qual i ta t ive  arguments. In order to just i fy the remark that both A E qu 
and Eex are propor t iona l  to Z 5/3 let us br ie f ly  d iscuss the s i tuat ion 

in a qua l i ta t ive  way. 

The error  in Eq.(I-43) is due to the noncommutat iv i ty  of ~ and p, 

which appear in the Hami l ton operator  in the potent ia l  energy V(~) and 

energy 4 ½p2. So we are conf ronted wi th  correct ions that are the k inet ic  

associated wi th  the f in i teness of ~V. (Accordingly, these are cal led 

"gradient correct ions"  or " inhomogenei ty  correct ions"  by other authors; 

we shal l  s t i c k t o  the name "quantum correct ions.")  The relevant measure  

of the size of ~V is the one of Eq. (2-400), namely  II~Vl/IVI. In v iew 

of r ~  Z -I/3, ~ Z I/3, and l ~  IVI -I/2 ~ Z -2/3, this quant i ty  is of order 

Z -I/3. And since ~V is a vector, the cor respond ing energy correct ion, 

wh ich  is a scalar, is (to f irst order) propor t iona l  to the square of 

~V, so that it is smal ler  than the leading energy term by two factors 

of Z -I/3. Therefore,  

AquE ~ Z -2/3 

ETF 
(4-4) 

or w i th  ETF ~ Z 7/3 , 

Aqu E ~ Z 5/3 , (4-5) 

indeed. Incidental ly,  we shal l  see below that cons is tency requires to 

include a cont r ibut ion from the second der ivat ive  of the potent ial ;  it 

also leads to a Z 5/3 term in the energy. 

We turn to the exchange energy now. The e lect rostat ic  energy of each 

electron wi th  the other  electrons, const i tu t ing Z electrons at a d is tance 

%Z -I/3, is of order Z/Z -I/3 = Z 4/3. Consequent ly,  the total  e lect rostat ic  

energy is propor t iona l  to Z xZ 4/3 = Z 7/3," a result  fami l iar  to us since 

the d iscuss ion of the TF model  in Chapter  Two. In contrast  w i th  this 

e lect rostat ic  energy, exchange is l imited to e lectrons wi th  over lapp ing 

wave funct ions at a d is tance %1~Z-2/3; thus the exchange energy of each 

electron is of the order I/Z -2/3 = Z 2/3, that of all Z e lectrons being 

%ZxZ 2/3 = Z 5/3. Indeed, we have 

E ~ Z 5/3 (4-6) 
ex 

as stated above. 
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Quantum correct ions I (time t rans format ion  function). The quantum cor- 

rect ions concern the term E ~  s of Eq. (3-3), sSnce the cont r ibut ion from 

the s t rongly  bound electrons has a l ready been taken care of. Accord ing 

to Eq. (3-18), this quant i ty  is given by 

~s 
d 

E ~  s = f d~' (~'-~) d--~ N(~') , (4-7) 

wh ich  combined wi th  Eq. (2-I0), 

N(~') = tr q(-H-~') , (4-8~ 

reads 

} a 
= s d~' (~'-~) tr d -~  n(-H-g') (4-9) 

E ~  s 

We remember that in these equat ions H denotes the independent -par t ic le  

Hami l ton operator,  

H = 1 2  + V(~) , (4-10) 

V being the ef fect ive potent ial .  

The resul t  of d i f fe ren t ia t ing  Heavis ide 's  unit  step funct ion ~(x) 

is Di rac 's  Del ta  funct ion 6(x), 

d 
d-x ~(x) = 6(x) , (4-11) 

the Four ier  t ransform of wh ich  is 

6(x) = ? 
dt ixt 

-co ~-~ e (4-I 2) 

Consequent ly ,  the t race in Eq. (9) can be wr i t ten as 

d 
tr ~ n(-H-~') = - tr 6(-H-~') 

(4-13) 
= - t r  f d t  --i (S~-~ | ) t  

~ e  J 

Upon eva luat ing the t race as the d iagonal  sum in conf igurat ion space, 

the last equal i ty  is 

t r  6 ( - H - ~ ' )  = 2 f ( d r ' ) f ~  <~' l e - i ( H + ~ ' ) t [ ~ ' >  (4-14) 
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We meet here the t ime t ransformat ion  funct ion 

<~,,tm~,,,o> = <~, ne-iHtl~,,> , 

needed for r '=r". Wi th Eq. (15), Eqs. (14) and (9) appear as 

, dt e- i~ ' t<~, , t l~ , ,o> tr 6(-H-~ ) = 2 ~(d~') ~ 

and 

(4-15) 

(4-16) 

dt ' ' E ~  s = - 2 s d~' (~'-~)S(d~') f  ~-~ e -l~ t<~ ' , t l~ ' ,o> , (4-17) 

respect ively.  

so far we have been approx imat ing traces by the cor respond ing 

phase space integrals [see Eq. (I-43)], wh ich  gives 

tr 6(-H-~') ~ 2 f (d~') (dp') 6 ( _ 1 p , 2 _ V ( ~ )  _ ~,) 
(2m) 3 

rl ,2 _ 
= 2 S(d~'; ~ d t r  ( d - ~  e- i [2 p +v(~')+~')t (4-18) 

2-~ " (2~) 3 

when appl ied to the lef t -hand side of Eq. (16). The compar ison wi th  the 

r ight-hand side of this equat ion shows that this semic lass ica l  approxi-  

mat ion can be regarded as 

<~' , t l~ ' ,o> = <~, [e- iHt l~,> 

f cd_ u i(½p 2+v(  )it 
(2~) 3 e 

f I ~3/2 e- iV(r ' ) t  
= k ~ J  

(4-19) 

This re la t ion is exact  for a spat ia l ly  constant  potent ia l .  It is a good 

approx imat ion for r -dependent  potent ia ls  if the cons idered t ime t is 

small, since then the par t ic le  has not enough t ime to propagate far 

enough to become aware of changes in the potent ial .  

As a f irst step towards improving (19) by inc luding ef fects of the 

der ivat ives of the potent ia l ,  let us cons ider  a l inear potent ia l  descr i -  

bing a constant  force F, 

v 1(~)  = v o - ~ • ~ (4 -2o )  
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Accord ing to Eq. (I-42), the ordered vers ion of 

1 2  ÷ ÷  
-iHt -i (yp +Vo-F" r) t 

e = e (4-21) 

is 
-iHt -i (Vo-F'~) t e-i l (p  + 1Ft) 2t - iF2t3/24 

e e z e (4-22) 

so that Eq. (I-41) implies 

tr e -iHt = 2 5(d~')<r'÷ ,t iT',o> 

: 2 ~ (d~') fJdp') e- i (Vo-F.~ ' ) t  
J (2z) 3 

-i I (~,+ I ~t)2t _iF2t3/24. 
e 2 Y e 

Thus, after t rans la t ing the or ig in in ~' space, 

1 _iF2t3/24 <~' , t [ r ' ,o> = 5 (d~' e-iV1 (~')t e - i 2  p'2t e 

(2~) 

(4-23) 

= I ~ ! 3 / 2  e- i [v I (~')t + (~'V1(~'))2t3/24] , (4-24) 

which, for the potent ia l  (20) is, indeed, the correct result. 

It is tempt ing to use the express ion (24) as an improved approxi-  

mat ion to <~' , t j~ ' ,o> for potent ia ls w i th  small second der ivat ives,  just 

as (19) is employed when the gradient, the first der ivat ive of the po- 

tential, is small. Doing this would, indeed, result  in a correct ion of re- 

lat ive order Z -2/3," because V ~  Z 4/3 implies that the relevant values of 

t are of order ~4/I'~ which combined wi th ~ , I _  ~ ZI/3 shows that r I 

(~'V(~')) 2 t 3 ~ (Z I/3 Z4/3)2(Z-4/3) 3 = Z -2/3 (4-25) 

This much is fine; what is wrong, however, wi th the approximat ion (24) 

is that it does not contain all correct ions of re lat ive order Z -2/3. 

To i l lust rate this point, consider a quadrat ic  potent ia l  

÷ ÷  I ÷ ~  ÷ 
V 2 (~) = V O + k.r + y r .~-.r  , (4-26) 

which is a second order approx imat ion to any given potent ia l  V (~) around 

= ~', if the constants Vo,k , and ~ are such that 

÷ 
÷ I ~,.~2.r, = V 2 (~') V(~') = V o + k-r' + y 



180 

÷ ÷ = ~ ~ +_, ÷,  ÷ 
V'V(r') + w "~ = V V2(r') , (4-27) 

+ ÷  ~ 7, ÷ 
~ , v , v (~ , )  = ~ = v v2 (~ , )  

These constants given, it is always possib le to adopt a coordinate sys- 

tem in which the (symmetric) dyadic ~ is diagonal: 

I ÷*-~ ÷ I 2 x 2 2 2 2 
r ' ~ ' r  = 2(~x + y + z 2) (4-28) y z ' 

wi th the consequence that the dynamics in the three perpendicu lar  di- 

rect ions of x, y, and z is independent. We can thus s impl i fy  matters,  

for a start, by cons ider ing the one-d imens iona l  mot ion along, say, the 

x-axis, governed by the Hami l ton operator  (we choose to d is t r ibute the 

constant V O equal ly  among x,y, and z) 

I I 2 2 
Hx = p2 + ~ Vo + kx x + ~ ~x x (4-29) 

The t ime t ransformat ion funct ion <x' , t lx" ,o> for such a one-d imens iona l  

harmonic osc i l la tor  is wel l  known, 

1 I/2 e- i~x <x' , t [x" ,o> = 12 - -~ )  , (4-30) 
x 

where the phase ~x is given by 

x 

k 2 ex t 
I x =~Vot--~ (T -  

~x 

~x t 
tan ( T ) )  

k ~ t 
x (x'+x") tan ( + )  +-~-- 
x 

t 
I (x,+x.)2 tan ( + )  

+ 4 ~x 

(4-31) 

t 1 2 x 
- -- (x' -x") ~ cot ( ) 

4 x 2 

and the "tyme" T x by 

I sin (~xt) (4-32) T x = ~-- 
x 
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(The dependence on ~x is even, so that these equat ions hold both for 

2 > o  and for 2 <o.)  Equat ions (30) to (32) can be easi ly  produced by 
x x I 

a var ie ty  of techniques;  at worst, one ver i f ies  that the Schr~d inger  

equat ion 

i ~t ~ <x',tlx",o> = <x',tl~xlx",o> (4-33) 

is obeyed, as wel l  as the in i t ia l  cond i t ion 

<x ' , t lx" ,o> ÷ 6(x'-x") , for t ÷ o  (4-34) 

Please note that ~x spl i ts into two parts depend ing on the sum and di f -  

ference of  x' and x", respect ively.  Thus, if we now denote thei r  d i f fe-  

rence by s x and hal f  the i r  sum by x', we have 

~x(X' ,Sx,t) 

t (4-35) 
~x (x 1 2 cot ( + )  , = ' ,o,t) - Sx ~x 

where k 2 ~ t ~ t 

~x(X. ,o, t  ) = 1 Vo t 3 I T  - t a n ( ~ ) )  

x (4-36) 

t 
2 x.2) ] t a n ( + )  (2 kxX' + ~x ~-- 

x 

Let us now find out of wh ich order  in Z -I/3 the var ious terms are in 

Eqs. (32), (35), and (36). As in the d iscuss ion of (24) we have 

r' ~x '  ~ Z  -I/3 ~' ~ Z  I/3 

V(r  ) ~ Z 4/3 Z -4/3 ' , t ~  

(4-37) 

so that [Eq. (27)] 

e-9 2 Z6/3 
~ 2 ~  x 

~ % k  % Z  5/3 
x 

V O % Z 4/3 

, to x 
Z 3/3 

(4-38) 
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Further, s x s igni f ies the d is tance between two x-coordinates,  which is 

relevant only when over lap integrals are evaluated. Therefore, just as 

in our qual i ta t ive d iscusss ion of the exchange energy, ~ = (Sx, Sy, s z) 

is of order of the electrons' de Broql ie wave length, 

÷ Z-2/3 s ~ s x ~ I ~ I V I -I/2 ~ (4-39) 

As a consequence of (37) and (38), we observe 

~x t ~ Z -I/3 (4-40 

so that 

tan ( ~ )  -~-~xt 3 2 1  ,~x t , = + - l - - - J  3 
+ . . . (4-41 

is an expansion in powers of Z -I/3. Inserted into (36), this produces 

I t 3 ~x(X' '0't) = ~ Vot + 2~ k 2  

2 x .2 ) ( }+  2 ~ 2  t 3) + (2kxX' + Wx x (4-421 

+ 0 (z -4/3) 

Up to order Z -2/3 we thus have 

(x',0,t) ~ I x. + I 2x .2 ) t  
x (~ Vo + kx ~ x  

2~ 2 2 t 3 
+ (kx + ex x' ) 

(4-43) 

Analogous expressions are obta ined for By and Cz' their  sum being 

#(r' ~ ,0,t) = ~x(X''0't) + ~y(y',0,t) + ~z(Z',0,t) 

(V O + k.r' + ~ .~ • 

+~ )2 t 3 + ~ (~ + ~2.~, 

(4-44) 

or wi th Eqs. (26) and (27) 
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#(~',0,t) ~ V(~') t + 2~[~ 'V(~ ' ) ]2  t 3 (4-45) 

L ikewise we f ind for the s term in (35) 
x 

~ t s 2 
÷ x 1 2 2 

S ~x cot( ) ~ 2t 24 Sx mx t , (4-46) 

wh ich  then leads to the three d imensional  result  

(~' ,s,t) 

2 
s ~ 4  + ÷ --- ~(~',0,t) - ~ + (s-V') 2 V(~') (4-47) 

The cor respond ing approx imat ion for the tyme T x of (32) is 

T a t(1 I 2 x - 6 ex t2) ' (4-48) 

w i th  this impl icat ion for three d imens iona l  T: 

T -  (TxTyTz)I/3 = t ( 1 - 1 ~ ( m x 2 +  2 +  2 ) t  2) , (4-49) 

o r  

t2 V'2 V(~')) (4-50) 

÷ 

The tyme T does not depend upon s up to the order considered here, that 

is up to correct ions of re lat ive size Z -2/3. 

In summing up, we state that our new approx imat ion for the t ime 

t ransformat ion funct ion needed in Eqs. (16) and (17) is 

÷ 1 + I ÷ ~ e , (4-51) <r' + y  Sj t l ~ ' - ~  s, 0> = ( )3/2 -i~ 

where the phase ~(r ,s,t) and the tyme T(~',S,t) are given by Eqs.(47),  

(45), and (50), wh ich are correct up to order Z-2/3° One checks immedi-  

ately that Eqs. (24) and (19) are reproduced in the s i tuat ion of a l ine- 

ar or a constant  potent ial ,  respect ively.  

Af ter  ar r iv ing at Eq. (24) we resisted the temptat ion of using this 

express ion  as the basis of improved approx imat ions because the corres- 

ponding # and T did not conta in all terms of  re lat ive order Z -2/3. Whi le  

the " local osc i l la tor  approximat ion" of Eqs. (26) and (27) does, indeed, 

produce all the terms miss ing  in (24), we have, so far, no way of know i 
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ing that noth ing has been left out. An independent  count of the powers 

of Z -I/3 is asked for. It is suppl ied by the Schr~d inger  equat ion obeyed 

by <~' , t l~" ,0> , of wh ich the one d imensional  vers ion is wr i t ten as Eq. 

(33). Wi th the Hami l ton operator  (10) it reads in three dimensions: 

÷ + 1 2 ÷ ,)) < ~ 1 , , t [ ~ 2 , , 0  > i ~ <r1',tlr2',0> = (- ~ q I' + V(r  I 

1 2 + , ) )  <~1,,tl~2,,0 > = (- ~ V 2' + V( r  2 4-52) 

Upon set t ing 

÷ 

~, = ! 1 } ,  + 2 ,  1 r 2 ' )  ' s = ~1' - ~2' , (4-53) 

accompanied by 

÷ ,  1 ~,  + ~ + ,  1 ~,  _ ~ 
Vl = 2 S ' V2  = 2 s , (4-54) 

the sum and d i f ference of the two vers ions of (52) appear as 

i ~ + ~I V,2 + 21 Vs2_ ~ 21 

a n d  

' .V s - 

q 
÷ i ÷ I (2_ 13/2 [V(r' + ~ s )  - V ( ~ ' - ~  

e = 0,  

(4-55) 

-i~ 
e = 0 , (4-56) 

where the t ime t rans format ion  funct ion is inserted in the form (51). 

These d i f fe rent ia l  equat ions are to be solved subject to the in i t ia l  

condi t ion 

I % 3 / 2  e - i ~  
2~--IT' + 6(s) , for t ÷ 0 (4-57) 

[cf. Eq. (34)], wh ich  is sat is f ied prov ided that 

T ÷ t , for t ÷ 0 , (4-58) 

("tyme ÷ time") and 

s 2 
+ 2t ' for t ÷ 0 (4-59) 

For the sequel, it is helpfu l  to carry out the d i f fe rent ia t ions in (55) 

and (56) formally, and to separate the real and imaginary parts of the 

resu l t ing equations. This leads us to a system of four par t ia l  d i f fer-  
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ent ia l  equa t i ons  d e t e r m i n i n g  ~ and T, 

_ 3  + 9 +  1- *  2  log • } 

1 3 V,2 9 (~ , logT)  2 2 - ~ { l o g T  - ~ + (~'~) } 

I ÷  I +  = [v(~' + y s )  + v ( ~ ' - 3 s ) ]  , 

9 ~ ' l o g T  • ~ s l O g T  I ~ ,® .~  3 ~, .gs log  T + Z _ 4 s 

1 ÷ 1~)  _ v ( ~ '  1 5 ) ]  = ~ [V ( r ' +  3 - [  

~ t  2 {3 log T + V s - 3 ~ s ~ . ~ s Z o g T  } 

I 2 
+ ~  {v'  ® -  3 ~ ' { .  ~, logT} -- 0 , 

+ 3 +  .~ ~ , .~  { 3 ~, ~ .Vs log T _ V ' I o g T  ~ = 0 
s - 3  3 s 

(4-60a) 

(4-60b) 

(4-60c) 

(4-60d) 

Now s ince  

__~ ~ Z4/3 ~ ~ Z 2/3 ~, m Z 1/3 
~t ' s ' 

, ( 4 - 6 1 )  

we no t i ce  tha t  in (60a) and (60c) t he  f i rs t  and second cu r l y -b racke t  

te rms are o f  o rde r  Z 4/3 and Z 2/3, respec t i ve ly ,  whereas  the l e f t -hand  

s ides of  (60b) and (60d) are of  o rde r  Z 3/3 each. The r i gh t -hand  s ide of  

(60a) is equa l  to 

1+.÷, _ 1 ~ . ~ ,  
1 e~-S V 2 
~ (  ÷ e  ÷ 1 + . ¢ , )  v ( ~ , )  ) v ( r ' )  = c o s h ( y s  

1 1 ~ . ~ , ) 2  1 1 + . ~ , ) 4  ÷ 
= v(~')  + Y ( 3  v(~')  + ~ 7 ( ~ s  v(r ' )  + ... (4-62) 

w h i c h  are terms of  o rde r  Z 4"3, / Z 2"3, / Z 0"3, / . . . .  S imi la r l y ,  we have in 

(60b) 

l~ .~, 
I (e 2 
3 

_1~.~, 
2 1 ~ .~,) V(~')  - e ] V(~')  = s inh (2  

1 1 ~ . ~ ,  3 + 
= (~1 ~ . ~ , )  V(~')  + 6 ( 2  ) V(r ' )  + ... , (4-63) 
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these being terms of order Z 3/3, Z I/3, ... . The count ing of the powers 

of Z -1/3 is fac i l i ta ted by in t roducing a parameter  ~ that essent ia l ly  

plays the role of Z -I/3. It enters Eqs. (60a-d) , (61) , and (62) v ia the 

replacements 

1 ~ + 1 ~ , ~ , ÷  1 ~ ,  
.-f£ ÷ - 7 - ~  ' V s ÷ - ~  s ~- 

(4-64) 

V ÷ V , s.V' ÷ ~ s-?' 

Then the power of ~ mul t ip ly ing  any term indicates its order in powers 

of Z -  I/3." Al l  re ference to b can f inal ly be removed by set t ing b equal 

to unity. 

Af ter  common factors of ~ are cancel led, the effect of (64) is to 
2 

mul t ip ly  the second cur ly-bracket  terms in (60a) and (60c) by ~ and to 

write, in con junct ion wi th (62) and (63), cosh (~s .~')V(~') and 

(I/b) s i n h ( ~  .~')V(~') for the r ight -hand sides of (60a) and (60b). It 

is then s t ra ight forward (and left to the reader) to ver i fy  that these 

equat ions are solved to order 2 by 

2 
÷ s [~'V (~')]2t2 ~(~',s,t) = {- ~ + v(~')t} + ~2 t { (~.~')2v(~'l + } 

and 

l o g T  (~' ,~,t) = l o g t  - 2 t 2 V,2 

(4-65) 

(4-66) 

the latter one being equiva lent  to 

+ 2 t 2 V,2 
T(~',s,t)  = t [ 1 - ~  ]-~ V(~')] (4-67) 

Inasmuch as (65) and (67) are ident ica l  w i th  (45), (47), and (50), as 

soon as ~ is put equal to one, we are, indeed, assured that those appro- 

x imat ions are correct  up to the re lat ive order of Z -2/3. 

A few comments are in order. The last reasoning, the count ing or 

powers of ~, shows that only even powers of ~ emerge; these cor respond 

to correct ions of re lat ive orders Z -2/3, Z -4/3, and so on. Remarkably,  

there is no Z -I/3 term. The Scott correct ion, however, is of re lat ive 

size Z -I/3. How does this fit in? The answer is both simple and instruc- 

tive. The strongly bound electrons are exposed to the Coulomb potent ia l  

w i thout  any shielding, so that their  energies are measured not in mul-  

t ip les of Z 4/3 but of Z 2 and their  d is tances are not ~Z -1/3 but %Z -1 
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which is also the magn i tude  of the i r  deBrog l ie  wavelength.  In other words: 

in the Coulomb part  of the potent ia l  the scale is changed to the effect 

that, instead of the TF re lat ions (37) and (61), we now have 

Z 2 ÷ V ~ , r' ~ s ~ Z -I , ~' ~ Vs ~ Z 

t ~ Z -2 3 Z 2 , ~ - ~  

(4-68) 

wh ich  has the consequence that all terms in Eqs. (60a-d) are of the same 

size, namely  ~Z 4. This impl ies that, in contrast  to the TF si tuat ion, 

there is no expans ion parameter  ava i lab le  for a systemat ic  approx imate 

ca lcu la t ion of  ~ and T if V is the Coulomb potent ia l .  Any scheme based 

upon d is regard ing  cer ta in  terms in Eqs.(60a-d) wi l l  inev i tab ly  resul t  
2 

in a wrong answer. Therefore,  the v ic in i ty  of the nucleus wi l l  not be 

deal t  w i th  cor rect ly  if one s imply ext rapolates the quantum correct ions 

of Eqs. (45), (47), and (50) into this region. There is no way around the 

specia l  t reatment  of the s t rongly  bound electrons that we studied in the 

preced ing  Chapter.  

A second comment is the fol lowing. In ar r iv ing at the new ap- 

p rox imat ion  v ia the local osc i l la to r  potent ia l  of Eqs. (26) and (27), 

terms of order  t 3 w e r e  kept in ~ and T, those of a h igher  order in t 

d iscarded. Does this imply that one could regard the expansions (41) and 

(46) as count ing the powers of the t ime t? Of course, they do; the f inal 

resul ts [Eqs. (45), (47), (50)], however, are not correct  in the sense of 

d isp lay ing  al l  cont r ibu£ ions to order  t 3. As a mat ter  of fact, they do 

not even conta in al l  terms of order  t, s ince 

}(~, + s 2 Is inh({ ~'~')]  
,s,t) = -  + - - - - -  V(~ ' ) t  + 0(t 3) (4-69) 

2-£ I I +  ÷, 
J [ ~s.V 

is the smal l - t  form of }, as can be ver i f ied  wi th  the aid of Eqs. (60a-d). 

The extra terms d isappear  from (69) for s = o ,  but the s i tuat ion is di f -  

ferent for the cont r ibu t ion  ~t 3 because # 

= + 

+ 0 (t 5) 

2 212v(  ,it3 

(4-70) 

replaces (45) if powers of t instead of Z -I/3 are counted. Thus, it is 

real ly  Z -I/3, not t, what  is the expans ion parameter.  3 

Here is a th i rd comment. If the t rans i t ion  from the d imensio-  
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nal many-par t ic le  Hami l ton operator  (I-I) to the d imension less one (1-7) 

is not made, the gradients in Eqs.(60a-d) as wel l  as (45),(47), and (50) 

come wi th a factor  of ~ each. Then the Z -2/3 terms are all mul t ip l ied  

by ~2, so that they can be misunders tood as the beg inn ing of a series 

in powers of M, or ~2. It has already been remarked, on the f irst pages 

of the Introduct ion,  that M is not a parameter  of the theory, so it cer- 

ta in ly cannot serve as a measure of the qual i ty  of an approximat ion.  

What is real ly  meant  by the phrase "expanding in powers of ~" is the 

process of count ing the powers of the ~' operator.  Indeed, the Z -2/3 

terms are all d isp lay ing two ~'s. This is not accidental ;  there is a 

simple reason why all terms of order Z -m/3 also contain the ~' d i f feren-  

t ial  operator  exact ly  m times. An immediate impl icat ion of Eqs. (60a-d) 

is that both # and T are even in ~ and odd in t, so that an arb i t rary  

term in the expansion of e i ther quant i ty  is (symbolically) g iven by 

(?,2)~(~.~,)2B V Y t i+26 , (4-71) 

where ~, B, ¥, and 6 are integers. Now, if V is the Coulomb potent ia l ,  

(71) is of the order ~+¥, I -26 in Z 2, and since each such term is of order  

Z °, as d iscussed above, we find 

+ y = I + 26 (4-72) 

Wi th  this restr ic t ion,  the most general  form of (71) is 

(t V '2 )~(s .~ ' )2~(V t) Y , (4-73) 

which, for the TF potent ia l ,  is of order 2(~+~) in Z -1/3. This is, in- 

deed, the number of the ~' d i f fe rent ia l  operators.  We have thus estab- 

l ished that, for our appl icat ion to large atoms, expanding in powers of 

Z -I/3 is equiva lent  to count ing the powers of ~', or, more co l loqu ia l ly  

of M.4 It must  be emphasized that the s i tuat ion is l ikely to be d i f ferent  

when the approx imat ion is appl ied to other physica l  systems. We have al- 

ready ment ioned the bare Coulomb potent ia l ,  for wh ich  there is no para- 

meter  for an expansion in the f irst place, so that the mechan ica l  coun- 

t ing of the powers of ~' or ~ can only be qua l i f ied  as nonsense. 

The f inal  comment answers the quest ion why it is advantageous 

to wr i te  <~' , t [~",o> in the form (51) fo l lowed by approx imat ing ~ and T, 

as compared to the apparent ly  s impler  's 2 

I+  I+ f 1 ~3/2 i ~ -  iV(~') t  
<~' + ~s,t I~'  - e ~s ,o> = × 
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t + + t2-,2 ÷ .t 3 + + 2 (Z-4/3 
×{I - i ~ ( s ' V ' ) 2 V ( ~  ') + ~ V  V(r') - l ~ [ V ' V ( r ' ) ]  + 0 )} , 

(4-74) 

5 
which is known under the name Wigner -K i rkwood expansion. To understand 

the pr inc ipa l  reason it is useful  to cons ider  the q u a n t i t y  

tr e -iHt = 2 f(d~') <~' le -iHt I~' > 

= 2 f ( d ~ ' )  <~' , t l~ ' ,O> 

(4-75) 

The spectral  evaluat ion of this trace, 

tr e - i H t  = . .~-.m(t)  e - i H '  ( 1 ) t  

t 
, (4-76) 

ident i f ies the energy e igenvalues H'(1) of H and their  mul t ip l i c i ty  m(1), 

both parametrz ied by a set of (quantum) numbers, symbol ized by I. It is 

c lear that, since the energy is the fundamenta l  quant i ty  of the system, 

the spectrum H' (I) is of centra l  interest  to us. In the TF approx imat ion 

(19), I stands for r' and p', the semic lass ica l  spectrum being 

H' = ½p,2 +V(~ ' )  (4-77) 

and the mul t ip l i c i ty  

m ~ 2 (d~')(d~') (4-78) 
3 

(2~) 

that is: two states per phase space volume of (2~) 3. The advantage of 

the approx imat ions (45) and (50) in (51) over the expansion (74) is that 

the former is easi ly wr i t ten in the spectral  form (76), whereas the lat- 

ter is not. It is inst ruct ive to evaluate the spectrum and mul t ip l i c i ty  

cor responding to our new, quantum-corrected,  semic lass ica l  approximat ion.  

Af ter  wr i t ing  the tyme factor of (51) in analogy to the f ree-par t ic le  

momentum in tegrat ion in Eq.(19), 

.I .2_ 
(~___~)3/2 = f ( d ~ ' ~  e-l~ p T , (4-79)  

(2~) 

the t race of (75) is approx imated by 
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2 2 ,2V 2 v t 3 -i( I , i !] ~P 2+V(~')) t  -~ [  
2f (d ')Ida) e 

(2~) 3 

(4-80) 

Since we are aiming at an exponent l inear in t, as required by (76), it 

is f i t t ing to represent the exponent ia l  funct ion of t 3 wi th the aid of 

Airy 's funct ion Ai(x),6 def ined by 

e -iy3/3 = ~ dx e ixy Ai(x) (4-81) 

The propert ies of Ai(x) wi l l  be of par t icu lar  interest later, for the 

moment, however, it suff ices that wi th (81) Eqo (80) reads 

÷ !  
tr e -iHt ~ 2f (d~') (dp') dx Ai(x) e -ill' (~''P x)t 3 ' , (4-82) 

(2~) 

where 

H' (~' ,p',x) = ½p,2 +V(~ ' )  _½x[ [~ ,V(~ , ) )2  _~p2 ,2V,2 V(r,)] ÷ I/3 

(4-83) 

ident i f ies the effect ive, quantum-corrected,  semic lassical  spectrum of 

H, the mul t ip l ic i ty  being 

m = 2 (d~') (dp') dx Ai(x) 
(2~) 3 

(4-84) 

In contrast  to this argument for the form (51), an interpretat ion of 
-iHt (74) as a natural  star t ing point for a spectral  evaluat ion of tr e 

does not seem possible. Therefore, remember ing the importance of spec- 

tral sums in quantum-mechanica l  calculat ions, the form (51) is obviously 

preferable over the expansion (74). 

Quantum correct ions II (leading energy correct ion).  Upon set t ing y=o in 

Eq. (81) , we infer that 

co 

S dx Ai(x) = I , (4-85) 
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which permits one to int roduce a def in i t ion of Airy averaging: 

< f (x )~  E f dx Ai(x) f(x) (4-86) 

In this notat ion, Eq. (81) appears as 

<e iXy9  = e-iy3/3 , (4-87) 

wh ich has the special  consequences 

<x> ° = 0 , <x2> ° = 0 , <x3> ° = 2 (4-88) 

In v iew of the Airy average on the r ight -hand side of Eq. (82), 

tr e -iHt --- 2f (d~') (dp') -ill' (~' ,p ,x)t>o , 3 < e (4-89) 
(2~) 

the t race of any funct ion f(H) of the independent -par t ic le  Hami l ton 

operator  (19) is now approx imated by 

tr f<H(~ p)] --- 2~ (d~') (dp') < f(H' (~',p',x)] >o 
' 3 (2~) 

(4-90) 

wh ich uses the ef fect ive spectrum (83). Please note by how l i t t le this 

quantum-cor rec ted vers ion di f fers from the h ighly  semic lass ica l  phase- 

space integral  (I-43). This or ig inal  approx imat ion is recovered from 

(90) by the replacement  

(r', ,o) = H(r',p') (r',p ,x) ÷ H' p' (4-91) 

Concequent ly,  the leading quantum correct ion to (90), A tr f(H), is qu 
given by the f irst non-van ish ing term of an expansion in powers of 

~, ÷ 1 H' (~',p , x ) - H ( ~ ' , p ' ) =  - x [ (~,V(r , ) ]2  -]P2 ,2_v,2V(~,)] I/3 

(4-92) 

Because of Eqs. (88) this is the cubic term. Thus 

A tr f (H) qu 

:21(d~l (d~) f  1 2 
- ~ p  V V] 12~) 3 (~p ÷v(~l ] I-~l [ (~vl 2 2 2 2 

(4-93) 
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where the primes denote differentiation with respect to the argument. 

(The primes on the integration variables have been dropped, since a con- 

fusion of numbers with quantum-mechanical operators is no longer likely.) 

The partial integrations 

(d~) f'"(lp2+V) (~V)2 : ~ (d~)~V.~f" (lp2+V) 

= ]" (d~) (-v:~v) f" (½p2+v) 
(4-94) 

and 

,,,.I 2 _, 2 .÷.÷ ~ (lp2+V) .r Ida) f ~-p *v~p .r = (ap; p.-~p f" 

S Ida) (31 f (½P2+v) 
(4-95) 

simplify the right-hand side of (93), producing 

Aqutr f(H) 2f (d~) (dp) f,, : <~pl 2+v I~)) - ~v2v) 
(2~) 3 

When applied to 

~s 
E ~  s = - f d~' (~'-~)tr 6(-H-~' 

[which combines Eqs. (9) and (13)] this gives 

AquEcc s - 241 ~ S d ~  ' ~ 2%[-2~ (V+C Ida) V2V ' (~ -~) (~--$-i-) 

(4-96) 

(4-97) 

,)]I/2 ,(4-98) 

which uses 

s <d..~-.~_ ,~l_½P~_v_~,) = __TE-~(v+~,)~l/~ 
(2~) 3 

(4-99) 

Aiming at a perturbative evaluation of (98), we first dispose of the 

delta function at the origin in V2V. Of course, [-2(V+~')] I/2" is singu- 

lar at that point. But, the two derivatives with respect to ~' wipe that 

term out. Indeed, the whole structure of the second derivative 

[-2(v+~')] -3/2" ~ r 3/2 is thoroughly zero at the origin. [This is also 

essential for the partial integration of (94).] So we can, without 

changing anything, replace V2V in (98) by V2(V+Z/r). Then we equate this 
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to -4~n through the Poisson equat ion and, wi th the ~' integral  evaluated, 

arr ive at 

= I A q u E ~  s -6-~ / (d~ )n (~ ) { [ -2 (V+~) ] I / 2 -  [-2(V+~s )]I/2 

- (~s-~) [-2 (V+~s ) ] - I / 2 }  

Now, the densi ty  n is composed of the TF densi ty  (2-51) 

(4-100) 

_ I [_2 (V+~) ] 3/2 (4-101) 
nTF 3~2 

and correct ions to it re fer r ing to st rongly bound electrons, quantum 

effects etc. L ikewise the cur ly brackets are the sum of the TF term 

and correct ions to it. Consequent ly ,  the leading quantum correct ion to 

E I is obta ined by d is regard ing the modi f ica t ions of the TF part of Eq. 

(100), imply ing 

Aq u El = I f(d~) [-2(V+~)] 4/2 (4-I02) 
183 

where V and ~ are the TF quant i t ies cor responding to the system under 

considerat ion.  What has been d iscarded in going from (100) to (102) are 

correct ions to correct ions which, if taken seriously, result  in energy 

contr ibut ions of a lower order in Z -I/3. In Eq. (I02), the power 4/2 

instead of 2 is a reminder that the domain of in tegrat ion is the c lassi-  

cal ly  a l lowed region where V+~<o. 

For neutra l  atoms, we have ~=o and V=-(Z/r )F(x) ,  so that 

Z 5/3  ~ 2 
Aqu El = ---(4a) 2 ofdX[F(x)] 

× 0.269900 Z 5"3 / 
11 

(4-103) 

wh ich makes use of the numer ica l  va lue given for this integral  in Prob- 

b lem 2-3. The reason for exh ib i t ing the factor of 2/11 wi l l  be c lear 

later, af ter the leading exchange energy cont r ibut ion wi l l  have been 

evaluated. 
7 The f irst conv inc ing der iva t ion  of (103) was given by Schwinger;  

his or ig inal  argument di f fers s l ight ly  from the one given above, which 

fol lows the reasoning of Ref.8. H is tor ica l ly  one associates the name 

von Weizs~cker  9 wi th  the leading quantum correct ion to the TF model. Let 
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us br ief ly  halt the further development of the theory in order to estab- 

l ish the connect ion wi th yon Weizs~cker 's  work. 

The yon Weizs~cker  term. What is known as the yon Weizs~cker  term is 

the leading inhomogenei ty  correct ion to the TF densi ty funct ional  for 

the kinet ic energy, 

Ekin(n) = /(d~) 1 0 ~ ( 3 ~ 2 n ) 5 / 3  , (4-104) 

5vE I (V+~) = f (dE)6V(~)n(~) , (4-105) 

to express V in terms of n, then this V(n) produces Ekin(n) when inser- 

ted into Eq. (2-428), 

Eki n = E l (V+~) - 5 (dE) (V+~)n (4-106) 

Aiming at the von Weizs~cker  correct ion we first forget about the spe- 

cial t reatment  of the strongly bound electrons, so that ~s is chosen ar- 

b i t rar i ly  large in Eq. (98), imply ing that 

Aqu E l = f (dE) 2 4 ~ [ - 2  (V+~)] I/2 V2V (4-I 07) 

supplements the TF result (2-44), 

(E:I)TF = 51d~) ( -  1 ) [_2 (V+~)15/2  14-108) 
15~ 2 

Now (105) produces 

i 3/2_ i_/_ -i/2 
n = [-21V÷%)] 2[-2(V+~)] ?2V 

3~ 2 24~ 

+ 1 72[_2(V+~)] I /2 
2 4 2  = 

der ived in Chapter  Two [see Eq.(2-95)].  So far, we have worked out the 

quantum-corrected potent ia l  funct ional  EI(V+~). To find the correspon- 

ding densi ty  funct ional  we must fol low the instruct ions given after Eq. 

(2-434) : use Eq.(2-20), 
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I [ -2  (V+~)  ] 3 / 2  _ _ _  

3 ~  2 

I [_2 (V+~) ]-I/2 V2V 
12rc 2 

- ( V v l  2 2 [-2 (V÷~) ] -3/2 2 

(4-109) 

or 

(3~2n) 2/3 = [-2 (V+~)] - 2~[-2 (V+~)]-I V2V 

I - 2  2 
[-2 (V+~) ] (~V) 

1 2 

(4-110) 

where the correct ions to the leading TF expression are consis tent ly  

t reated as small. Equat ion (110) is solved for V by using the TF connec- 

t ion 

-2(V+~) = (3~2n) 2/3 (4-111) 

in the (small) last two terms on the r ight-hand side. This results in 

-2(V+~) = (3~2n) 2/3 + 7 ~ [ ( ~ )  2 ~2n]n " (4-112) 

In the TF regime the relat ive size of n and ~ is n %  Z 2, ~ %  Z 1/3, so 

that (112) d isplays correct ions of re lat ive order Z -2/3," as it should. 

This quantum-corrected express ion is now inserted into (108) and the 

second term of (106); in (107), which in i tsel f  is a quantum correct ion, 

the TF result (111) suff ices. The outcome is 

E1 = (E1)TF + AquE1 

= f(d~) {( - I )(3rc2n)5/3 + I (~n) 2 . 5 v2n} (4-113) 
1 5 2  144 n 144 

and 

f(d~) (V+~)n = f(d~) I 2 5/3 I (~n) 2 I V2n}. (4-114) 
{6--~(3r~ n) + 14~ n 144 

The terms that are mul t ip les of V2n integrate to a null  result, so that 

accord ing to (I 06) 
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Ekin(n) = S(d~){11 2(3 2n) 5/3 1 (~)2}  (4-115) 

where the second cont r ibut ion is the von Weizs~cker  cor rect ion to the 
10 

TF resul t  (104). 

In der iv ing  (115) from the quantum cor rec t ion  (107) the specia l  

t reatment  of the st rongly  bound e lect rons has been "forgotten" about. 

This just means that we ext rapola te  the correct ion, wh ich  is known to 

be the correct  one in the TF regime, into the v ic in i ty  of the nucleus 

where, accord ing to the d iscuss ion around (68), it must  fail. And it 

does. For, a l though the yon Weizs~cker  term in (1i5) is supposed to be 

a small  correct ion, it cannot be t reated as a perturbat ion. If we would 

try to do so by inser t ing the neutra l  atom TF densi ty  

I 2z 3/2 32 Z 2 3/2 
nTF - 3~ 2[-~-F(x)] - 9~ 3 [F(x)/x] , (4-116) 

the resu l t ing  in tegra l  

= z 5/3 ~ dx - I /2 2 
"AquEkin" 32a 2 o x 3--~[F(x) ]  [F(x) - xF'(x)] (4-117) 

would obv ious ly  d iverge at x=o due to the s ingu lar i ty  of nTF at r=o. 

When being conscious of the necessary  correct ions for the s t rongly  bound 

electrons, it is never the less poss ib le  to arr ive at (103) af ter  star- 
11 

t ing from (115), as is demonst ra ted by Schwinger  in Ref.7. 

On the other  hand, it is qui te  c lear that there is no chance 

of being able to express V in terms of n if the specia l  t reatment  of 

the innermost  e lectrons is exp l ic i t l y  inc luded into El(V+ ~) as descr ibed 

in the preced ing Chapter.  The t rans i t ion  from the potent ia l  funct ional  

to the dens i ty  funct ional  is no longer feasib le now that we have gone 

beyond the or ig ina l  TF approximat ion.  These observat ions are, of course, 

in agreement  wi th  the general  ant ic ipat ion d iscussed af ter  Eq. (2-408), 

namely that the potent ia l  funct ional  is much bet ter  sui ted for improve-  

ments over the TF model  than the cor respond ing  densi ty  funct ional .  

Quantum correct ions III (energy). we p ick  up the story at Eq. (90) where 

we left it to study the leading correct ion. In (90) our new approx imat ion 

is s t re tched a l i t t le bit  too far since the in termediate  step (79) con- 

ceals the c i rcumstance that our knowledge concern ing the dependence on 
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V2V does not extend beyond the linear term. Consequently, consistency 

requires to expand the right-hand side of (90) in powers of V2V and to 

discard the quadratic and higher-order terms. In view of the later app- 

l ication to energy it is useful to do this not for a function of H but 

of -H-%, for which Eq. (90) reads 

tr f (-H-~) 

2f.(d ) 2 
(2rl) 3 < f ( _ _ p 2 - V - ~  +~[(~V) 

2 2v2v~1/3 ] 
- ~ p  J 

(4-118) 

With the abbreviat ion 

XI~vl 2/3 z z -½p2  _ V _  ~ + 

this is to first order in V2V 

, ( 4 - 1 1 9 )  

tr f (-H-~) 

__ 2f(d~)(dp) <f(z) I p21~Vi-4/3 (2E) 3 - ~ x V2V f'(z) >o 

(4-120) 

Now, the identity 

2 ÷ 
p f'(z) = - p.-~ f(z) 

8P 
(4-121) 

allows a partial p-lntegration, so that an equivalent statement is 

tr f (-H-~) 

(2z) 3 
i i~vl-4/3 <f(z) - i x  ?2V f(z) 

(4-122) 

A further simpli f icat ion is achieved after observing that the differen- 

tial equation obeyed by the Airy function, 

d 2 
dx 2 Ai(x) = x Ai(x) (4-123) 

[which can easily be derived from the defining equation (81)], implies 

the equivalence of the Airy averages 
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d 2 
<x g(x)>° = < _ _  g(x)>O 

dx 2 
(4-124) 

One appl icat ion is the recurrence relat ion 

< x k + l ~  k ( k - 1 )  < x k - 2 ~  = ; (4-125) 

it general izes (88) to 

< xk> o 

Since 

d 2 

dx 2 

/3 
-k/3 k! 

(k--TZ7 
= 

~, 0 , o t h e r w i s e  

- -  f ( z )  : l l ~ v l  4 / 3  f " ( z )  

, for k = 0,3,6,... , 

(4-126) 

, (4-127) 

employing (124) in (122) produces 

tr f(-H-~) --- 2S (d~) (dp) < f(z) - I~ f'' (z)?2V>° 
(2~) 3 

(4-128) 

which is the desired modi f ica t ion  of Eq.(90). 

This new in junct ion for evaluat ing traces of funct ions of -H-~ 

is now appl ied to the t race in Eq. (97). The outcome is 

= 2 (d l(d l  l<SIzl  5(zlV2V  , (4-1291 
E ~  s (2~) 3 

where z' is re lated to ~' just l ike z is to ~ [Eq. (119)]. After perfor-  

ming the ~' integri t ion, we arr ive at 

E ~ S  2s(d~) (d~) <z[~(z)_q(Zs)]  
= - (2~)  3 

(4-130) 

- I~[6(z) -6(Zs)+(Zs-Z)6 '  (Zs)]V2V> ° , 

where, of course, 

1 2 
z s = - ~ p  - V -  ~s 

I 2/3 
+ ~ x  I~vl = z -  (~s-~) (4-131) 
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Equations (129) and (130) are the quantum corrected versions of the TF 

expressions (3-19) and (3-44), respectively, to which they reduce upon 

neglecting the ~V and V2V dependences and performing the Airy averaging 

and the momentum integration. It is a technical detail of enormous sig- 

nif icance that one can both Airy average and integrate over momentum in 

(129) and (130) explicitly, so that, as before, only the spatial inte- 
+ 

gration is left. Because of the Delta functions the p-integrals are im- 
12 

mediate; the Airy averages, however, are nontrivial. The next section 

shows how to deal with them. 

Airy Averages. It is expedient to first consider 

(4-132) 

= -~I <[-2(V+~ -yxl i~ vI2/3) ]-I/2>o 

Tt 

where the second equality is based upon the momentum integral (99). Let 

us reexpress this in terms of the variable 

2 (v+~) y = , (4-133) 
12 vl 2/3 

which has the property of being negative (positive) in the classically 

allowed (forbidden) region, to get 

where 

2r (d_~__ <6, (z)>O 2 12~Vi-I/3 Fo(Y ) (4-134) 
J (2T~) 3 = ~ ' 

Fo(Y) = 2~ <(2-2/3 x-y) - I /2>° (4-135) 

Since the fundamental Airy average, Eq. (87), concerns an exponential 

f u n c t i o n  o f  x ,  we e m p l o y  t h e  i d e n t i t y  

(2-2/3 x - Y  )-I/2 = 5 dT 6(r2 + y -2 -2 /3x )  , (4-136) 

in conjunction with the Fourier integral of the Delta function (12), to 

arrive at 
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Fo(Y) = (2~) 2 f d'[ ~ do < e - i ( m 2 + y - 2 - 2 / 3 x ) ° >  ° 
- - co  - - co  

2 3 
= ( ~ ) 2  fa~ao e - i ( T  + y ) o - i o  /12  , 

(4-137) 

the last step using (87). Af ter  the subst i tu t ions 

I 
a = x+x' , T = ~(x -x  ) , dTdo = dxdx' , 

the integrand factorizes, 

(4-138) 

co  

Fo(Y) = 2~ S dx e - i y x -  ix3/3 

co e-iyx'- ix'  3/3 
x 2 ~ ]  d x . 

- co  

(4-139) 

so that the Four ier  t ransformed statement of Eq. (81), namely  

co  

Ai(y) : 2~ S dx e - iyx e - ix3/3 , (4-140) 

can be used twice, w i th  the f inal outcome 

2 
F o(y) = [Ai(y) ] (4-I 41) 

Before proceeding to the evaluat ion of the A i ry -averaged momen- 

tum- in tegra ls  of 6(z), ~(z),... , let us supply another, more phys ica l ly  

or iented der iva t ion  of this result. For this purpose recal l  that the ap- 

prox imat ions (47) and (50) are exact in the s i tuat ion of a constant  force 

potent ial .  Therefore,  by simply undoing the steps that in t roduced the 

momentum integral  [Eq.(79)] and the Airy average [Eqs. (81) and (87)], 

we have 

2 r (d~) <6 '  ( Z l ) ~  = 2<ZI 6' (-HI-~)[Z> (4-142}  
;(2g) 3 

where z I and the Hami l ton operator  H I refer to the constant - force poten- 

t ia l  V I of Eq. (20). The e igenstates of HI, character ized by their  energy 

- E and their  t ransverse momentum ~i (which is to say that the two-di -  

mensional  vector  k i is perpendicu lar  to the constant  force -~V) are, 
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proper ly  normal ized 

i k l ' ~  2 (V l+~ )+k i  2 
< ~ l E , ~ l >  _ e 21/2  ÷ ,  1 /6 ('1 

(2E) 2 1 2 ~ 1 1 -  Ai ~ V 1 1 2 / 3  I , (4-143)  

which  reminds us that the d i f fe rent ia l  equat ion obeyed by Ai(x), Eq. 

(123), is essent ia l l y  the Schr~d inger  equat ion for the one-d imens iona l  

l inear potent ial .  The mat r ix  element on the r ight -hand side of (142) is 

now evaluated by 

co  

. t ' ~  ÷ 12 2 <6 ' (Z l )> °  = 2f dEf(d£±) I<;IE,k±> 
- - c o  

= 2 f ( d £ ~ ) ( - ~ ) [ < ~ l ~ , ~ , > t  2 , 

6'(E-~) 

(4-144) 

This squared wave funct ion does not depend on ~ and E l ind iv idua l ly  but 

only  on the sum 2~+kl 2 , w i th  the consequence 

-~ co 

2 f ~ < 6 , ( z 1 ) > o :  4~ f dk~ 2 ( -  a ÷ _+ 2 O ak2)l<ric,k&>I 

= 4~1<~1~,0>[2  2 ÷ - 1 / 3  ]2 = ~i2VVl [ [Ai(y I ) (4-145) 

I I  I I  NOW, dropp ing the subscr ipt  I and compar ing w i th  (134) reproduces 

(141). 

It is usefu l  to deal w i th  all the A i ry -averaged momentum inte- 

grals of z~(z), ~(z), 6(z), ... as a set, exp lo i t ing their  re la t ionship  

through d i f ferent ia t ion.  To convey this compactly,  we shal l  in t roduce 

pos i t i ve  and negat ive powers of der ivat ives:  

6"(z) = d 6' (z) , 6'"(z) = (d )  2 8' (z) , (4-146) 

and 

8(z) = (dz)-1 6' (z) , T](z) = ( d ) - 2  6' (z) , 

zN(z) = (~z)-3 6' (z) , 

(4-147) 

and so on. Obviously,  (d/dz) 

to 

-I 
is short  hand for in tegrat ing accord ing 
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z 
(d ) -1  f(z) = 5 dz' f(z') , (4-148) 

- - co  

which exhibits the speci f ic  boundary condi t ion at z=-~ that selects uni- 

quely one of the indef in i te integrals of f(z). With this notat ion, and 

in v iew of the l inear dependence of z on the constant -~, we can wr i te  

2S (d-~-  <(d~) -m 6 '  (Z)> ° 
(2r~) 3 

. d ] -m (d~) 
= L ~  2 f  (2~) 3 <6' (z)> ° (4-149) 

. d ~-m ~12~vi-I/3 = [ ~  Fo(Y) 

where the last equal i ty  uses Eq. (134). The def in i t ion of y in Eq. (133) 

has the immediate consequence 

d _ 212~vi-2/3 ~y (4-150) 
dz 

which implies 

2- (d_i[L 
)(2~) 3 

<(~_)-m~ 6' (z)> ° = 2 2-m12~Vl (2m-I)/3 F (y) (4-151) 
m ' 

wi th  the funct ions Fm(Y) def ined by 

Fm(Y) = ( _~y ) -m Fo(Y) 

= 2~ ( _ ~ y ) - m  <(2 -2 /3x_  y)-I/2>o 

(4-152) 

The boundary at z=-~ in (148) c lear ly corresponds to ~=~ and y=~ in 

(149) and (152), respect ively,  so that (d/dy) -I s igni f ies 

(~y)-1 f(y) = _ S dy' f(y') 

Y 

(4-153) 

An immediate recurrence relat ion for the funct ions F (y) is m 
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dyd Fm(Y ) = Fm_ I (y) (4-154) 

To produce another re lat ion we f irst remark that, for m~o, the second 

vers ion of (152) has the s igni f icance 

(-1)! I < (2-2/3x _ y)m-I/2>o (4-155) 
F m (Y) - (m_l) ! 2~ 

which can be checked against (154). Now observe that 

< (2 -2 /3x -  y)m+I/2>o = < (2 -2 /3x -  y) (2-2/3x_y)m-1/2>o 

I d 2 (2-2/3 x )m- I /2~ 
(4 2 Y) < - y ' 

dy 

(4-156) 

on apply ing the Airy averaging re lat ion (124). Accordingly,  

I I d 2 
(m +5) Fm+1(y) = (4 2 Y) Fm(Y) 

dy 

I 
= ~ Fm-2(Y) - y  F m(y) 

(4-157) 

which is compat ib le wi th (154) and therefore also val id for m<o. Because 

of the boundary condi t ion in (153) all Fm(Y) must tend to zero for z÷~, 

a property that is conserved by the recurrence relat ions (154) and 

(157). 

Now, beginn ing wi th  our knowledge of Fo(Y), Eq. (141), we first 

use (154) to compute success ive ly  

F_I (y) = - 2Ai(y) Ai'(y) , 

F_2(y) = 2{y[Ai(y)] 2 + [Ai'(y)] 2} 

(4-158) 

and so on; then we apply (157) for a purely algebraic computat ion of 

2 2 
F I (y) = -y [Ai (y) ]  + [Ai'(y)] , 

2 2 2 I 
F2(Y) = ~{y  [Ai(y)] - ~ A i ( y )  Ai'(y) -y[Ai'(y)] 2} , 

(4-159) 
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and so forth. Of course, one makes use of the d i f ferent ia l  equat ion 

(123); and it is c lear that all Fm(y) are sums of polynomials  in y mul- 

t ip ly ing the square of the Airy function, or of its der ivat ive, or their  

product. 

If the gradient  of V happens to be zero, then we have, for m~o, 

2"~](2~)3 <(~z )-m 6' (z)> ° 

-m _I  2 = [ ~ ]  2f (d~) <6' ( ~p -V-~)> ° 
(2z) 3 

(4-160) 

= [ ~ ] - m  ~ [_2(V+~)]-I /2 

I 2-m ( _ 1) ! m-I/2 
= --2 I [-2 (V+~) ] 

(m - 5) : 

where the Airy average is immediate and the momentum integral  is the 

der ivat ive of the one of Eq. (99). In Eq. (151), the l imit I~VI÷0 means 

y ÷ -~ or y + + ~ depending on the sign of V+~. This implies the asymptot ic 

y dependences 

Fm(Y ) = I ( -½) !  m-I/2 2~ (m-½)  ! (-Y) , f o r - y > > 1  , (4-161) 

and 

Fm(Y) -~ 0 , for y>>1 , (4-162) 

of which the second one holds also for m<o, whereas the f irst one does 

not. This becomes more apparent when we use the known asymptot ic  forms 

of the Airy funct ion [see Problem 4 , or Ref.6], 

Ai(y) ~ I (_y)-I/4 2 3/2 - -  cos(~(-y) -~) , for -y>>1 , (4-163) 

and 

2 y3/2 ) Ai(y) ~ I y-I/4 e x p ( - ~  , for y>>l , (4-164) 
2/~ 

to check Eqs. (161) and (162). For y>>1, we have 
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_ _ _ _  4 y3/2) , 
Fo(Y ) ~ I I e x p ( - ~  (4-165) 

4~ /9 

which upon d i f fe rent ia t ion  and in tegrat ion produces 

- 4 y3/2 Fm(Y) ~ 2~ (4y) (m+I)/2 e x p ( - ~  ) , (4-166) 

consistent  wi th  both the recurrence re lat ion (157) and the statement 

(162). For y<<-1, mat ters are not this simple. For instance, (163) gives 

! I__ Ecosi _(_y)'j2__ )j2 Fo(Y) ~ ~ /c~ 

_ I I [1+sin (4 (_y) 3/2)] , 
2z /c~ 

(4-167) 

wh ich coincides w i th  the highly semi-c lass ica l  va lue (161) only af ter  

averaging over the osc i l la t ions of the sine function. This invi tes the 

physical  in terpreta t ion of produc ing the TF resul t  by averaging over 

quantum osci l la t ions,  a procedure to which another and more precise mean- 

ing wi l l  be given in Chapter  Five. When in tegrat ing (167) wi th  respect 

to y, the sine funct ion does not contr ibute to the leading order, so 

that the statement (161) is reproduced for m>o. Let us see, how it 

would a l ternat ive ly  work for F1(Y) if (163) and the cor responding asymp- 

tot ic form of the der ivat ive,  

2 3/2 Ai'(y) -~ 1/~ (_y)I/4sin(~(_y) _7) , (4-168) 

were inserted into (159): 

I (2 (_y) 3/2 
FI (y) ~ ~ /c~ { [cos 

I = ~  ; 

__~)]2+[sin(2(_y)3/2 _.~)]~ 2} 

(4-169) 

indeed, there are no osc i l la t ions in the leading term. However, when 

d i f fe rent ia t ing  (167) wi th respect to y, the dominat ing cont r ibut ion is 

suppl ied by the sine function, w i th  the consequence that for m<o the 

leading terms of all Fm(Y) are osci l latory:  
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I -(m+1) 4 3/2 
Fm(Y) ~(-4y) /2sin(~(-y) -m~) 

for m<o and -y>>1 

(4-170) 

Please note that both the smooth and the osci l lat ing term in (167) are 

necessary in order to ensure the consistency of the asymptotic forms 

(161), (167), and (170) with the recursion (157). 

For the purpose of i l lustration, Fig. 1 shows plots of the 

functions Fm(Y) for m=-3,...,2. In agreement with their known asymptotic 

behavior, these functions are all rapidly decreasing in the classical ly 

forbidden region of y>o, and either osci l latory or increasing in the 

classically allowed region of y<o. The major achievement 

2 ' ' \ '  ' V ' 

t /  v- 
, b 

• i I I I I I 

-8 -6 -A -2 0 
Y 

Fig.4-1. Plot of the Fro(y) for m=3,2,1,0,-I,-2. 

is the smooth transit ion from the classical ly allowed to the classically 

forbidden regime, which is to be contrasted to the situation in the TF 

approximation, where instead of a continuous transit ion there is typi- 

cally a sharp boundary associated with the discontinuity of the square 

root, as is i l lustrated by the TF density (101). 
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Val idi ty of the TF approximation. The derivation of Eqs. (161) and (162) 

from the comparison of (151) with (160) implies that the TF regime is 

where the functions Fm(Y) do not deviate signif icantly from their asymp- 

totic forms. In order to give a more precise meaning to the requirements 

0.5 

0/-+ 

0.3 

l i e  

0.2 

0.1 

O I 

-6 

I I t I I 

(167) / 
/ .  

/ 

-/-+ -2 
Y 

I I 

~\(165) 

0 2 

Fig.4-2. A c t u a l  Fo(Y) and i t s  asymptotic approximations for -6Zy~3. 

"y>>1" and "y<<-1" a plot of Fo(Y) together with its asymptotic appro- 

ximations (165) and (167) is presented in Fig.2. We observe that the 

asymptotic forms dif fer substantial ly from the actual function only in 

the small region IyI~3/2. Consequently, the TF model is rel iable when 

& 
lyl = 12(v+~)l [2~v1-2 /3>2 ' (4-171) 

which sharpens the criterion (2-400) used in Chapter Two for the dis- 

cussion of the range of val idi ty of the TF treatment. [Of course, one 

is free to pick another number, sl ightly dif ferent from 3/2, on the 

right-hand side of (171).] If we insert ~=o and the neutral-atom TF po- 

tential V =-(Z/r)F(x) into (171), we have 

YTF(X) = -(2a) I/3 Z2/9 xl/3F(x) [F(x) - xF'(x)]-2/3 = 
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= _(2a) I/3 Z2/9r  x F"(x) 2/3 
LF(x)-x F'(x) ] 

(4-172) 

[the lat ter equal i ty  uses the d i f ferent ia l  equat ion obeyed by the TF 

function, Eq. (2-62)]. Upon making use of the smal l -x and large-x forms 

of F(x) [ ~ I and ~ 144/x 3, respect ively] ,  this gives 

l 
-(2ax) I/3 for very small x 1 

YTF/Z2/9 ~, , (4-173) 

(18a/x2) I/3 , for very large x 

showing that YTF tends to -0 both for x ÷ o  and for x ÷ ~ .  At x=0.742, 

the funct ion xF"(x) / [F(X)-X F'(x)] acquires its maximal  value of 0.3999, 

so that 

YTF/Z 2/9 ~ -0.657 , (4-174) 

wh ich impl ies that the cr i ter ion (171) is only met, in a certain range 

of x, by Z's larger than (1.5/0.657) 4..5 = 41.1. Then, if Z is very large, 

we learn from (173) that said cr i ter ion is obeyed for d is tances in the 

region 

27 Z-2/3 ZI/3 
16a ~ x ~ 4/a--/~ , (4-175) 

or 

1.7 
~< r <~ 1.9 (4-176) 

Z 

This qual i f ies our previous statements, extracted from Eq. (2-403), that 

the range of va l id i ty  of the TF model  is l imited by d is tances of the 

order of I/Z and of the order of unity. 

Figure 3 shows a plot of YTF/Z 9/2. The abscissa is chosen 

l inear in xi/3, so that the curve is a straight l ine at small  x, as im- 

pl ied by (173). The asymptot ic  forms (173) are dashed. Further, there 

are hor izonta l  l ines indicat ing YTF = -3 /2  for Z = 30,45, and 90. It is 

clear, that Z must  be much larger than that in order to be able to apply 

the l imits of (175) for  the range of val id i ty,  where -YTF>3/2. For Va- 

lues of Z corresponding to the Per iodic Table, the re levant  range of x 

is substant ia l ly  smal ler  than the one of (175). Nevertheless,  it is cer- 

ta in ly t rue  that this range increases as Z grows, whereby the Z depen- 
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- 0.8 i \l x ~ r / 

0 0.0/-., 0 3 1 2 5 8 

X 

F i g . 4 - 3 .  YTF/Z 9/2 as a f u n c t i o n  of x. The a b s c i s s a  i s  l i n e a r  i n  t h e  

c u b i c  r o o t  of  x. See  t e x t .  

dence is bas ica l ly  that of (175). As a fur ther i l lustrat ion,  Fig.4 

shows, as a funct ion of Z I/3, the range of x in which -YTF>3/2. The 

dashed l ines represent  the l imits in 

1.91 Z-2/3(I + 9.08 Z -2/3) ~ x ~ 2.17 ZI/3(I - 2 . 2 4  z-Y/3), 

(4-177) 

which improve (175) by inc lud ing the nex t - to - lead ing  terms into the ap- 

prox imat ions for F(x) at small  and large values of x [F(x)~ I - Bx and 

F(x) ~ (144/x3) (I - 8 x-Y), respect ively] .  

Of course, all these cons iderat ions must  not be taken too se- 

r iously. Nevertheless,  here is the important  lesson that the TF approxi-  

mat ion  can be just i f ied only for rather large values of Z, hardly for 

Z ~ 60. One would not expect the TF l imit to be par t i cu la r ly  accurate 

for l ighter atoms, but as we have observed in Fig.2-2, for instance, 

the per fo rmance of the TF model  is not marked ly  worse for smal l  Z values. 

It is clear, though, that the ref inements of the model, such as the 

Scot t  cor rec t ion  or the quantum improvement,  have a larger s ign i f icance 
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Fig .4 -4  The range of x, where -YTF > 3/2,  i s  l i m i t e d  by t h e  x va lues  

on t h e  s o l i d  l i n e .  The dashe~ l i n e s  correspond  to  t h e  l i m i t s  in  Eq . (177 ) .  

The a b s c i s s a  i s  l i n e a r  in  Z I/3 

for the small-Z atoms. 

Quantum corrected EI(V+~). Upon employing Eq. (151) in the energy ex- 

pression (219) [or, equivalently, in (130)], we have 

÷ Ys 
= ! ) | E ~  s -f(dr) 4~12~VI 5/3 f dy'(y -y [Fl(Y ) 

Y 

_~I2~VI-4/3V2V F_1(y')] 
3 

where Ys is related to V and ~s just like y is to V and ~: 

Ys = 2(V+~s)L2~vI-2/3 ' 

(4-178) 

(4-179) 

to be compared with (133). As discussed in Chapter Three, no unique va- 

lue can be physically assigned to ~s, and in order to remove unphysical 
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Bohr shell oscil lations we average over a suitable range of ~s' as in 

Eq. (3-58). This directs our attention to the ~s-averaged Fm(Y)'s, de- 

fined by 

J Yj 
F m(V, l~V I) - ~---wj f dy' (y'-Y)Fm_ 2 (y') 

9=I Y 

J yj (4-180) 

= j~1  .= wj Yf dy' (y'-y) (~,)2Fm(Y') , 

or, after performing the y' integration, 

Fm(V, l vl) = ~ w j  [Fro (y)-Fm(Yj)- (yj~y) Fm_ I (yj)] 
j=1 

(4-181) 

The yj correspond to the various ~j which have the same significance as 

in Chapter Three, see around Eq. (3-58). Just as in that equation, the 

potential functional EI(V+~) is here then given by 

_ 1 2  E I (V+~) = ~tr(lp2+V+~)q( ~p -V-~) 

J 
w.E + E  

~j~=1 J ~ j  s 

(4-182) 

with 

.... d .  

~ w j E ~ j  

j=1 

_ I 1/372 V --f 12 v[5/3 5 Iv, l vll  12 vE FIIV, l vl)l, 

(4-183) 

and [this is Eq. (3-43)] 

E s = f(d~)Vp s + Z2ns + ~N s , (4-184) 

where Ps' ns' and N s signify what they did in Chapter Three. This is the 

quantum-corrected E I . 

In Ref.8, a further approximation was introduced aiming at a 

simplif ication of El, in the sense that it becomes a functional just of 

V and I~vl. To this end, the term in (183) with the Laplacian of the po- 

tent ia l  is integrated by parts whereby the resulting terms containing 

the gradient of I~VI are neglected. All of this amounts to the replacement 
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1 2~vl 1/3v2v 4~ 51 ~ (v,l~vll ÷ ~  ~ 12~vl 5/3 %Iv,I~vl) 

in (183), so that 

(4-185) 

J ~ I ~_wj%~j ~ -f (d~)~12~i~/3EF3 -~ Fol 
j=1 

(4-186) 

is the express ion used in Ref.8. The reason why this was (erroneously) 

considered to be an approx imat ion more advantageous than (183) is ex- 

p la ined below [see the remarks in the paragraph after Eq. (213)]. 

Before proceeding to construct  the new, quantum-cor rec ted den- 

sity expression, let us br ie f ly  remark upon scaling. In Chapter  Two it 

was found that the exact El(V+ {) responds to t ransformat ions of the form 

(2-472), 

V({) ÷ ~ 2 V ( ~ )  , (4-187) 

2 + ~  ~ , 

2 
by exhib i t ing a factor of ~ : 

E I (V+[) ÷ ~2E I (V+~) (4-188) 

It is reassur ing that both terms of (182) possess this scal ing property. 

For E this fol lows from the related d iscuss ion in Chapter  Three, and 
s 

for E it suff ices to recal l  that (187) impl ies f irst 

Z ÷  ~Z , (4-189) 

[upon using the s igni f icance given to Z in (3-111)] and then 

2 ~ j ÷  ~ ~j (4-190) 

[in v iew of both the def in i t ion of [~ in (3-98) and of the scal ing pro- 
J 

the [~n.l~ v= d isplayed in (3-119)] wi th  the pert ies of consequences 
3 

y(~) ÷ y ( ~ )  , yj(~) ÷ y j ( ~ )  , (4-191) 

and 

Fm(V , i~V[ ) (~) ÷ Fm(V ,I~vl) (~ )  , (4-192) 
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so that 

indeed. 

E 
~ j  

5 1 I/3 -~ ~12~vl (~)v2v(~) ~ (~)] 

= ~ 2 E  , 

J 

(4-193) 

Quantum corrected density. Next, we construct the density corresponding 

to the quantum corrected E I of Eqs. (182) to (184) by employing the fun- 

damental relation (2-14), 

6 V E I = S(d~)6v(~)n(~) (4-194) 

As in Chapter Three we must not forget about the implicit V dependence, 

hidden in the ~j: 

6 V ~j = - f(d~)6V l~n I~ v , (4-195) 
] 

which is Eq. (3-70). The resulting contribution to the density is that 

of Eq. (3-71) , 

J 
> wjQj l~nj 12av(r) , (4-196) 

9=I 

where, recall ing the definit ion of Qj in (3-72), 

Qj E j = (zjlV2v> o 

(4-197) 

i /3 112~vl-1 = (~j-~)S(d~) ~ [12~vI I FI(Y j) - ~  V2V F_1(Yj)] , 

which uses E ~ .  in the form (129) and the Airy integrals (151). This re- 

duces to (3-72) 3 in the TF limit, where the second term vanishes, and in 

the first one the asymptotic approximation (169) is to be inserted for 

F 1 (Yj). 

The variation of the potential in Es, Eq. (184), exhibits Ps' 
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which, combined with (196), gives the density of the inner-most elec- 

trons, 

J 
nIME = Ps + ~ wjQj l~nj 12 av ' (4-198) 

j=1 

previously seen as Eq.(3-75). 

The density of the remalning electrons, denoted by ~, is ob- 

tained by varying V in (183) without taking into account the induced 

changes of the ~j that give rise to (196). Thus, again uti l izing the 

form given for E ~ j  in (129), ~ emerges from 

J 
= - ~ w j  

j=1 

f (dr) 6 V  (r) n (r) 

(4-199) 

d~' (~'-~)6 v ~(dr) (dp) <6(z') - 6" (z')V2V> ° 
(2~) 3 ' 

where we must carefully add the three contributions that originate in 

the explicit change of V and the induced changes of ~V and V2V. The cor- 

responding change of z' is [Eq. (119)] 

x ~[~v12/3 6z' = - 6 V + ~  

Xi~v[-4/3 2 = - 6 v  + ~ 6 ( ~ v )  (4-200) 

x [~ t -4/3 ÷ ÷ 
= - 6 V  + ~ V V V ' V 6 V  , 

with the consequence 

(2~) 3 

; (d~l (-sv121 (d?) 3 <s' Iz') - ~ ' " ( z ' ) v % >  o 
(2~) 

÷ I + I(dr)51~V1-4/3 ~V.~6V 2S (d~) 
(2~) 3 

(4-201) 

V2V> o < x  6'(z '  ) - ~x~5'"(z ' ) 

+ f(d~l(-~v2~v)2f ld~ ) <~ (z,l>o 
(2~) 3 
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The second summand here is then simplified according to Eq. (124), where- 

after partial integrations are performed in order to exhibit 6V as a 

factor. The outcome is 

J %j + 
= ~ w j  5 d{' ( ~ ' - ~ ) 2 5 ~  16' (z') - 1~6'"(z')V2V>° 

j=l ~ (2~)J 

+1% - (z,) v2v>o 

(4-202) 

+ I~ V2<6"(z')>° I 

Now, once more employing (124), we have 

x ~1~vl2/3)~ ~<6" (z') ~ = <6"(z' ) (-~v + y 

= - <6"'(z')>° ~V +2~  <6V(z')>° ~(VV)2 

implying 

J ~j 

9=I 

' ( ~ ' - { ) 2 ~  <8' (z') - ~ 8 ' " ( z , ) v 2 v  
J (2~) 3 

I 7. 144 [6 v (z ' ) (V2V~V - ~VI+ (?V) 2 

(4-203) 

) ] >o . (4-204) 

The particular bil inear combination of derivatives of the potential, 

v2v~v - ½~(vv) 2 = [ v 2 v T  - ~ v ] . ~ v  , (4-20s) 

is such that its divergence, 

~. ( [v2v~ ÷- ~ v l . ~ v j  

=[V2V~I +- ~ V ] - . ~ V  (4-206) 

(V2V)2 ÷÷ = - v v v . . ~ v  , 

does not contain derivatives of the potential of higher than second or- 

der. The horizontal double dot symbolizes, of course, the double scalar 

product of the dyadics, generally i l lustrated by 
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3 
÷÷ > AjkBkj A - '~÷= 

j,k=1 

(4-207) 

The gradient of 6V(z ') being evaluated in analogy to (203), Eq. (204) 

then leads to 

/]dE' (C'-~)2 <6' (z') - )V2V = wj ~ j (2~)3 

1 6V(z,) [(V2V)2-+~V.vv +÷ • VVV] 144 
(4-208) 

I ov" +÷ 
+ i77o  (z') ~v. [v2v~ ÷- vvv] .~v 

2 ÷÷ ++ + 
(11) 36v"'(z'2 )~V.~V-  [V VI-VVV] .VV> ° I 

which, after employing this combination of Eqs. (151) and (180): 

J ~J 
d~' (5'-~)2f (d~) . d .2-m ,)>o 

j~= lWJ 3 < (d-~) 6 '(z (2~) 

21 -m 
= ~ (2~v l12m-1) /3  Fm(V ,[~vl) , 

(4-209) 

reads 

: 12 vl 5 - 12 vt -I/3 v2v 

_ _ _ I  [2~v[-5/3 2 ++ 18E [(V2V) - VVV''~VV] %2 

+ 1 12~Vi-7/3[V2V(VV)2 _ ~V'~V-~V]  %3 

(4-210) 

I 12~v[-11/3 2 ÷ +÷ + + +÷ ++  [V VVV.VVV.VV-VV.VVV.VVV.~V] F_5 27~ 

This is the quantum corrected n. It reduces to (3-76) in the TF limit, 

as it should. 

The last three terms in (210), the ones involving ~2' ~3' 

and ~5' together are a total divergence [see Eq.(204)], so that they 

integrate to zero. Thus, 
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f (d~)n = ~ (d~) (niM E + ~) (4-211) 

N 
S 

J 
+ wjQj + f (d l [2 12 vI F 2 - 6 12 vI -I/3 V2V %] 

j=1 

or, af ter  inser t ing the def in i t ion  of the Qj 

[Eq. (I 81) ], 

[Eq. (197)] and of the F 
m 

J 
;(d~)n = N s + ~ w j ;  (d~){2~12~VI [F 2 (y)-F 2 (yj)] 

j=l (4-212) 

i - i / 3  
- 6--~l 2?v[ ?2V[Fo (y)-Fo (yj) ] } 

Cons is tency  requires that this is equal to the count of electrons. In- 

deed, it is, s ince Eqs. (182), (184), and (129) imply 

J 

j--1 

= Ns+ --wj;(d l 2r 
j =I ~ J (2~) 3 

(4-213) 

,) -16 , , ( z , )V2V>  ° , 

wh ich  is ident ica l  to the r ight -hand side of (212) after the Ai ry-ave-  

raged momentum integral  is evaluated and in tegrated over ~' 

Very  remarkably,  ~ depends on V, ?V, and ~ V ,  but not on any 

h igher  der iva t ives of the potent ia l ,  because the third der ivat ives can- 

cel in the d ivergence of Eq. (206). In fact, whenever  E I is l inear in 

V2V, such a cancel la t ion wi l l  occur. This l i t t le observa t ion  was somehow 

missed when the work  on Ref.8 was in progress,  w i th  the consequence that 

the approx imate funct ional  (186) was considered pre ferab le  because, in- 

asmuch as it conta ins only V and ?V, it ensures the absence of der iva-  

t ives of the potent ia l  of h igher than second order. For most appl ica- 

t ions it should not make a big d i f fe rence if one employs (183) or (186), 

but for pr inc ipa l  reasons, preference is given to (183). 

Another  comment on the quantum corrected densi ty  harkens back 

to a remark in Chapter  Two, after Eq. (2-24). There is the statement  that 

the dens i t ies  ca lcu la ted accord ing to Eqs. (2-14) and (2-20) need not be 

ident ica l  in a cer ta in  approximat ion.  Such is the s i tuat ion here, indeed, 

as far as ~ is concerned. In Eq. (202) we have the resul t  that corresponds 

to (2-14). When employ ing (2-20), the exact ~ appears as 
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n ( ~ ' )  = E w. 2 <~,  I <~(-H-~) - ~ ( - H - { j )  - ( 6 j - ~ ) 6 ( - H - ¢ j ) ]  i ~ ' >  
j 3 

~j (4-214) 
= ~. wj 2f de' (~'-¢)<~' IS' (-H-~')I}'> 

3 

In order to be able to use the approximations (47), (45), and (50) in 

(51), this is rewritten with the aid of the Fourier integral for the 

Delta function: 

dt + "(H+~ 
<~' 16' (-H-~') ]~'> - 8~, ~-~ <r' I e-1 ')tl~'> , (4-215) 

where said approximations produce 

t 2 (V (~') +~.')t a d t f  I ]312( i  + 2 V ( ~ , ) ) e - i  
- a - ~  f ~ ~ ~v' 

_ i + ÷ ]2t3 ] x exp[-i [V (~') +~' ) t ~--~[V'V (r') 

(4-216) 

to first order in the Laplacian of the effective potential, as always. 

The factor of t 2 mult iplying this Laplacian can equivalently be re- 

placed by (_~/~ , )2  which operation is advantageously performed after 

the integration. Then the remaining integral is simplif ied by means of 

the identities (79) and (87), followed by explicit ly integrating over 

t and dif ferentiat ing with respect to ~'. At this stage, we have 

11_ i ,2 22 . (dp') 
v jf 3 

(2~) 

(4-217) 

<6 '<-½p'2-U(~ ' l -~ '  +}l~'vI2/3)> ° 

= f 0 Iz)v2vi l> o , 
(2~) 3 

the last s tep uses the definit ion of z in (119), some variables being 

primed now. Consequently, the approximation for ~(~) is here 

~J (dp) '"(z ' ~(~) ~ ~w f d~'(~-~')2f 3 < ~ ' ( z ' ) - ~  )v2v> o ,(4-218) 
j 3 ~ (2~) 

to be compared with our previous result (202). We notice that in (218) 

those terms of (202) are missing which originate in the induced chan- 
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ges of ~V and ? 2 V w h e n  V is in f in i tes ima l ly  var ied in (199). As d iscussed 

above, these addi t ional  cont r ibut ions to ~ in (202) in tegra te  to zero 

and do not af fect  the count of electrons. They ef fect  a red is t r ibu t ion  

of the electrons, or, in o ther  words: descr ibe  f luctuat ions around the 
! (expectedly) smooth dens i ty  of (218), which in terms of the F m s is 

= i2 vIF 2- 12 vI 113v2v% , (4-219) 

s imply the f irst l ine of Eq. (210). 

Of the two approx imat ions for ~, Eqs. (210) and (219), the 

f irst is p re ferab le  on pr inc ipa l  grounds, because it is the one for 

wh ich  the energy is stat ionary,  whereas the second is more a t t rac t ive  

for a pract ica l  ca lculat ion,  because it is simpler. It is obv ious ly  con- 

s is tent  to employ (210), but is it equal ly  jus t i f iab le  to use (219)? 

Yes, for the fo l lowing reason. Because of (37) we have y ~  Z 2/9 in the 

TF regime, imp ly ing  

F ~ Z (2m-I)/9 (4-220) 
m 

as far as the smooth part  of the Fm(Y) is concerned~ [see Eq.(161)] .  Then 

the terms of (219) are of the order  Z 2 and Z 4/3, the addi t iona l  ones of 

(210) be ing propor t iona l  to Z 2 /3 ,  Z 2 / 3 ,  and Z 0 /3 ,  r e s p e c t i v e l y .  The re -  

fore, to f i rst  order  in the quantum correct ion,  (219) is as good as 

(210). In par t icu lar ,  it suf f ices for the reproduc t ion  of the leading 

correct ion,  der ived ear l ier  in Eq. (109). (For deta i ls  consul t  Prob lem 

6.) However, for m<0, the osc i l l a to ry  behav ior  of Eq. (170) is dominant,  

so that 

F m ~ Z -(m+I) /9 for m < 0 , (4-221) 

w i th  the consequence, that the addi t iona l  terms of (210) are of the or- 

der Z 4/3," Z 5/3, and Z 5/3, respect ive ly .  The s i tuat ion is even more com- 

p l icated if we take into account  that in rea l is t ic  systems y never  is 

large negat ive  (recall Fig.3). Then the count ing of powers of Z is con- 

f ined to the mu l t ip l y ing  der iva t ives  of the potent ia l ,  resu l t ing  in 

Z 5/3 and Z 13/9 for the terms of (219), and in Z 11/9, Z 13/9, and Z 11/9 

for the addi t iona l  terms of (210). Summing up: in a general  sense, (210) 

and (219) agree w i th in  the accuracy of the model,  never the less  thei r  

d i f fe rence may be substant ia l  for atoms w i th  smal l  Z. Inc identa l ly  we 

remark that in app l ica t ions to s i tuat ions more compl ica ted than an iso- 

lated atom, such as a mo lecu le  where  spher ica l  symmetry  is not avai lable,  



V(r) Z I 2 
: - (1+ 7 

prac t ica l i t y  is l ikely to force the use of the s impler  approx imat ion  

that Eq. (219) represents.  

To get a feel ing for the re lat ive size of the var ious con- 

t r ibut ions to ~, let us cons ider  a s imple example. Fo r  this purpose it 

suf f ices to use a simple, but somewhat rea l is t ic  potent ia l .  For in- 

stance, the Tietz potent ia l  of a neutra l  atom (see Problem 2-5), 

[cf. Eq. (3-50)] w i th  v s = 3/2, thus 

, : ( ]i13 , { 4 - 2 2 2 1  

does the job. Also, just one ~s is good enough to produce the s t rong 

cancelat ions at small  d is tances wh ich  are the essence of Eq. (181). When 

cor rec t ing for one Bohr shell, we can choose 

Z 2 z 
(v + ~) (r=0) 

~s - 2v2 
(4-223) 

S 

= 2 Z2 ~s  ~ _ 2zC2z]1/3 

AO 

(4-224) 

[ I ] 
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F i g . 4 - 5 .  Comparison  of t h e  r a d i a l  d e n s i t i e s  o b t a i n e d  from E q s . [ 2 1 0 )  and 

(219);  s e e  t e x t .  The range  of  r i s  0~r~I, t h e  a b s c i s s a  be ing  l i n e a r  i n  

r on t h e  l e f t ,  l i n e a r  i n  t h e  s q u a r e  r o o t  of r on t h e  r i g h t .  
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For th is  choice for V and Cs' 

d ia l  dens i ty  

(r) = 4~r2~(r) 

supp lemented by C=0, Fig.5 shows the ra- 

(4-225) 

cor respond ing  to Z=36 (krypton). The absc issa is l inear in r in the 

left plot, l inear in the square root of r in the r ight one, as in Fig. 

3-6. The th ick curves (a) represent  the D of the ful l  dens i ty  (210). 

Curves (b) refer  to the leading terms (219), curves (c) to the d i f fer -  

ence between (a) and (b), given by the add i t iona l  terms of Eq. (210). 

We observe that the re la t ive size of this d i f fe rence is small, except 

for r ~ 0.1, where  it resul ts in a s ign i f icant  d i f fe rence between cur- 

ves (a) and (b) ° In this region, however, the dens i ty  is dominated by 

the con t r ibu t ion  niM E from the innermost  electrons. Consequent ly ,  cur- 

ves (c) are a smal l  mod i f i ca t ion  of the tota l  dens i ty  in this range, 

too. We conc lude that us ing (219) instead of (210) in t roduces an error 

wh ich  is typ ica l ly  of the order  of the phys ica l  approx imat ions a l ready 

present  in the model, so that such a procedure  is cer ta in ly  not incon- 

s istent  a pr ior i ,  a l though one must  not forget that under  specia l  cir- 

cumstances the d i f fe rence between (210) and (219) can, indeed, be large. 

Exchange I 

e lec t ron-e lec t ron  in terac t ion  energy E 
ee 

tic p a r t ,  Ees and t h e  r e m a i n d e r  E' 
' e e '  

(general). Ear ly  in the development,  Eq.(2-36),  we spl i t  the 

into its c lass ica l  e lec t rosta-  

E = E + E' (4-226) 
ee es ee 

It was suf f ic ient  unt i l  now to keep only Ees, 

si ty funct iona l  is g iven by 

wh ich  expressed as a den- 

of course. Time has come to concern the remainder  E' wh ich  is a quan- 
ee ' 

tal cor rec t ion  to the c lass ica l  in te rac t ion  energy E . 
es 

The in te rac t ion  energy E is the expecta t ion  value of the 
ee 

in terac t ion  operator  Hee in the ground state 14o> of the many par t ic le  

Hami l ton  opera tor  (2-409). Thus 

Eee = <~oI ~ I%> 
j ,k=1 rjk (4-228) 

I (d~" n(~' )n (r") 
Ees(n) = ~ f (dr') ) I (4-227) 



222 

1 ÷ , ~ , + , ¢ o ( ~ 1  ':' . . . . .  ~N ') ~o  ( ~ 1 "  . . . .  r t~  ) 
= ~ N(N-1) f(dr I) (dr 2) ... (dr N) ÷ ÷, 

Ir~ - r21 

where the t rac ing over the spin indices is left impl ici t ,  and the anti-  

symmetry of the wave funct ion has been used in equat ing the sum over j 

and k to N2-N t imes the j=1, k=2 contr ibut ion.  Upon in t roducing the 

two-par t i c le  densi ty  matr ix  

n (2) (rl, ' r2,; r1,, ' r2,, ) 

N ( N - ~ I  f ( d ~ 3 ' ~ . . . ( d ~ N ' )  + -~ ÷ + ÷ + + ÷ = ~O *(r I' r~', r3', .... rN') ~o (r 1" r2" r3" .... rNl)' 

(4-229) 

Eq. (228) reads 

Eee [ S(d~') (d}") n(2) (r~r ~ , r  ) (4-230) 

~'-~" I 
We make contact  w i th  the one-par t ic le  densi ty  mat r ix  def ined in Eq. 

(2-422) by stat ing that 

n(1) (~, ;},,) I + , (2) ÷ ÷ + + 11 | | .  !1 I 
N-I S (dr2) n (r'r2' r' r2) (4-231) 

relates the two densi ty  matr ices to each other. 

The line of thought that led to the Hohenberg-Kohn theorem 

in Chapter  Two implies that n (I) and n (2) are funct ionals of the den- 

si ty n, wh ich funct ional  dependence is unknown to us. We shal l  there- 

fore str ive for an approx imate treatment,  one that is consistent  wi th  

what  one does know and exhibits E as the leadina cont r ibut ion to E . 
es " ee 

For this purpose we return to Eq.(2-424) where the ef fect ive 

potent ia l  V is in t roduced wi th  the def in ing proper ty  that the matr ix  

elements of the Corresponding densi ty  operator  equal the dens i ty  matr ix  

n(1) (~';~"). As a mat ter  of fact this equal i ty  holds only if ~' and ~" 

are equal or d i f fer  by an in f in i tes imal  amount. Noth ing more is, indeed, 

required in order  to ensure that the trace of (2-426) produces the ki- 

net ic energy correct ly. If we thus wr i te  -- ~ I )  for said matr ix  e lement 

then 

n~ II (~';~") ~ 2 <_;' In( _½p2 -V(tr)-~)l~"> 
(4-232) 

n (I) (~,;~,,) = n (1) ÷, ~,, (r ; ) (4-233) 
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if r '-r" is inf in i tesimal.  Clearly,  the equal sign in (233) cannot be 

+ ÷ 4 1 )  t rue for arb i t rary r' and r", s ince or ig inates in a Slater determi-  

nant: 

N ,~, 
4 1) (~ ' ; ~ " )  = ~____~ j ( r ' )~ j (~ ' )  

j = l  (4-234) 

-~- ! --k . ÷ ~ "~" ÷ "+  ! 

= N f (d r2 ) . . . (d rN ' )¢v ( r " , r2 ' ,  .... r ~ ) ~ V I F '  , r2 ' ,  .... r~) 

with 

+ ,, ÷ , I detI~j (~k,)] , (4-235) 
~V(rl "'"rN) = N~. j,k 

-~ ÷ 

whereas the true ground state wave funct ion ~o(r1',...,rN') is cer ta in ly  

not of this s imple structure. The ~j 's in (234) and (235) are, of course, 

the N lowest-energy eigenstates of the ef fect ive Hami l ton operator  H, 

count ing d i f ferent  spin states separately. In Eq. (2-509), these were de- 

noted by ~j. 

The fact that n (I) and n~ 1) agree for ~':=~" suggests the use 
• ( 1 ) "  ÷ +,, 

of 4 I) as an approx imat lon to n for arb i t rary values of r' and r . 

÷ ' = ~1" ÷ '= ~2"' Likewise, 4 2) should not d i f fer  much from n (2) if r I ~r 2 that 

is for the range of arguments which contr ibutes most to Eee. Upon inser- 

t ing the contruct ion (235) into (229), we obtain 

N 

4 2) + '  ~ '-~i",~' * r . . . .  (rl,r 2 , ) ~ ÷ , +  ) ÷ ÷ = [~j ( I )~k(r2 ~j (r1')~k(r2') 
j ,k=1 (4-236) 

- ¢ j * ( ~ i , , )  * + ,, ÷ ÷ , 
~k(r2 ) ~k(r1') ~j(r 2 )] 

Before proceeding it is necessary to recal l  that in both Eq. (234) and 

(236) t rac ing over spin indices is implici t .  For instance, in (234) the 

spin matr ix  is 6o,o,, wi th  o' and o" tak ing on the values + and - ("up" 

and "down") each. Thus the trace in quest ion is 

Z 60, O, = 2 , (4-237) 
O' 

which is, Of course, the factor of two that ref lects the spin mul t ip l i -  

ci ty in Eq. (232). Now the spin matr ix  for the f irst summand in (236) is 

6~i~I" 602~ ~' 
(4-238) 

the t race of wh ich  is 
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> , , ,  8 o W  = 2 × 2 14 -2391  

a1', a 2' 

two factors of two. In contrast, the spin matr ix  of the second summand 

is 

6a~ a~ (4-240) 6a~a~' 

with the trace 

> 
oi', 02 ' 

I = 2 = ~(2x2) (4-241) 6a½a 1' 5a~a½ 

just one factor of two. This explains why in combining (234) and (236) 

into 

4 2 )  + , + + , , +  , = ~ 1 )  + + 4 1 )  + + (r I , r2'; r I ,r2') (r1'; r1") (r2' ;r2" ) 
(4-242) 

1 (1)  ÷ ,  ~2,, ) 4 1 )  + + - ~n V (r I ; (r2';r1") 

the factor of I/2 appears. Its physical  s ign i f icance is obvious: this 

factor expresses the fact, that only half of the e lectron pairs have 

their spins paral lel .  

The approx imat ion for n (2) to be used in (230) for the evalu- 

at ion of E is then 
ee 

n (2) +' ~". ÷' 7" 4 2) +' + ÷ ~" (r , , r , ) ~ (r , r"; r', ) 

= 4 I) +' 7' n (I) (r" ÷ ;~") - 1 4 1 )  (~' + 4 I) (~" +;r ;r") ') (r; ) v 

(4-243) 

r 

or wi th  Eqs.(233) and (2-423) combined to 

÷ ÷ 
I) (~';r') = n(r') , (4-244) 

simply 

n (2) + ÷ ÷ ,7" ÷, ÷ I (I)(7' +'' 4 I) + ÷ (r',r";r' ) ~ n(r ) n ( r " ) - ~ n  V ;r ) (r";r'). (4-245) 

This inserted into (230) gives 

E ~ E + E , (4-246) 
ee es ex 

where E is the e lect rostat ic  energy (227) and E the exchange energy 
e s  e x  
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E 
ex 

~I) ÷, 7" ~ I  + + (r ; ) (r";r') 
I (4-247) 

Note that it is ~ I ) ,  not n (I), appear ing in this def in i t ion  of the ex- 

change energy. 

The equal i ty  in (246) is c lear ly  approximate.  The exchange 

energy Eex takes into account the ant isymmetry  of the wave function. It 

does this in a s imple way by approx imat ing  the t rue wave funct ion by a 

Slater  determinant .  There is no doubt  that the main effect of the ant i-  

symmetry  is cor rect ly  incorporated this way. However, more subt le con- 

sequences - such as the inf luence of a th i rd electron, in the neighbor-  

hood of two electrons, upon the in teract ion of these two - are cer ta in-  

ly not conta ined in Eex. Al l  three, four, f ive,.. ,  par t ic le  contr ibu-  

t ions to the energy are usual ly  cal led "corre la t ion energy", a term that 

seems to have as many def in i t ions as there are invest igators.  For us, 

it means no more than the d i f fe rence between the two sides of Eq.(246), 

Ecorr  E Eee - Ees - Eex (4-248) 

In part icular ,  this Ecorr  is not equal to the d i f fe rence between the 

true ground state energy and its HF approximat ion,  because the HF po- 

tent ia l  d i f fers from the t rue e f fec t ive  potent ia l  V; the dev ia t ion  bet-  

ween E and this d i f fe rence is, if course, small. 
corr  

Self  energy. In Chapter  One there appeared, between Eqs.(1-62) and (I-63), 

the s tatement  that one should not worry  about the e lect ron sel f -energy,  

because "as soon as we shal l  have inc luded the exchange in teract ion into 

the picture, the e lect ron ic  self energy wi l l  be exact ly  canceled by the 

equal ly  unphys ica l  se l f -exchange energy."  We are now able to just i fy 

this remark. 

The respect ive  se l f -energ ies or ig inate  in the j=k terms of Eq. 

(236), the f irst summand cont r ibut ing to Ees , the second to Eex. Since 

these terms cancel  exact ly  in (236) the e lec t ros ta t ic  se l f -energy and 

the exchange se l f -energy are ident ical ,  but d i f fer  in sign. Consequent -  

ly, thei r  sum vanishes. In other words: the errors in t roduced by inclu- 

d ing the se l f -energ ies into Ees and Eex compensate for each other per- 

fectly. There is absolu te ly  no room for expl ic i t  se l f -energy correct ions,  

once exchange is inc luded into the descr ipt ion.  13 

Exqhan~e II ( leadin@ correct ion).  The dens i ty  mat r ix  n$1)I is easi ly re- 

lated to the t ime t rans format ion  funct ion of Eq. (51) by means of 
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n (1) (F';~") = 2 

0o 

= 2 f d~' <~' I~(-H-~)IF"> 

oo 

dt' <F' [e -i(H+(')t '  IF"> 
= 2 f d ~ '  f-r4- 

oo 

dt' e-i~' t' 

or af ter denot ing the d i f ference between F'; 

sum by F' , 

<F' In(-H-~)IF"> 

(4-249) 

÷ F" 
<r' ,t i ,0> , 

and F" by ~ and half  their  

+ I+ ÷, _ I+ n (I) (F, ~s; r  ~s) 

dt' ( 2 ~  3/2 e-i~-i~'t '  = 2 f d~' f - - ~  ) 4-250)  

÷ ! 

where ~(~' ,s, t  ) and T(F' + t' ,s, ) are the phase and t y m e  of Eq. (51) Up 

to correct ions of relat ive size Z -2/3 they are approx imate ly  given in 

(45), (47), and (48). The leading contr ibut ion to E is thus obtained 
ex 

if we employ the TF approximat ions to ~ and T, which are 

2 
z V(~' )t' s 2t' ' T m t' . (4-251) 

Consequent ly,  

I+ ÷. I÷ I) (~, +~s;r"  -~s) 

, dt ' ( I__/___] 3/2 
2 f d~ f 2~ <2~it'J 

which for s=0 gives the TF densi ty  

-i (V (~')+(')t' +is2/(2t') 
e , (4-252) 

n(~") = n (I) (~';~') 
V 

312 [-2 (V (}') +C)] 3/2 (4-253) 

After changing the integrat ion var iables in (247) to the d i f ference and 

half the sum of ~' and ~", 

E 
e x  

1 ~ n(1)(~,+1+ + 1-->- 41) 1.+ +, 1+. = - ~ f  (d~') V ~ s ; r ' - % s )  (~'-~s,r +~sj , 

(4-254) 

the two-fo ld insert ion of (252) draws our at tent ion to the ~ integral  

s2. I +t1__~) I = 
f (d~) exp( i -~-~-T 
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- 2 t_' +t_"~ 
= 2~ f ds 2 exp( s 

2i t ' t "J  
o 

t,t l' 
= 4~i 

t' +t" 

(4-255) 

At this stage, we have 

m -~ 
ex 

I 2(dt' [ I ]3/2 e-iV(~')t '  

x 2( d t ' ' r l ] 3 / 2  e- iV(~') t "  
2~ <2~it ''~ 

= -i (~ ' t' +~ "t") t't" 
x f d~' f d~" e 4~i t'+----~ 

(4-256) 

where the ~' and E" in tegrat ions result  in 

t ' t" ~ ' 't' ~ i<"t" 
4~i ~ 7 ~ f  dE' e -I~ f dE" e- 

• ' ~ ' ' ( t ' + t " )  _ 4 ~  e - l ~ ( t  + t " )  = 4 ~  f d ~ '  e - l ~  
i t '+ i t"  

(4-257) 

Wi th  this ident i ty,  Eq. (256) is s impl i f ied considerably:  

co 

(dt' I I ~3/2 e- iV(~ ' ) t ' -~ ' t ' ]2  
Eex -~ -~ f  (d~')f dE' [2~ 2~ ~2~--~, , (4-258) 

or wi th  (253) and (252), 

co 

Eex ~ - ~  f ( d ~ ' )  f dE' [~-~ n (4-259) 

Here the dens i ty  

n(~') = 2 <~' ID(-H-~') IF '> 

I [-2 (v (~ ' )+~ '  
3~ 2 

] 3/2 
(4-260) 

is st i l l  expressed in terms of the ef fect ive potent ia l .  The exchange 

energy should, however, be given as a funct ional  of the dens i ty  i tself.  

In v iew of the s imple TF re lat ion between n and V this can be achieved 

easily, as shown by 

~ I . . . .  , ,) I/2) 2 
n(~')] 2 = fdc '  < - - ~ [ - 2 ~ t r  )+E ] = 

/ aE' [~- C 
E E 
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- J [ - 2 ( v ( ~ ' ) + ~ ) ]  
4~ 4 

4/2 _ I_[3 2n(~,) ]4/3 (4-261) 
4z 4 

Thus the leading cont r ibu t ion  to Eex is given by 

- f (d~') 1--!--[3n2n (~') ] 4/3 (4-262) 
Eex 4 3  • , 

wh ich  is known as the Dirac approx imat ion to the exchange energy, a 

choice of name that s l ight ly  d is tor ts  h is tory (more about this short ly). 

The dens i ty  n is composed of the TF densi ty  (260) and correc- 

t ions to it re fer r ing to st rongly bound electrons, quantum effects, 

exchange, and more. Consequent ly,  to f irst order the exchange energy of 

an atom is obta ined by inser t ing the uncorrected TF densi ty  into (262), 

w i th  the outcome 

Aex E - I / (d~) [-2(V+~) ]4/2 (4-263) 
4 3  

where V and ~ are the TF quant i t ies corresponding to the atom in ques- 

tion. This A E di f fers from the A E of Eq. (I02) only by a numer ica l  
ex qu 

factor, 

9 
Aex E = ~ Aqu E , (4-264) 

so that the total  Z 5/3 cont r ibut ion to the b inding energy of an atom is 

_ ~ ~ (Aex E + AquE ) = 11 f(d~) [-2(V+~)] 4/2 . . . . .  ; (4-265) 
36z 3 

in par t icu lar  for a neutral  atom, when {=0 and V(r) = - (Z/r)F(x), 

_ ~ _ 11 Z 5/3 ~ 2 Z5/3 
32 a 2 dx[F(x)] = 0.269900 (4-266) 

We have seen this numer ica l  factor  before, in Eq.(103), and now we un- 

ders tand the reason for exhib i t ing the factor 2/11 there. Exchange supp- 

lies the remain ing 9/11 = (9/2)×(2/11). 

The extended TF model  that includes the correct ions for the 

st rongly bound electrons, the quantum correct ion to El, and the exchange 

energy (to leading order) could be cal led the Thomas-Fermi -Scot t -Weiz-  

s~cker-Di rac model. As always, such a chr is ten ing does not do just ice 

to all those other  people who authored s igni f icant  cont r ibut ions as well. 

We shal l  there fore  s imply use the name "stat is t ica l  model",  wh ich has 

the advantage of not d is tor t ing history, whi le  at the same t ime sugges- 
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t ing a h igher  p rec is ion  for a larger number  of electrons. As we know, 

this suggest ion  is right; one must  not forget, however, that the appro- 

x imat ions employed in deve lop ing  and improv ing the descr ip t ion  are not 

~ I  I I I I 

TF stat 

TFS 

c~ 

N 

4 
LU 

I 

2 

0 1 I ; i P 

0 25 50 75 100 125 

Z 

F i g . 4 - 6 .  Comparison of t h e  p r e d i c t i o n s  f o r  t h e  n e u t r a l - a t o m  b ind ing  

e n e r g i e s  made by t h e  TF, t h e  TFS, and t h e  s t a t i s t i c a l  model ,  as w e l l  

as by t h e  HF a p p r o x i m a t i o n  ( c r o s s e s ) ;  see  a l so  Figs .  2-2 and 3-5.  

at al l  s ta t is t i ca l  but semic lass ica l  ones. The label "s tat is t ica l "  is 

of h is to r ica l  or igin; for instance, it occurs in the t i t le  of Gomb~s' 
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tex tbook of 1949 (see Footnote  I to Chapter  One). 

The pred ic t ion  of the s ta t is t ica l  model  for the neutra l -  

atom b ind ing energies is obta ined by adding the E of (266) to the TFS 

pred ic t ion  (3-33), the resul t  be ing 

I Z 2 
-Estat  = -ETF - ~ - 

= 0.768745 Z 7/3 I Z 2 Z5/3 
- ~ + 0.269900 

(4-267) 

In Fig.6, the quant i ty  

-Estat 
- 1.537 Z I/3 - I + 0.540 Z -I/3 (4-268) 

I z2  

is p lo t ted in addi t ion to the cor respond ing TF and TFS curves. The 

crosses for Z = 1 ,2 ,3 ,6 ,9 , . . . ,120 are the HF predict ions,  wh ich  we have 

seen earl ier,  in F igs.2-2 and 3-3. In this plot the remain ing dev ia t ions 

between the s ta t is t ica l  and the HF predic t ions are ind iscernab le  - a 

great t r iumph for the semic lass ica l  method, wh ich  at this stage is re- 

cognized to have turned into a h igh-prec is ion  tool. 

History. As ment ioned repeatedly,  the three terms of Eq. (267) are asso- 

c iated w i th  cer ta in  names, most of wh ich  have been repor ted already. In 

order  to do just ice to the ones, not remakred Upon spec i f i ca l ly  as yet, 

here is a br ie f  h is tor ica l  account. The subject  s tar ted w i th  Thomas' 

paper of November,  1926. 14 He could have, but did not der ive the lea- 

d ing term of the b ind ing energy formula. The f irst to wr i te  down Eq. 

(2-159) [that is the Z 7/3 term of (267)], in July 1927, 15 was Mi lne  

who - being an as t rophys ic is t  - recogn ized the s imi la r i ty  of the TF 

equat ion (2-62) w i th  Emden's equat ion for spheres of po ly t rop ic  per fect  

gases, held toge ther  by gravi tat ion.  Mi lne 's  numer ica l  factor was about 

twenty percent  too small, wh ich  acc identa l ly  improved the agreement 

w i th  the then ava i lab le  exper imenta l  data. Fermi 's  f irst paper  on the 

s ta t is t ica l  theory of atoms was publ ished in December,  1927.14 It con- 

tains a remarkab ly  good numer ica l  so lu t ion for F(x)  [he cal ls it ~(x)]; 

for example, the in i t ia l  s lope B is given as 1.58. Fermi also not iced 

the connec t ion  between the tota l  b ind ing energy and this constant,  so 

that  he can c la im fatherhood of Eq. (2-67). His numer ica l  factor is, of 

course, much bet ter  than Mi lne 's  - only hal f  a percent  short  of the 

modern  value. We are to ld that Fermi was unaware of Thomas' work  unt i l  

late in 1928, "when it was po in ted out to him by one (now unident i f ied) 

of the fore ign theoret ic ians v is i t ing  Rome. ''16 There are two probable  
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candidates for this anonymous person: Bohr and Kramers, whose encour-  
14 

agement is acknowledged by Thomas in his paper. 

The credi t  for the f i rst  h igh ly  accurate ca lcu la t ion of F(x) 

belongs to Baker. 17 His work  was pub l ished in 1930, long before the 

age of h igh-speed computers,  and contains a va lue for B wh ich  is exact 

to 0.03%. We honor  Baker  by ass ign ing his in i t ia l  to this number. In- 

c idental ly,  one of the f i rst  (if not the first) app l ica t ion  of the 

MIT D i f fe ren t ia l  Analyzer ,  a mechan ica l  dev ice for so lv ing ord inary  

d i f fe ren t ia l  equat ions, was the computa t ion  of the neut ra l -a tom TF 
18 

funct ion by Bush and Caldwel l  in 1931. [A more accurate table of F(x) 
19 

was on ly  g iven 24 years later by Kobayashi  and co-workers.  ] 

Now to the next term in (267), the cor rec t ion  for the st rong-  

ly bound electrons. Whi le  it has, of course, always been recognized 

how badly  the innermost  e lectrons are represented by the TF model, it 

would  take the surpr is ing ly  long t ime of 25 years unt i l  Scott  came up 
20 

w i th  the energy cor rec t ion  of Eq. (3-32), in 1952. In Chapter  Three, 

we a l ready ment ioned that his der iva t ion  - recal l  the "boundary ef fect"  

argument  - has not been wide ly  accepted. Let us quote March once more, 
21 

who expressed, in 1957, the general  fee l ing concern ing Scot t 's  cor- 

rect ion, in wr i t i ng  that  "it seems d i f f i cu l t  to give a comple te ly  c lear-  

cut demons t ra t ion  of the case." As pointed out in Chapter  Three, just 
22 

this was de l i vered  by Schwinger  in 1980, another  28 years later. The 

more soph is t ica ted t reatment  of the s t rongly  bound electrons presented 
23 

in that Chapter  was pub l ished in 1984. 
20 

Scott, in the very same paper, was also the f i rst  to give 

a Z 5/3" term in the energy formula. However, be ing unaware of the quan-  

tum correct ions,  he cons idered mere ly  the exchange cont r ibu t ion  to E, 

thus account ing  for n ine e leventh of the last term of (267). Again  it 

took many years before, in 1981, the quantum cor rec t ion (103) was eva- 
7 

luated by Schwinger.  From then on, the s ta t is t ica l  energy formula 

(267) was known. [Str ict ly speaking, Eq. (267) can a l ready be found in 

a 1978 paper  by Pl indov and Dmitr ieva;  for a comment see Footnote  11.] 

Of course, there has been impor tant  work on extensions of the TF model  

by o ther  authors. The exchange in terac t ion  was f i rst  cons idered by 
24 

Dirac, as ear ly as 1930, who was poss ib ly  react ing to a remark by 
25 

Fermi at the end of a ta lk  p resented at a 1928 conference in Leipzig, 

wh ich  D i rac  also attended. But Dirac did not deal  wi th  exchange energy, 

just w i th  the impl ied mod i f i ca t ions  of the TF equation. An express ion 
26 

for this energy, namely  Eq. (262), was f irst g iven by Jensen in 1934, 

who also on this occas ion cor rec ted for an inadver tance of Dirac, whose 

exchange ef fect  was too large by a factor  of two. However, there is no 
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doubt that  it was Scott  who for the f irst t ime evaluated the exchange 

energy per turbat ive ly ,  ar r iv ing at the neut ra l -a tom vers ion of (263). 

Maybe both D i rac  and Jensen were just th ink ing that one should not 

ta lk about the second cor rec t ion before the f irst one is known...  

The f i rst  at tempt at inc lud ing the non loca l i ty  of quantum 
9 

mechanics  was pre formed by yon Weizs~cker  in 1935. He der ived a cor- 

rect ion to the k inet ic  energy [nine t imes the second term of Eq. (115)], 

which, as we have observed above, has the ser ious drawback that  it can- 

not be evaluated in per tu rba t ion  theory - the outcome would  be inf ini te. 

The der iva t ion  of (102) makes it c lear that a consis tent  t reatment  re- 

quires a s imul taneous,  correct  handl ing of both the quantum correct ions 

and the cor rect ions for the s t rong ly  bound electrons. Why didn ' t  Scott  

do exact ly  that? There are two reasons: First, Scot t 's  "boundary effect" 

theory  of the v ic in i ty  of the nucleus cannot  be d i rec t ly  implemented 

into the energy funct ional .  And second, the language used by von Weiz-  

s~cker, Scott, and others is based on the e lec t ron dens i ty  as the fun- 

damenta l  quant i ty ,  whereas  these problems are most  conven ient ly  dis-  

cussed by g iv ing the fundamenta l  role to the ef fect ive potent ia l ,  as 

we have emphasized repeatedly.  

Energy cor rec t ion for ions. For an ion w i th  a degree of ion izat ion 

q = I - N/Z, the energy cor rec t ion of order  Z 5/3 is, accord ing to Eq. 

(265), g iven by 

_~ = 11 z 5/3 ~ 4/2 
32 a 2 fdx[fq(X) ] 

o 

11 Z 5/3 
-- 32 a 2 e (q) ' 

where  fq is the cor respond ing  TF function. Since fq 

x = x  O(q), we have 

(q) ~o (q) 
= dx[fq(X) ] 

O 

(4-269) 

turns negat ive at  

(4-270) 

In the two s i tuat ions of h igh ionizat ion,  N<<Z, and weak ion izat ion,  

q<<1, the analy t ic  dependence of e on the degree of ion izat ion can be 

studied w i th  the aid of the expansions (2-275) and (2-361), respect ive-  

ly. 

When swi tch ing from fq(X) to ~l(t), re lated to each other  as 

in (2-261) and (2-264), 
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I f (tXo) fq(X) = q ~l(X/Xo) , ~l(t) = ~ q 

l(q) qi/2 3/2 
= [Xo(q)] , 

Eq. (270) reads 

2 I 2 
= q x o 5dt[¢l(t)] 

O 

Here we can insert the expansion (2-275) to produce 

oo 

~ = q2 Xo /dt[ (l-t) 2 + 2(1-t)~--Ik~k(t) 
0 k = l  

3~j (t)~k(t) ] + ~j?k=11k+ ' 

(4-271) 

(4-272) 

(4-273) 

All Ck(t) and their first derivatives vanish at t = I [this is an 

implication of the recurrence relation (2-278)], so that two partial 

integrations establish the identity 

1 I _ t " (t) 
~dt 2(1-t)~k(t) = 5at t2(I ~)~k 
O O 

(4-274) 

In particular, differentiation of Eq. (2-277) gives 

#i' (t) = t-112(1-t)3/2 , (4-275) 

with the consequence 

I I t t3/2 -t)3/2 5~ 
5dt 2(I-t)~I (t) = fd t (1-~)  (I = 256 
o o 

(4-276) 

_I 7 5  [In terms of Euler':s Beta function this is B<5, 5] ~ B  ~,~]. ]  

= q Xo 3 + 2 ~ 6  I+0(12)  

Thus 

(4-277) 

or with ~qs. (2-285) and (2-287)], 

1 6 N  X(q) = - ~ -  [I+0(N/Z)] , 
(4-278) 

f inal ly 
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= ~ -~) 1 - 45rr" 2 16 j z  - " _ " 

Natural ly,  one can determine the subsequent coef f ic ients in this expan- 

sion in powers of N/Z as well; we quote from Ref.27: 

= _  (2 883 ) (4-28o  

2025~ 4 630~ 2 " 

The corresponding numer ical  s tatement about ~ is then 

[ N _  N 2 0 N 3)] 
- E = 0 . 4 3 2 7  Z N 2 / 3  1 - 0 . 3 6 8 1  ~ 0 . 0 0 2 6 ( ~ )  + ( ( ~ )  ( 4 - 2 8 1 )  

This series converges as wel i  as the one for ETF does [Eq. (2-289) and 

Problem 2-7]. In part icular,  Fig.2-5 shows that neglect ing the 0((N/Z) 3) 

terms does not result  in a s ign i f icant  error for N = Z/2. For this de- 

gree of ion izat ion the analog of the neut ra l -a tom binding energy (267) 

is, therefore, 

- Estat(Z,N=Z/2) = 0.7368 Z 7/3 I Z 2 Z5/3 - ~  + 0.2223 (4-282) 

1"-4 
("4 
- - . . . . .  

LtJ 
I 

45 

3 

15 

TF 

I I I 

0 10 20 3 0  40 
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Fig. 4-7.  Comparison of t h e  p r e d i c t i o n s  f o r  t h e  b inding energy  of ions  

wi th  N / Z  = I / 2  made by t he  TF, t h e  TFS, and t h e  s t a t i s t i c a l  model,  as 

w e l l  as by t he  HF approx ima t ion  ( c r o s s e s ) .  



235 

I n  Fig.7, the successive approximations of 

-Estat (Z,N:Z/2) 

! z 2 
2 

= 1 . 4 7 4  Z 7 / 3  - I + 0 . 4 4 4 5  Z 5 / 3  (4-283) 

which are the TF, the TFS v and the statistical-model predictions, are 

compared to the respective HF results, 28 for Z=2N=2,3,6,...,36. The 

agreement is just as impressive as for the neutral atoms in Fig.6. 

We turn to weakly ionized systems now. Here it is useful to 

look at the difference between ~(q) and its neutral atom value 

co  

~(0) = fdx[F(x)] 2 = 0.615435 , (4-284) 
o 

the numerical value of which was obtained in Problem 2-3. This differ- 

ence 

- sXolq  2 21 - = dx[F(x)] 2 + x[[F(x)] - [fq(X)] 
~(0) ~(q) ~Xo (q) o (4-285) 

can be expanded in powers of B[Xo(q)]-¥ , after the expansions (2-349) 

and (2-361) are used to rewrite the integrands. The outcome is 

~ ( 0 )  - ~ ( q )  

(12) 4 
[Xo(q)] 5 {[l+h5q o V ~q d t (1-  (1~)4t6[~(t)]2)] 

2 /  Ck(~XoY)k [5+~ .5+ky ~q dt i1_(A)4t6~ 
+ + hq o t 6+k----~ (t) ~k (t) 1 ] 

k=1 

5+ (j+k) y 
j,k=1 

+ h5+ (j+k) y ~q 
q 

o 
dt (i_ (A) 4t6~j (t) ~k (t) 1 ] } 

t6+ (j+k) y 
(4-286) 

The known expansions of Xo(q) and hq in powers of qy/3, Eqs. (2-339) and 

( 2 - 3 7 2 ) ,  a r e  now e m p l o y e d  i n  i d e n t i f y i n g  p o w e r s  o f  q ¥ / 3  i n  ( 2 8 6 ) .  The  

result is 

12 4 A2/3 [ ~(0) - ~(q) = (-~-) q5/3 jo + 
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e2 2~A-2y/ )qy/3 y/3) + ( 5 y ~ T  J o -  3J I +0(q  2 ] , 

(4-287) 

where Jo and J1 denote the integrals 

Jo = 1 +  oi vdt (i_(~2)4t6[~(t)] 2) = 0.844849, 
(4-288) 

J1 _ I + / dt 61_(~2)4t6#(t)~1(t)) 
5+y o 

= 0.078777 . 

Their numerical values are most precisely calculated by the technique 

that produced A and ~ in Eq. (2-312) and (2-313); we recall that it is 

based upon expanding the integrands in powers of ~t ~ and (l-t) I/2 and 

matching the results of term-by-term integration around t = 0.9 where 

both expansions converge. 

The numerical version of (287) is 

~(0) - ~(q) = 0.156210 q5/311+0.628951 qy/3 
(4-289) 

+0.414174 q2y/3+0(q3y/3)] , 

where we also report the coefficient of the second power of qy/3 
29 

When inserted into (269) this supplies 

~ ( Z , N )  - ~ ( Z , Z )  

(4-290) 

= 0.06851 (Z-N)5/3(1+0.6290 qy/3+0.4142 q2y/3+...) , 

which is the analog of Eq.(2-395), 

ETF(Z,N) - ETF(Z,Z) 

= 0.04731 (Z-N) 7/3 (1+0.8259 qy/3+0.6676 q2y/3+.. °) 

(4-291) 

The main application of these results lies in predicting the ionization 

energy of neutral atoms, when N=Z-I and q=I/Z. 

I Z 2 Ionization energies. Since the Scott correction ~ does not depend on 

the number of electrons, N, the entire difference between the statis- 

t i ca l -model  energy of an ion and the corresponding neutral atom is given 

by the sum of the differences in (290) and (291), 
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Esta t (Z ,N)  - Es ta t (Z ,Z)  

= [ETF(Z,N) - ETF(Z ,Z) ]  

+ [ ~ ( z , N )  - ~ ( z , z ) ]  

(4-292) 

In pa r t i cu la r ,  when  ask ing  for  the ene rgy  needed  to remove  just  one 

e l ec t r on  f rom the neu t ra l  a tom - th is  is the  i o n i z a t i o n  energy  I(Z) 

we f ind  

I s ta t (Z  ) --- Es ta t (Z ,Z -1  ) - Es ta t (Z ,Z)  

= 0 . 0 4 7 3 1 ( I + 0 . 8 2 5 9  Z -Y/3 + 0 .6676 Z -2¥/3 + ...) 

+ 0 . 0 6 8 5 1 ( I + 0 . 6 2 9 0  Z -¥/3 + 0.4142 Z -2~/3  + ...), (4-293) 

or, 

Is ta t (Z)  = 0 .1158 ( I+0 .7094  Z -Y/3 + 0.5177 Z -2¥/3 + ...) 

I I I I I I 

(4-294) 
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Fig .4-8 .  Comparison of exper imental  i o n i z a t i o n  energies wi th  the  succes-  

s i v e  approximations to Is ta t (Z)  in  Eq. (294) .  
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This s ta t is t ica l -model  ion izat ion energy makes no re ference to 

the shel l  s t ructure of real atoms. The same is, of course, t rue for the 

tota l  energy Estat , where shel l  effects are ins ign i f icant  because the 

few most weak ly  bound electrons do not contr ibute a large amount to the 

total  energy. In contrast, when cons ider ing the ion izat ion energy, it 

is the one most weak ly  bound e lect ron that we are interested in. The ex- 

per imenta l  ion izat ion energies must reveal the atomic shells as a conse- 

quence. The s ta t is t ica l -model  cont r ibut ion Istat is, therefore, expected 

to be a numer ica l ly  re l iable pred ic t ion only for those atoms in which 

the one e lect ron to be removed does not have partners in its shell. 

These are the a lka l ine metals Li(Z=3), Na(11), K(19), Rb(37), Cs(55), 

and Fr(87). Indeed, the successive approx imat ions represented by Eq.(294) 

agree qui te wel l  w i th  the exper imenta l  data 30 for the f ive l ighter ones, 

as i l lus t ra ted in Fig.8. For f rancium the stat is t ica l  model  pred ic i ton 

of about 3.9 eV [using two or three terms of (294) yields 3.86 eV and 

4.02 eV, respect ively. ]  

An important  remark ist the fol lowing. The cont r ibut ions to the 

ion izat ion energy from ETF and E are of roughly the same magnitude; for 

instance, E suppl ies 59% to the large-Z ion izat ion energy of 0.1158 

3.15 eV, whereas ETF suppl ies 41%. How does this fit into the general  

p ic ture of E being the second correct ion to ETF , smal ler  by a factor  of 

Z -2/3 ? Indeed, Eqs. (2-240) and (269) tell us that 

E(Z,N) _ 11 Z-2/3 ~(q)/e(q) (4-295) 
ETF(Z,N) 32a 

which is propor t iona l  to Z -2/3 for a given degree of ionizat ion. If we, 

however, compare the respect ive cont r ibut ions not to the total  energy 

but to the energy required to remove a given number of electrons, 

~ ( Z , N ) - E ( Z , Z )  _ 11 Z-2/3 ~ ( 0 ) - ~ ( q )  (4-296) 
ETF(Z,N) - ETF(Z,Z) 32a e(0) -e(q)  ' 

this rat io is propor t iona l  to Z -2/3 q-2/3 = (Z-N) -2"3/, which involves the 

f ixed common net charge Z-N of the ions under considerat ion.  More preci-  

sely, for weak ly  ionized systems, the numbers of Eqs. (290) and (291) 

produce 

~ ( Z , N )  - E ( Z , Z )  

ETF(Z,N) -ETF(Z,Z)  

In v iew of 

qy/3 

= 1 .448(Z-N)-2 /3(1-0.197q¥/3-0.091q27/3+. . . )  

(4-297) 

= (Z-N) Y/3 Z -¥/3 , (4-298) 
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this is an expans ion in powers of Z -Y/3 for a given net charge Z-N. Such 

is the s i tuat ion when asking about the ion izat ion energy, the net charge 

being one then. 

S ince our der iva t ion  and eva luat ion of E made extens ive use of 

the fact that i~t is a smal l  cor rec t ion to ETF, its app l ica t ion to circum- 

stances in wh ich  the cont r ibut ions of ETF and E are of comparable  magni  ~ 

tude need not always produce rel iable results. Fortunately,  noth ing went 

wrong when the ion izat ion energies (294) were calculated, as we are re- 

assured by Fig.8. 

Here is a h is tor ica l  remark. At tempts at ca lcu la t ing ioniza- 

t ion energies in extended Thomas-Fermi  theor ies have been made a l ready 

in the 1930's. Since the analyt ic  t reatment  of the energy of weak ly  

ionized atoms was not avai lab le then, one had to rely upon rather Crude 

numer ica l  so lut ions of the TF equat ion for var ious degrees of ionizat ion.  

The resul ts thus obta ined did not a g r e e w e l l  w i th  the exper imenta l  data, 

unless some ad-hoc modi f ica t ions  of the descr ip t ion were introduced. The 

d iscuss ion  presented above shows that the essent ia l  ingredients  are the 

coef f ic ients  in the expansions (290) and (291). These are hard to get 

by if one depends upon eva luat ing expressions l ike the integral  (269) 
31 

by purely  numer ica l  means. From looking at the resul ts reported by 

Gomb~s 32 I get the def in i te  impress ion that said ad-hoc modi f ica t ions  

were aimed at p roduc ing a s ta t is t ica l -model  pred ic t ion  that does not 

pr imar i ly  agree wi th  the exper imenta l  ion izat ion energies of the inert  

gases, but would go through the osc i l la t ions of Fig.8 in a symmetr ica l  

way, instead. Certainly,  there is good in tu i t ive reason to expect the 

s ta t is t ica l -model  pred ic t ion to average over the osc i l la t ions due to the 

atomic shel l  structure. However, as po inted out above, the ant ic ipa t ion  

of good agreement  for the inert  gases is suppor ted by physica l  in tu i t ion 

qui te as well ,  if not more so. AnyWay, now f i f ty years later, we do not 

have to resort  to guesswork any longer, because numer ica l  solut ions of 

the TF equat ion ceased to be the main  tool for the study of weak ly  ioni- 

zed systems. 

Min imal  b ind ing energies (chemical potent ia ls) .  In the d iscuss ion of 

ion iza t ion  energies we were in terested in the energy change due to the 

removal  of one atom, that is due to changing the number of e lectrons N 

by uni ty  f rom N=Z to N=Z-1. A re lated quest ion concerns the energy change 

caused by an in f in i tes imal  var ia t ion of the number of electrons, which 

exhib i ts  the quant i ty  ~, the min imal  b ind ing energy of the electrons: 

E(Z,N+6N) -E(Z,N)  = 8N ~N E(Z,N) = -SN ~(Z,N) (4-299) 
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In thermodynamics,  the der iva t ive  of the energy wi th respect  to the par- 

t ic le number is cal led the chemical  potent ial ,  usual ly  denoted by ~. 

Thus we have the s imple re lat ion 

~(Z,N) : - ~(Z,N) , (4-300) 

stat ing that the min imal  b ind ing energy and the chemical  potent ia l  di f-  

fer only by thei r  sign, whereby ~(Z,N) is a non-negat ive quant i ty  (be- 

cause the ef fect ive potent ia l  tends to zero at large distances).  

In the s tat is t ica l  model, we have 

_ 3 (ETF+ ~ ) (4-301) ~stat 3N 

since the Scott  correct ion does not depend on N. For N<<Z, combin ing 

Eqs. (2-289) and (281) wi th  Problem 2-7 produces 

N ~stat = 0.3816 Z 2 N-2 /3( I -1 .6944 ~ +  0.6360( ) 

N +0 .2885  Z N-I/3(I - 0 .9203  ~ -  0.0102( )2 

+ . . . )  

+ ...). (4-302) 

In the c i rcumstance of weak ionizat ion, q = I-N/Z<<I, the respect ive re- 

suit is obta ined from Eqs.(291) and (290); it is 33 

~stat = 0.1104 (Z-N) 4 /3(1+0.9170qy/3+0.8148q2y/3+. . . )  

+ 0 .1142(Z-N)2/3(1+0.7261qy/3+0.5421q2y/3+. . . )  (4-303) 

In the previous section, it was emphasized that our resul ts ob- 

tained by t reat ing E as a smal l  correct ion to ETF are only appl icab le  

in s i tuat ions where the dominant  cont r ibut ion is that of the TF part, 

indeed. For Eqs. (302) anc (303) this means that Z3/N or Z-N must (rough- 

ly) exceed unity, respect ively.  As a consequence, Eq. (303) does not im- 

ply ~stat = 0 for neutral  atoms. Knowledge of the chemical  potent ia l  for 

neutra l  atoms can only come from solv ing the new d i f fe rent ia l  equat ion 

for the ef fect ive potent ial .  What we can gain here is some insight about 

the re lat ive size of ~(Z,Z). Since the neut ra l -a tom value of ~ is zero 

in the TF model, we have 

~stat(Z,Z) = ~ (z,z) , (4-304) 

where ~ denotes the cont r ibut ion to ~ due to the exchange energy and the 
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quantum correct ions.  Now 

~(Z,Z) < ~(Z,N) for N < Z , (4-305) 

where  accord ing to (303) the r ight -hand side is p ropor t iona l  to Z 2/3 

for large Z and a given degree of ionizat ions.  We can there fore  infer, 

that the neut ra l -a tom value of ~, and thus of ~stat' is of a smal ler  

order  in powers of Z I/3, p resumably  

~stat(Z,Z) % Z I/3 , or Z 0/3 (4-306) 

Note that this s ta tement  is noth ing more than an educated guess. There 

is some numer ica l  support  for the not ion that ~stat(Z,Z) is constant  in 

Z, this constant  being about 0.009; deta i ls  wi l l  be suppl ied below, 

when numer ica l  solut ions of the new d i f fe rent ia l  equat ion are discussed. 

The min imal  b ind ing energy ~ (or the chemical  potent ia l  ~) is 

a pure ly  theore t ica l  quant i ty.  It cannot  be measured exper imenta l ly ,  

and mak ing  contact  w i th  the concept  of e lec t ronegat iv i t y  34 does not 

change this si tuat ion, iE s only a d i f fe rent  name. Furthermore,  in v iew 

of the d iscre te  nature of the bound-s ta te  spect rum of the independent -  

par t ic le  Hami l ton operator,  ~ is not a un ique ly  def ined quanti ty; in an 

exact t reatment  any va lue out o f  a (small) range is equal ly  good. In 

the models  d iscussed so far, the energy depends cont inuous ly  on the 

(large) number of electrons, and s ince the formal ism al lows for non- in-  

teger  values of N, there is no d i f f i cu l t y  in cons ider ing  in f in i tes imal  

Var ia t ions 6N, aE in (299). The phys ica l  s i tuat ion that just i f ies such 

a procedure  is, of course, that  of so many electrons that the chang e of 

e lect ron number  by one can be regarded as a t iny change of N. 

Sh ie ld ing  of the nuc lear  magnet ic  moment.  In contrast  to the N-der iva-  

t ive of the energy E(Z,N), the Z-der iva t ive  

-~  E(Z,N) = - <1> , (4-307) 
8Z r 

[see Eq. (I-96)] has an exper imenta l  mani fes ta t ion.  It determines the 

magnet ic  sh ie ld ing of the nuc lear  magnet ic  moment  by the electrons. To 
35 

make this point, we repeat  the argument  g iven by Lamb. 

An external  magnet ic  f ie ld ~o' descr ibed by a vector  potent ia l  

A O , 

~O = ~ x A O  ' (4-308) 
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i nduces  an e lec t r i c  cu r ren t  in the a tomic  e lec t rons ,  g iven  by 

~(~' % (~) n(~) (4-.309) 3 r) = - ~ 0 

whe re  the  m inus  s ign  re f lec ts  the  n e g a t i v e  cha rge  of the e lec t rons ,  

and the  f ine s t r u c t u r e  cons tan t  ~ = 1 /137.036. .  shows up because  the  

speed of  l igh t  equa ls  I /~ in our  a tomic  un i ts .  The c o r r e s p o n d i n g  i nduced  

m a g n e t i c  f ie ld  is 

~ ind(~ )  = ~×  ~ f (d~, )  5(~') 
(4-310) 

In par t i cu la r ,  

+ .9- 

[ r - r '  t 

at the s i te  of  the  nuc leus  at ~ = 0, we have  

÷ ÷ I 
B ind(0)  = ~ f (d~) j (~)  × ~  (4-311 ) 

Now, i f  B is cons tan t  (over the vo lume  of the atom),  we can use 
o 

+ ÷ I ~  × ~  , 

A ° (r) = 2 o (4-312) 

imp l y i ng  

1 tV-  
~ ind  (0) = - =] 

(4-313) 

The e l ec t r on  d e n s i t y  in an i so l a ted  a tom is s p h e r i c a l l y  symmet r i c ,  

n(~) = n(r) ,  and t h e r e f o r e  the r e p l a c e m e n t  

~ ~ 2 ~  
r r + ~ I (4-314) 

can be p e r f o r m e d  in  the  in tegrand .  Thus 

÷ ~ , (4-315) 
Bind(0)  = - O m  o 

36 
w i t h  the s h i e l d i n g  c o e f f i c i e n t  o m de f i ned  by 

1 2 ÷ 1 2 I 
(dr) (r)/r = <--> (4-316) °m - - ~  f n ~ r 

The n u m e r i c a l  va lue  of the  fac to r  in f ront  is 1 .7750 × 10 -5 . The  to ta l  

m a g n e t i c  f ie ld  at the  s i te  of  the nuc leus  be ing  Bo + B ind(0) '  the in te r -  

ac t ion  energy  of  the  n u c l e a r  m a g n e t i c  momen t  ~N w i t h  th is  m a g n e t i c  f ie ld  
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is 

- ~N'[Bo + Bind(0)] = - ~N" [(I - a m ) B  o] 

÷ .~ 
= -  [ ( I - a m ) ~  N] o ' 

(4-317) 

showing that due to the sh ie ld ing by the electrons, the nuc lear  magne-  

t ic moment  appears to be smal ler  by a factor  1-a m than its actual  value. 

For a neutra l  atom, the Z-der iva t ive  of the energy is to be 

computed by 

_~  E(Z,N) I = d E(Z,Z) - ~N ~ EIZ,NI I • . L 
~Z dZ 

N=Z N=Z 

d E(Z,Z) + ~(Z,Z) 
dZ 

(4-318) 

In the s ta t is t ica l  model, we know E(Z,Z in Eq. (267), and the reason ing 

of the preced ing  sect ion taught  us that ~(Z,Z) is of h igher  order  in 

Z -I/3 than the terms of dE/dZ. Consequent ly ,  

= (3.1840 Z 4/3 - 1.7750 Z + 8.7985 Z 2/3) × 10 -5 , (4-319) 
(aml stat 

for neut ra l  a toms.  Since h igh ly  prec ise measurements  of nuc lear  magnet ic  

moments  are per formed on atomic beams, the neut ra l -a tom pred ic t ions for 

a are the on ly  ones of immedia te  interest.  Of course, the cor respond ing  
m 

express ions for ions can also be produced, by d i f fe ren t ia t ing  the re- 

spect ive energy formulae. 

In these exper iments one always deals w i th  neutra l  atoms, so 

that  the magnet ic  sh ie ld ing  is present  all the time. The magnet ic  mo- 

ment  of the bare nucleus cannot  be measured independent ly .  As a conse- 

quence, the sh ie ld ing  factor  I-~ m i tsel f  is not ava i lab le  exper imenta l -  

ly. One must  ent i re ly  re ly  upon theore t ica l  pred ic t ions of its value. 

In o ther  words: the test of Eq. (319) is, once more, per formed by com- 

par ing w i th  another  theore t ica l  calculat ion,  for wh ich  the HF method 
37 

is the natura l  choice. This is done in Table  I. The re la t ive  dev ia t ion  
I~ 

is not iced to be less than I% for Z>10, less than 5o for Z>25 less than 
I 
7% for Z>62. Concern ing  the sh ie ld ing factor  1-a m the two theore t ica l  

va lues d i f fe r  at most  by 0.00003; a small  amount, indeed. This happens 

for mercury  (Z=80), for wh ich  the HF ca lcu la t ion  y ie lds I ,am=0.99027, 

whereas the s ta t is t ica l  model  gives 0.99030. Aga in  the semic lass ica l  

t rea tment  has proven to not only supply an unders tand ing  of the analy- 

t ical  dependence on the atomic number, as expressed in Eq. (319), but 
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Table 4-I. Compar ison of H F and S ta t i s t i ca l -Mode l  predic t ions for 

1 o5%. 

Z 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

15 

20 

25 

HF 

1.8 

5.99 

10.15 

14 93 

20 20 

26 07 

32 55 

39.51 

47 07 

55 23 

96 12 

142 3 

194 2 

SM Z HF SM 

2.2 30 252.2 251.3 

5.74 35 312.1 310.9 

10.11 40 374.2 373.9 

15.13 4 5  440.0 439.9 

20.68 50 508.6 508.6 

26.70 56 591.9 594.4 

33.13 62 681.7 683.8 

39.94 68 776.4 776.3 

47.09 74 873.6 871.9 

54.55 80 973.0 970.4 

96.02 86 1072.8 1071.6 

143.2 94 1210. 1210.5 

195.2 102 1355. 1353.8 

also to produce h ighly  accurate numer ica l  predict ions,  not in fer ior  

to resul ts obta ined by the much more involved HF method. 

S impl i f ied new d i f fe rent ia l  equat ion (ES model).  The eva luat ion of the 

energy cor rec t ion  E as a small  cor rec t ion to the TFS energy has proven 

qui te  successful .  Let us now try to incorporate  the exchange energy and 

the quantum cor rec t ion  to E I into the energy funct ional  i tself. At the 

present  stage, we shal l  be sat is f ied by keeping on ly  f i rst  order  terms, 

so that we get a s impl i f ied p ic ture  w i thout  the deta i l  suppl ied by the 

p le thora of A i ry  funct ions that one meets, for instance, in the dens i ty  

express ion (210). 

We are a iming at a descr ip t ion  that enables us to study the 

outer  reaches of the atom. Consequent ly ,  one s imp l i f i ca t ion  wi l l  con- 

sist of pay ing l i t t le a t tent ion to the detai ls  of the specia l  t reatment  

of the innermost  electrons. This is i l lus t ra ted by combin ing the TF ver-  

sion of E I (V+~) and the leading cor rec t ion  (97) into 

Iv÷ l f (dr) { 5/3 + 24-- E-2 1/2v2v} 

(4-320) 
+ CSBE , 
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where the ini t ia ls CSBE are to remind us of the necessi ty  of making 

correct ions for the s t rong ly  bound e lect rons eventual ly. The electron- 

e lectron in teract ion energy Eee(n) includes the exchange energy in the 

form of the Dirac approx imat ion (262) (do not forget that it was Jensen 

who actual ly  found this expression);  thus 

Eee (n) 
I f(d~) (d~ ' )  n(~)n(~') 

- J'(d~) 4-~[3n.2n(~)]  4/3 

(4-321) 

The stat ionary property of the energy funct ional  (2-434), 

E(V,n,~) = E I (V+~) -  S ( d ~ ) ( v + Z ) n +  Eee (n ) -  ~N , (4-322) 

under in f in i tes imal  var iat ions of both V and n implies 

4~I V 2 ( v + l ( 3 9 2 n ) I / 3  + .~)Z 

I 3/2 
n = 3--~[-2 (V+~) ] 

1 - 1 / 2  
24~z [-2 (V+~) ] V2V 

I ?2 1/2 
+ ~ [-2(V+~)] + CSBE . 

(4-323) 

What is subtracted from V on the lef t -hand side is, of course, the ex- 

change potent ia l  Vex, def ined by 

6 n Eex = ;(d~)6n Vex , (4-324) 

in the Dirac approximat ion,  that is 

Vex ~ - ~I(3~2n) I/3 , (4-325) 

as it results from the exchange energy term of (321). 

Consistent  wi th the st rategy of keeping the correct ions only 

to f irst order, we br ing the Laplac ian on the r ight-hand side of (323) 

to the lef t -hand one, where it supplements the exchange potent ia l  by 

one sixth. At this stage, we have 

- 4-~I V 2 ( V + ~ ( 3  2n) I/3 +~)Z 

i 3/2 
-3~z [ -2 (V+~) ]  {I + [_2(V+~)]3/2 

3~ 2 

+ C S B E  . 
(4-326) 
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The inc lus ion of Z/r into the Laplacian on the r ight-hand side does not 

change any th ing ,  because the resul t ing Del ta funct ion is mul t ip l ied by 

an expression that vanishes at the origin. (Incidental ly, one might  re- 

mark that this would refer to the domain of the st rongly bound electrons 

anyway.) Now, the second term in the cur ly brackets is a l ready a correc- 

t ion to the uni ty to which it is added, so that the TF evaluat ion 

1 V2 Z 1 3/2 
4~ (V +~) = 3-~Z!-2(V+~)] (4-327) 

is justi f ied. Then we obtain 

= I 3/2 1 3~2[-2(V+~)] <I + [-2(V+~)] -I/2) 

I 3/2 1 
3r~----~ [ -2 (V+ ~ ) ] {I + [-2 (V+~) ]-I/21 

3/2 

(4-328) 

the last step once more being a consistent  f irst order approximat ion, 

or f inally, 

- 4qI V2(v+~(3~2nll/3 + ~)z 

 /2t = 3--~T([-2(V+~)] + (V+~)] 
3/2 

+ CSBE. 

(4-329) 

This equat ion invi tes the in t roduct ion of a pseudo-dens i ty  p, 

I 1 (4-330) p ~ 3-~yI[-2(V+~)] + [-2(V+~)]I/2) 3/2 

in terms of wh ich the physical  dens i ty  appears as 

I V2 I/2 n = p + 2- -~  [-2 (V+~)] + CSBE 

= p + l  22(3 2p)I/3 + CSBE 

4-331a) 

(4-331b) 

When this is inser ted into Eq. (321), Eee reads 

Ee e = 1 f (d~) (d~') p(5) p(7') 

I (~) v,2 i /3 + ~ f(d~) P [3~2p(~')] 

Ir-r i 
f (d~)  I 2 ÷ 4/3 - [3~ P(r) ] + CSBE = 
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1 p (~) p (~') 

11 I 4/3 
9 f(d~) ~ [3r~2p(~)] + CSBE 

(4-332) 

whe re  a two - fo l d  pa r t i a l  i n t eg ra t i on  has been per fo rmed,  and on ly  f i rs t  

o rde r  m o d i f i c a t i o n s  are taken  into account .  P lease  no te  the fac to r  of 

11/9 tha t  m u l t i p l i e s  the pseudo  e x c h a n g e - e n e r g y  term. It is, of  course, 

the same 11/9 fac to r  that  we have seen in Eq. (265), 

2 
= (AexE + AquE) = 11 + ~ ] A e x  E 

11 - A E 
9 ex  

(4-333) 

I n f i n i t e s i m a l  va r i a t i ons  of p in (332) exh ib i t  a pseudo ex- 

c h a n g e - p o t e n t i a l  

11 ( 3 2 p ) I / 3  
Uex = - 9--~ ' (4-334 

to be con t ras ted  w i t h  the exchange  po ten t i a l  V in Eq. (325). It is 
ex 

thus f i t t i n g  t o  s u p p l e m e n t  t h e  p s e u d o  d e n s i t y  p w i t h  a p s e u d o  p o t e n t i a l  

U such tha t  

I ?2 + Z 
4~ (U-  Uex ~) = p (4-335 

C o m p a r i s o n  w i t h  (329) imp l ies  

U - Uex = V + 7 (3 2n) I/3 , (4-336 

or  (to f i rs t  order ,  again) 

I I/2 
U = V - 18---~ [-2(V+~)] (4-337) 

We use th is  U and the p of (330) to rewr i te  the second te rm on 

the r i gh t - hand  s ide of (322) cons i s ten t l y ,  

Z 
- I (d~) ( V + ~ ) n  

Z = _  S(d~) ( V + ~ ) p _  S(d~) (3 r62p) I /324~  21  ?2 Z (V +--) + CSBE = /[ 
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Z = - ~(d~)(U+-~)p- f(d~) ~ [-2(V+E)]I/2p 

- f (d~) 131120) I/3 I_!_ - V2V 
24112 

(4-338) 

+ Z 6~ [3u2p(0)]1/3 + CSBE . 

The term referr ing to r=0 is part  of the CSBE, where we incorporate it. 

Further, the second and third terms are already correct ions to the first, 

so we can rewri te them by employing the TF relat ions (for r~0) 

I ]3/2 I 
P ~ 3--~ [-2(V+~) = - ~  V2V (4-339) 

Then 
Z Z 

- f ( a ~ ) ( v + ~ ) n - - -  f ( d ~ ) ( u + ~ ) p  

- f(d~) ~ [-2(v+:)j1/2v2v 
(4-340) 

+ CSBE . 

Likewise, El(V+ ~) of Eq. (320) can be expressed in terms of U+(, the out- 

come being 

E 1 : f (dr )  ( - 1 5 ~ )  [ -2(U+6)]  5/2  (4-341) 

* f (d} )  ~ [ - 2 ( V + : ) ] l / 2 v 2 v  + CSBE . 

After  adding the contr ibut ions (332), (340), and (341) the new stat io- 

nary energy funct ional  is (tentatively) 

EES (U, P, () 
=12  ~Z + f(d~) ( -" ) [-2(U+~)] 5/2 

Z I p (~) p (~' 

11 I 4/3 
9 f (d~) (3~2p) - ~N 4--~ 

(4-342) 

The CSBE have here been made expl ic i t  by exhib i t ing the Scott term I~  Z 2. 

It is, therefore, understood that (342) should not be employed for cal- 

culat ing atomic propert ies which require an accurate dens i ty  at small 

d istances. 

The funct ional  (342) plus the relat ions (331b) and (337) de- 
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f ine an ex tens ion of the TFS model  wh ich  has aquired the name ES model, 

re f lec t ing  the in i t ia ls  of the authors of Ref.38, where  a var iant  of 
39 

(342) is der ived.  This model  incorporates the quantum correct ions to 

E I and the exchange energy in the simplest, though accurate fashion. It 

is par t i cu la r l y  wel l  f i t ted to s tudy ing such proper t ies of atoms that  

are sens i t ive  to the outer  reaches of the atom, inasmuch as in the vi-  

c in i ty  of the nucleus the pseudo densi ty  p has the character is t ics  of 
4O 

the TF densi ty.  Wi th  the necessary  changes, this is the f i rst  model  

in the deve lopment  that has a fair  chance of p red ic t ing  rea l is t ic  elec- 

t ronic s t ructures in molecules;  to my knowledge, no one has worked on 

such an app l ica t ion  as yet. 

Before cont inu ing  the d iscuss ion  of the ES model, I must  of fer  

a remark on the Thomas-Fermi -D i rac  (TFD) model. It is ob ta ined by exten- 

d ing the TF p ic ture  by account ing for the exchange energy only, w i thout  

mak ing  CSBE or inc lud ing the quantum correct ions to E I . The s ta t ionary  

TFD energy funct iona l  is t h e r e f o r e  

ETF D(V,n,~) = f (dr) ( - 15--~) [-2 (V+~)] 5/2 

z !r S(d~) ( V + ~ ) n +  2J(d~)(d~')  n(r)n(r ')  

I r-r  I 

(4-343) 

- f (d~) I 4/3 4--~(3~2n) - ~N 

It looks qu i te  s imi lar  to the ES funct iona l  (342). It is essent ia l  to 

apprec ia te  the enormous d i f fe rences between the two models.  It is not 
1 2  

only the factor  of 11/9 and the Scot t  term ~Z that d is t ingu ish  (343) 

f rom (342); there are the addi t iona l  re lat ions (331b) and (337) wh ich  

state that  U and 9 are not the e f fec t ive  potent ia l  and the physica l  den- 

s i ty themselves,  in cont rast  to the var iab les V and n in the TFD func- 

t ional. As the who le  deve lopment  shows, the TFD model  is somewhat  physi -  

ca l ly  incons is tent  because the leading cor rec t ion  is left out and only 

part  of the second cor rec t ion  is accounted for. Keeping the promise gi- 

ven at the beg inn ing  of this Chapter,  we shal l  not spend t ime on inves- 

t iga t ing  the impl ica t ions of the rather  i r re levant  TFD model. 

The s ta t ionary  proper ty  of the ES funct ional  (342) is s tated 

above, but we st i l l  have to demonst ra te  it. The change in EES due to in- 

f in i tes imal  var ia t ions of U, p, and ~ is 

6 ~ s  : f (d~)~u{3--~--[ -2 (u+~) ]  3 / 2  _ ~} + 
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+ S(d~)6p{_(U+~)+S,d~, , ,  '~P(r') _~(~z11. 2p) 

- 6 ~ { N -  S(df) 3 ~ [ - g ( u + 6 ) ]  / } . 

NOW, Eqs. (330) and (337) can be combined into 

~/3} 
(4-344) 

I 3/2 
p = 3-~[-2(U+~)]  , (4-345) 

so that the cur ly  brackets mu l t ip ly ing  6U vanish in (344). Further, Eqs. 

(334) and (335) imply that the contents of the cur ly brackets mul t ip ly -  

ing 6p are a constant; and in v iew of the boundary  condi t ion obeyed by 

V, and therefore  also by U, at inf ini ty, this constant  equals zero. Fi- 

nally, the Laplac ian term in (331) integrates to a nul l  result, wi th  

the consequence that 

N = S(d~)p  = S ( d ~ ) 3 ~ [ - 2 ( U + ~ ) ]  3/2  (4-346) 

Therefore, EES is indeed stat ionary under in f in i tes imal  var ia t ions of 

U, Q, and C. 

Upon in t roduc ing an e lect rostat ic  pseudo-potent ia l  

11,~ 2 1/3 
Ues E U - Uex = U + ~-~J~ p) 

11 (U+%)]I/2 : U + ~-~[-2 

(4-347) 

the d i f fe rent ia l  equat ion (335) reads 

I V 2 Z 
- 4--~ (Ues + 3  ) = p " (4-348) 

This wi l l  be a useful  equat ion determin ing Ues only if p can be expres- 

sed in terms of Ues. In the f irst place, both Ues and p are given as al- 

gebraic funct ions of U and ~, Eqs.(345) and (347). Since Eq. (345) alrea- 

dy presents p as a funct ion of -2(U+~), we need to invert  the re lat ion 

22 ]I/2 
- 2(Ues÷~) = - 2(U+~) - ~ [ - 2 ( U + ~ )  (4-349) 

to exhibi t  -2(U÷~) in terms of -2(Ues+~). (Recall that, as always, square 

roots of negat ive  numbers are zero. ) For -2 (U+ ~) <. 0, we have s imply 

- 2(U+~) = - 2(Ues +~) , (4-350) 

whereas in the s i tuat ion -2(U+~) > 0 we obtain, after complet ing the 
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square, 

2 ,11,2 -2(Ues+g) = ( [ - 2 ( u + ~ ) 7 1 / 2 - . ~ }  - t.~.Kj (4-351)  

o r  

1 1 2  
> -  (~ )  # 

[_2(U+~)]I/2 11 + /(11 2 
= 9--~ ~ )  + [-2(Ues+~) ] (4-352) 

The lef t -hand side being posit ive, the lower sign is an opt ion only for 
11 2 11 2, 

- ( ~ )  <-2(Ues+~) < 0. For -2(Ues+~) <-(~{)  the unique relat ion is 

(350); for -2 (Ues+~)>  0 we have equal ly uniquely 

_ = ( ~ )  + 2 (U+~) ~ + [-2 (Ues+~) ] (4-353) 

1 1 2  
However, in the range - ( ~ )  <-2(Ues+~)  < 0 there is the choice between 

(350), (353) , and 

_ 2 ( U + ~ ) =  [i I 4 1 1 ,  2 ]2 ~-~- (~ j  + [-2 (Ues+~) ] (4-354) 

Thus, there is no unique relat ion between p and -2(Ues+~) in the f irst 

place. This is t roublesome. (The same d i f f icu l ty  occurs• of course• in 

the TFD model . )We have not iced here that Eqs.(342), (331b), and (337) do 

not suf f ice to def ine the ES model. It has to be supplemented by an in- 

junct ion for re lat ing p to Ues in a unique way. The natural  and usual 

procedure is to pick a cer ta in U ° in the range 

1,11.2 0 ~ U ° ~ ~ t ~ ;  = 0.0757 (4-355) 

and to use (350) for Ues+~ > U ° and (353) for Ues+~ < Uo, whereas (354) is 

never employed. The new d i f ferent ia l  equation, obeyed by Ues, is then 

1 V 2 Z 
- 4--~ (Ues +~)  = p 

I r11 /,11,2 ]3 
l ~ - Z [ ~  + ' ¢ l ~ ]  + [-2 (Ues+~) ] , for 

] 
L 0 , for Ues + ~ > U ° , 

Ues+~ < U o 
(4-356) 

the two ranges being the inter ior  and the exter ior  of the atom. 

Just inside the edge of the atom, the value of p is 

PO = "3"~'L9"~ + - 2 U o  ' (4-357) 
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just outs ide it is zero. Obviously,  this model  does not prov ide a real i -  

st ic descr ip t ion  at the edge of the atom. Nevertheless,  it represents an 

enormous improvement  over the TF model, as far as the outer  regions of 

the atom are concerned. (We shal l  report  the resul ts of a speci f ic  cal- 

cu la t ion short ly.) 

For the two l imi t ing values for U ° in (355) the cor respond ing  

Po'S are the l imits in the re la t ion 

I (22.3 I ,11,3 
3~ 2 ~ )  ~ Po ~ ~--~T~-~J , (4-358) 

the i r  dec imal  vers ions being 0.0159 and 0.0020, respect ively.  Thus Po 

is a small  number  that does not depend on Z, in contrast  to the dens i ty  

of the bulk of the e lectrons which is propor t iona l  to Z 2. This observa-  

t ion is reassur ing,  because it means that no pred ic t ion  of the model  w i ~  

be very  sens i t ive to the par t icu lar  choice made for Po" Or, tu rn ing  the 

argument  around: any resul t  sens i t ive to the value of Po must  not be 

trusted. 

The appearance of an addi t ional  parameter  U ° (or, equivalent ly ,  

po ) is, of course, annoying. The more so, s ince the model  does not se- 

lect an opt imal  va lue for U ° - there is none. The reso lu t ion of this 

problem must  come from an improvement  of the descr ip t ion  which removes 

this def ic iency.  Just this was the mot iva t ion  for deve lop ing  the t reat-  

ment of the quantum correct ions and of the exchange energy as presented 

in the ear l ier  sect ions of this Chapter,  and as in i t ia l ly  repor ted in 

Ref.8. Readers fami l iar  wi th  the usual der iva t ion  of the TFD model  wi l l  

recal l  that there the quest ion of the value of the dens i ty  at the boun- 

dary (that is just ins ide of the edge of the atom) is pos i t i ve ly  ans- 

wered by requ i r ing  

1 , 5 , 3  
n o = 3--~-/~; (4-359) 

The cor respond ing  value of the pseudo densi ty  in the ES model  is obtained 

by supply ing the necessary  factors of 11/9, 

1--/--Ill ×~-~] 3 0.0039 (4-360) 
PO = 3 ~ 2 < 9  = 

This needs some c lar i f i ca t ion in v iew of our ins is tence that there is no 

best va lue for Po" For this purpose, we review the argument, that is usu- 

al ly put forward in favor of the "opt imal" n o in the TFD model, in the 

context  of the ES model. We begin w i th  incorpora t ing  the parameter  U o 
into the energy funct ional ,  where it is now expedient  to use a funct io-  
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nal of U and ~. It is given by 
es 

EEs(Ues ,~) = f (dr) [E(Ues+~)-EIU o) ]n(U o-(Ues+~)) 

I ÷ Z ]2 1 2  
8~ 5 (d~) [? (Ues + ~) - ~N + ~Z 

where the energy densi ty  E(Ues+~) is 

1 ~/,11,2 
E(Ues+~) = 1~-~-/[v~; +[-2(Ues+~)] - 3 ~ )  

[11 ,11,2 ]4 
x ~ +  / t ~ I  + [-2(Ues+~)] 

Since [cf. Eq. (356)] 

{ [E (Ues+~) -E (Uo) ] q (Uo- (Ues+~)) } ~U es 

_ 1 [ 1 1 +  '11 2 
/1~{) + [-2 (Ues+~)] ]3 n(U o-(Ues+()) 3~2 L 9~ 

= Q , 

(4 -361 )  

(4-362) 

(4-363) 

the funct ional  (361) is indeed the correct one. Note, in part icular,  

that the term E(Uo) must be subtracted from E(Ues+~) to ensure the con- 

t inui ty  of the energy densi ty  at the boundary. The usual argument 41 is 

now the requirement that this term is absent in the energy functional, 

under which c i rcumstances the energy densi ty  wi l l  be cont inuous only if 

E (U o) = 0, imply ing 

15 11 2 
U ° = T~(~-~) , (4-364) 

wh ich  produces (360) when inserted into (357). Fine, but there is no phy- 

sical reason behind this requirement of van ish ing E (Uo); the uniqueness 

of U ° is s imply an i l lusion. Certainly, d i f ferent  values of U ° wi l l  lead 

to d i f ferent  values of the energy, and these energy di f ferences must be 

i r re levant if we want to take the ES model  seriously. Indeed, they are. 

To make this point, we consider the change of EES resul t ing from an in- 

f in i tes imal  var ia t ion of U ° by 6U o. Since EES is s tat ionary under var i -  

at ions of both Ues and ~, their  induced changes do not contr ibute. Con- 

sequent ly, 

6 U EES - 8Oof (d~) ~E(O°) = ~U n (Uo- (Ues+~)) 
o o (4-365) 

= - 6Uof (d~) po q (U O- (Ues+~:)) 
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Under  the c i r c u m s t a n c e  of sphe r i ca l  symmetry ,  as is the  s i t u a t i o n  in an 

i so l a ted  atom, the s tep  f unc t i on  l im i ts  the d o m a i n  of  i n t e g r a t i o n  to a 

sphere  of  some rad ius  r o. For  r > to, the pseudo  d e n s i t y  p van i shes  so 

tha t  the P o i s s o n  e q u a t i o n  (356) imp l ies  

Z-N Ues r for  r > r ° (4-366) 

w h i c h  in c o n j u n c t i o n  w i t h  the c o n t i n u i t y  o f  Ues , at r = ro, p roduces  the  

s ta temen t  

Z-N 
- + U (4-367) 

r o 
o 

Inc iden ta l l y ,  th is  i den t i f i e s  U O as the m i n i m a l  b i n d i n g  ene rgy  of neu-  

t ra l  ES atoms.  [Note that  a Z - i n d e p e n d e n t  ~(Z,Z) is c o n s i s t e n t  w i t h  

(306).] In te rms of  Po and r o, Eq. (365) g ives for an a tom 

0 3 9U EES = 3 r Po (4-368) 
o 

F rom the numer i ca l  so l u t i ons  of Eq. (356), r epo r t ed  in Ref. 38 and d is -  

cussed  to some ex ten t  in the  nex t  sect ion,  one can in fe r  a s low Z depen -  
3 

dence  of  ro, as exp ressed  by 

11.5 x Z 0"3 for  U O = 0 , 

3 ~ (4-369) 
r° = I111i 2 

30. x Z 0"25 for  U O ~ j  

for  neu t ra l  atoms. W i t h  the c o r r e s p o n d i n g  va lues  for  Po in (358), th is  

says 

I 
-0 .77 x Z 0"3 for  U o = 0 , 

~ (4-370) 
"~o EES = lr1112 

-0 .25 x Z 0"25 for  U O 2~9~- ' 

i m p l y i n g  

1 1 1  
EEs(Uo  = 0 ) -  EEs(Uo = ~ ( ~ ) 2 )  

< 0.04 Z 1/3 
(4-371) 

Th is  amount  is u t t e r l y  i r r e l e v a n t  at the p resen t  leve l  of  app rox ima t i on ,  

whe re  the s i g n i f i c a n t  c o n t r i b u t i o n s  to the energy  are p r o p o r t i o n a l  to 
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Z 7/3 Z 6/3 and Z 5/3 The argument  suppor t ing  (364) and (360) is thus 
l t " 

recognized to be qu i te  ar t i f ic ia l ,  indeed. 

We have d iscussed the mathemat ica l  aspects of the t roub lesome 

boundary  prob lem in the ES (and the TFD) model  to some extent. Its re- 

so lu t ion requires the recogn i t ion  of where  we have st ressed the physi -  

cal approx imat ion  too far. We postpone the necessary  remarks on this 

point  for a short  wh i le  to the benef i t  of repor t ing  an app l i ca t ion  of 

the model  first. 

An app l i ca t ion  of the ES model. D iamagnet ic  suscept ib i l i t ies .  The d i f fer -  

ent ia l  equat ion for Ues, Eq. (356), acquires a s impler  appearance upon 

adopt ing new scales for r and Ues, def ined by 

3~,2.1/2 
r = -~-(~} y = 1.00468 y (4-372) 

and 
I [11~ 2 I 611~2 ~(~) (4-373) 

Ues(r) = - ~ + ~<~-~j - ~  3~j Y , 

where  we have a l ready expressed the spher ica l  symmetry assoc ia ted w i th  

an iso la ted atom. The radial  funct ion ~(y) obeys (see also Problem 9) 

~(y) = Y <~(y)/y>I/2 + (4-374) 

for y ~ Yo ~ 0.99534 ro, and is subject  to the boundary  cond i t ion  

~(0) = 6~(2) 3/2 Z = 1.43136 Z , (4-375) 

wh ich  states U ~ Z/r for r ÷  0. The known form of U 
es es 

r iot of the atom, Eq. (366), appears as 

in the exte- 

y -- ~ - 2 1 T ] - !  Uo + q ~ ( ° )  y 

for y > Yo ' 

(4-376) 

where  q = I-N/Z is, as always, the degree of ionization, and Eqs. (367) and 

(375) have been used. In terms of boundary  condi t ions on ~(y) at y = Yo' 

this reads 

2 
(4-377) 

and 
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d $  
~(Yo ) - Y o  ~ (Yo) = q ~(0) (4-378) 

The range of U 
O 

(377), 

in (355) gives a cor respond ing range for ~(yo)/y O in 

I 
->_ ~(yo)/Yo > 0 , (4-379) 

where  we, inc idental ly ,  remark that the va lue of U in (364) impl ies 
O 

~(yo) /y  ° = 1/144. 

The d i f fe rent ia l  equat ion (374) can easi ly  be solved numer ica l -  

ly, whereby  in tegra t ing inwards from y = Yo to y = 0 us ing /y as the basic 

var iab le  is the recommended procedure.  The values of Yo' repor ted in 
38 

Table 2, have been ca lcu la ted this way. The numbers refer to the pure- 

ly d iamagnet ic  c losed-she l l  neutra l  atoms Ne, At, Kr, and Xe, a long wi th  

the s ingly and doubly  charged posi t ive ions hav ing those e lec t ron ic  con- 

f igurat ions. The neut ra l -a tom resul ts have been employed in es tab l ish ing  

Eq. (369) . 

Table 4-2 Values of y for inert -gas atoms and re lated ions The left- " O 

and r ight -hand columns refer to the respect ive extreme values in (379). 

N Z = N Z = N + I Z = N + 2 

10 2.805 3.737 2.296 2.569 1.928 2.050 

18 3.010 3.957 2.551 2.865 2.206 2.359 

36 3.231 4.191 2.821 3.179 2.504 2.692 

54 3.349 4.316 2.964 3.343 2.662 2.868 

The mer i t  of the ES model  is the improved descr ip t ion  of the 

outer  reaches of the atom. A quant i ty  sens i t ive to this part  of the atom 

is the expecta t ion  value of the squared d is tance from the nucleus, 

m 

2 I :, ÷, 2 
r = ~ j ldr jr  n . (4-380) 

Exper imenta l  data are obta ined from measurements  of the mo la r  d iamagne-  

t ic suscept ib i l i t y  

2 
- Xm = X o N r  , (4-381) 

whose uni t  Xo is composed of the f ine s t ructure constant  ~, the Bohr 
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radius ao, and Avogadro 's  number N A accord ing to 

= I 2 : cm (4-382) Xo ~ ~ a N A = 0.7920 × 10 -6 3 

2 
Table  3 d isplays the exper imenta l  values for r , der ived this way. It 

should be apprec ia ted that the entr ies for the neutra l  atoms are wel l  

establ ished, 42 those for the ions 43 are unavo idab ly  uncer ta in  owing to 

the necess i ty  of measur ing  them in ionic crystals. 
2 . 

In order  to express the ES pred ic t ion  for r in terms of ~(y), 

we f i rst  recal l  the re la t ion (331b) which, combined w i th  the d i f feren-  

t ia l  equat ion (356), reads 

n : ?2[_ 1 ZrN) + 1 / 3 ]  1 ?2(N) 
T~(Ues + 2 4 ~ ( 3 ~ 2 p )  J - ~-~ (4-383) 

In wr i t i ng  this s t ructure we exploi t  the known form of Ues outs ide the 

atom: the contents of the square brackets equal zero for r > r . A two- 
o 

fold par t ia l  in tegrat ion,  therefore,  produces (72r2 = 6) 

no [ ] 
N V 6 f dr r 2 Z-N + ( 3 2  I/3 = -Ues r p) , (4-384) 

o 

where  we have made use of the observa t ion  that the second Laplac ian in 

(383) is N6(~) and does not cont r ibute to r 2 . Now we employ such rela- 

t ions l ike 

I_/11~ 2[~ (y) ~(Yo ) ] 
-Ues (r) + Ues (ro) = 2 ~3~ j y - y----~-- 

_Ues(ro) Z-N _ Z-N Z-N _ 111112 (1 12 
r r ° r 2~3~ j q~(0)  - , (4-385) 

-1(3~2p)6~ I/3 = 1(11] 22<3~; I ~ [ ~  +1 ]  

and 

6d r 2 2 = ~-~ 2 ( ~ )  dy y (4-386) 

to arr ive at the f inal form for numer ica l  integrat ion:  

2 
r 1 9~f1111/211 2 Yo -~2 

= N T6~-2 -j [3Yo (33-Y(Yo)  ~(0)) 

o 

(4-387) 
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m 

Table 4-3. Exper imenta l  data for r 2. 

N Z = N  Z=N+I Z=N+2 

10 0.852 0.768 0.546 

18 1.373 1.023 0.750 

36 1.010 0.772 0.632 

54 1.027 0.821 0.678 

Table 4-4. Predic t ions for r2 by the ES model, for ~(Yo)/Yo = I / 9 .  I n  

parentheses, the dev ia t ions from the exper imenta l  values, in percent  

N Z = N Z = N +  I Z = N + 2  

10 1.626 (91.) 1.050 (37.) 0.732 (34.) 

18 1.413 (2.9) 1.013 (-1.0) 0.767 (2.3) 

36 1.152 (14.) 0.903 (17.) 0.737 (17.) 

54 1.001 (-2.5) 0.819 (-0.2) 0.691 (1.9) 

The resul ts are shown in Tables 4 and 5 for the two extreme 

boundary values ~(yo)/Yo = I/9 and Y(yo)/Yo = 0, respect ively.  One gets 

the d is t inc t  impress ion that the f i rst  boundary  condi t ion,  cor respon-  

d ing to U O = 0, outper forms the o ther  one. The agreement  w i th  exper imen-  

tal values is w i th in  3% for Z = 1 8  and 54 in Table 4. A larger error  

for Z = 10 is understandable;  Z = 36 exhibi ts a quantum osc i l la t ion.  In- 

deed, in each column of Table 3 we wi tness a success ion of increase, 

decrease, and increase wi th  growing N. This osc i l la to ry  behav ior  is 

c lear ly  a man i fes ta t ion  of the atomic shel l  structure. As such it can- 

not be reproduced by the ES model. The numbers  repor ted in Tables 4 and 

5 are, never theless,  an enormous improvement  over the pred ic t ions of the 

TF model,  in wh ich  we have, for neutra l  atoms, 

Table 4-5. L ike Table 4, for ~(yo)/Yo = 0. 

N Z = N Z = N +  1 Z = N + 2  

10 1.992 (134) 1.110 (45.) 0.744 (36.) 

18 1.667 (21 .) 1.063 (3.9) 0.783 (4.4) 

36 1.305 (29.) 0.943 (22.) 0.752 (19.) 

54 1.116 (8.7) 0.851 (3.7) 0.703 (3.7) 
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(r2---)TF 1; (d~) r 2 ]3/2 = 31--~[-2VTF (r) 

= 6 : 
jdr r2 (-VTF (r)) (4-388) 
o 

co  

6aa fdx x F(x) , 
-- z 2 - ~  c 

44 
or wi th  the numer ica l  va lue of the integral  of 9.194, 

( r2)T F = 43 .2 /Z  2/3 (4-389) 

Th i s  g i v e s  9 .3 ,  6 .3 ,  4 .0 ,  and 3 .0  f o r  Ne, Ar,  Kr, and Xe, r e s p e c t i v e l y  

- too large by factors of 11., 4.6, 4.0, and 2.9 when compared wi th  the 

exper imenta l  numbers of Table 3. No doubt, the ES model  improves matters 

considerably.  Inc idental ly ,  we remark that a s l ight ly  modi f ied  vers ion  

of the TF formula (389), namely, 

43.2 
Ir2)ES -= ~ZI /3+=I /3~2 , (4-390) 

( ~'o J 

reproduces the ES numbers for neutra l  atoms, if one choses Z ~ 20. 
o 

So we found sa t is fac to ry  agreement  between the ES pred ic t ions  

for r 2 and the exper imenta l  data. It is true, that a fur ther re f inement  

of the theory  is required in order  to cor rec t ly  reproduce the measure-  

ments w i th in  the exper imenta l  uncer ta in t ies  (of, typical ly,  a few per- 

cent) for all the atoms in Tables 3,4, and 5. But a l ready at the present  

level of accuracy the ES model  does not per form worse than HF calcu la-  
45 

tions, wh ich  y ie ld the numbers l isted in Table 6. The rather large de- 

v ia t ions from the exper imenta l  values, even for the neutra l  atoms, are 

somewhat  unexpected.  Could it be that this is an art i fact  of the spur i -  

ous nodes that a lways occur  in the numer ica l  HF wave funct ions at large 

distances, where,  as a consequence, the HF densi t ies are too large ?46 

Please observe fur ther  that the N = 10 numbers do not fit into the gene- 

m 

Table 4-6. HF pred ic t ions for r 2 and, in parentheses,  their  dev iat ions 
from the exper imenta l  values, in percent. 

N Z = N  Z =N+I  Z =N+2  

10 0.937 (10.) 0.641 (-17.) 0.472 (-14.) 

18 1.446 (5.3) 1.086 (6.1) 0.857 (14.) 

36 1.098 (8.7) 0.884 (15.) 0.741 (17.) 

54 1.160 (13.) 0.973 (19.) 0.843 (24.) 
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ral pat tern in Table  6. This casts some doubt upon the re l iab i l i t y  of 

the cor respond ing  exper imenta l  data. 

S ince we are at it, let us also report  the predic t ions for 
2 

r obta ined from the descr ip t ion  wh ich  keeps all the s t ructure of fered 

by the Airy funct ions in Eq. (210), for instance, a long wi th  the necessa-  

ry correct ions for the innermost  electrons. The cor respond ing  new di f -  

ferent ia l  equat ion wi l l  be given below [see Eq.(504)] .  Here we just take 
2 . 

a look at Table 8 wh ich  displays the numbers obta ined for r in Ref.47. 

Wi th  the sole except ion of argon (N=Z=18), these agree per fec t ly  wi th  

the exper imenta l  data, given that their  uncer ta in t ies  are larger for 

the ions. Incidental ly ,  owing to some numer ica l  d i f f icu l t ies  w i th  the 

new d i f fe ren t ia l  equat ion for neutra l  atoms (see below), the Z=N predic-  

t ions in Table 8 are less accurate than the ones for ions wi th  Z=N+I and 

Z=N+2.  Please note, in par t icu lar ,  that the osc i l la to ry  funct ions F m in 

Eq. (210) supply  just the r ight amount of s t ructure in the densi t ies to 

reproduce the quantum osc i l la t ion  a t  N=36: there is a decrease - increase 

phenomenon in Table 8 just l ike in Table 3 (experiment) and Table 6 (HF). 

We leave the ES model  here, being content  wi th  demons t ra t ing  
48 

its usefu lness in just one s imple appl icat ion; but not yet quite, inas- 

much as we st i l l  have to de l iver  the d iscuss ion concern ing the t rouble-  

some boundary  condi t ion,  as promised at the end of the preced ing section. 

We shal l  thereby be led to mode ls  that d i f fe r  only s l ight ly  from the ES 

model  and of fer  a more real is t ic  descr ip t ion  of the edge of the atom 

wi thout  employ ing a d i f fe rent ia l  equat ion much more involved than Eqs. 

(356), or (374). 

m 

Table 4-7. Predic i tons for r 2 by the new theory (not s impl i f ied to the 
ES model).  The dev ia t ions from the exper imenta l  data are given in the 
parentheses,  in percent. 

N Z = N  Z =N+I  Z = N+2 

18 1.46 (6.3) 1.036 (1.3) 0.786 (4.8) 

36 1.03 (2.0) 0.813 (5.3) 0.664 (5.1) 

54 1.01 (-1.7) 0.831 (1.2) 0.704 (3.8) 

Improved (?) ES model. E lect r ic  po lar izab i l i t ies .  We now return to the 

d iscuss ion of the t roub lesome boundary problem in the ES model. What is 

the or ig in  of the unrea l is t ic  behav ior  of the pseudo densi ty  p, wh ich  

decreases cont inuous ly  unt i l  it reaches the value of Po at wh ich  point  

it ins tant ly  drops to zero ? [By the way, the physica l  dens i ty  n(~) is 
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even less real ist ic,  because the Laplac ian in (331b) produces Del ta func- 

t ions at the locat ion of the d iscont inu i ty  of p(}).] Clear ly  we are pay- 

ing a pr ice for the s impl ic i ty  of the model  whose main feature is the in- 

c lusion of the exchange energy in form of the Dirac approx imat ion (262), 

Eex(n ) -= - f(d}) 4~[3r~2n(~) ]4 /3  (4-391) 

This is a good approx imat ion in the dense inter ior  of the atom. In em- 

p loy ing it wi thout  mod i f i ca t ion  for ca lcu la t ing the cont r ibut ion from 

the outer regions of the atom, where the densi ty  is small, we have stres- 

sed (391) too far. In other  words: where the densi ty  is suf f ic ient ly  

la rge to ensure that the Dirac approx imat ion of the exchange energy den- 

sity (~n 4/3) is small  compared to, for instance, the k inet ic  energy den- 

sity (~n5/3), that approx imat ion is rel iable; in low densi ty  regions it 

is not good enough. Since (391) comes from inser t ing the TF densi ty  into 

the more general ly  val id express ion (259), 

~ n(~,)] 2 Eex(n) ~ -~ f (d~') fd~' [~-~ 

where the re lat ion 

(4-392) 

n(~') : 2 <~' l~](-H-6')l~' > (4-393) 

is to be used both to evaluate the integrals of (392) and to express E ex 
as a funct ional  of the actual dens i ty  (for which ~'=~) after these inte- 

grations. Going through this procedure wi th  the TF approx imat ion for the 

r ight-hand side of (393) gives (391). This TF densi ty  is unreal is t ic  at 

the edge of the atom where V + ~ 0 .  There the correct ions for the strongly 

bound electrons are i r re levant and the gradient  of the potent ia l  is prac- 

t ica l ly  constant, so that h igher  der ivat ives do not matter.  Consequently, 

at the edge the densi ty  is wel l  approx imated by [cf. Eq.(219)] 49 

n(}l = ~ 12~v(})IF2[y(}I ] (4-394) 

wi th 
y(~) = 2<v(~)÷~] 

I 2~v (~) 12/3 (4-395) 

Now observe that rep lac ing the gradient  here by its value at the edge 

12~V(~) 12/3 -~ V O = const. , (4-396) 
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results in an expression for the densi ty  

n(~) ~ 2~ v3/20 F2[2(V+~)/Vo] , (4-397) 

wh ich is equivalent  to (394) at the edge and reduces to the TF approxi-  

mat ion when appl ied to the dense inter ior  of the atom, where V+~ is a 

large negat ive number and the asymptot ic  form of F2(Y), namely [Eq. (161)] 

F2(Y ) _= ~ ( _ y ) 3 / 2  for -y>>1 , (4-398) 

is avai lable. 

We are thus invi ted to insert (397) into (392), thereby thin- 

k ing of V ° as a parameter  somewhat related to the gradient  at the e d g e  

of the atom - not, of course, meaning that (396) becomes an ident i ty  at 

this edge~ but mere ly  concerning the order of magni tude of V o. Just as 

for the U of the ES model, there is no best value for V . To some ex- 
o o 

tent it can be regarded as an adjustable parameter.  There is, again, 

a pr ice to be paid for the s impl ic i ty  gained in the t rans i t ion from Eq. 

(210) [or (219)] to (397). 

The d i f fe rent ia t ion of F2(Y) produces F1(Y) , see Eq.(154), so 

that the new approx imat ion for the exchange energy is (see also Problem 

10) 

Eex(n) ~ - f(d~) 2~ V ~  y{~)dy' [F I (y,)]2 

where y(~) is given in terms of the dens i ty  n(r) by means of 

(4-399) 

n(~) = ~ V3/2o F2(Y(~)~• (4-400) 

This reduces to the Dirac express ion (391) where (398) is appl icable, 

which is the s i tuat ion for y ~ - 3 / 2  accord ing to 

= 0.371 this requires 

(171). Since F2(-3/2) 

n ~ (0.15 Vo)3/2 (4-401) 

÷ 0, Eq.(391) is regained for all values of n(~) In part icular,  for V ° 

The exchange potent ia l  that corresponds to (399) is obta ined 

by cons ider ing in f in i tes imal  var iat ions of the density. They cause a 

change of y by 6y, given by 

6n = _12z V3"2o ! FI (y) 8y , (4-402) 
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with  the consequence 

6 n Eex(n) = f(d~) 6y 2~ V ~  [F1(Y)] 2 

(4-403) 

VI/2 F 
= f (dr) 6n[- o I (Y)] 

This ident i f ies the new exchange potent ia l  [cf. Eq. (324)] 

vl/2_ 
Vex(n) = - o rl (y(n)) 

(4-404) 

= _ v l / 2 F  I (2 v;3/2nl) 
o I 

where we have, for once, inver ted Eq. (400) formally. For dens i t ies  that 

are large in the sense of (401) this reduces to the Dirac express ion 

(325), as it must  do. 

So much about an improved local t reatment  of the exchange cor- 

rect ion. Before d iscuss ing  the cor respond ing improvement  of the indepen- 

dent -par t i c le  energy EI-~N, it is necessary  to es tab l ish  a cr i te r ion for 

our judgement  whether  a modif ied,  local re lat ion between the (pseudo) 

densi ty  and the e lec t ros ta t ic  (pseudo) potent ia l  is more real is t ic  at 

the edge of the atom. A quant i ty  that is very sensi t ive to the depen- 

dence of the dens i ty  upon the potent ia l  is the e lect r ic  po la r izab i l i t y  

of the atom. 50 It measures the e f fec t iveness of a weak external  elec- 
P 

tr ic f ie ld E in induc ing a d ipo le moment  

= [ (d~) ~ n(~) (4-405) 

of the charge d is t r ibu t ion  ins ide the atom. We shall  conf ine the present  

d iscuss ion  to the c i rcumstance of no permanent  e lectr ic  d ipo le moment  in 

the absence of external  e lect r ic  f ield. In isolated atoms, this is the 

actual  s i tuat ion, s ince the dens i ty  is spher ica l ly  symmetr ic  as long as 

there are no external  f ields. 

The induced dipole moment  is propor t iona l  to the appl ied elec- 

tr ic field, if this f ie ld is su f f ic ient ly  weak, and the factor expressing 

this l inear re la t ion is the po la r izab i l i t y  ~p, 

= ~ ~ ( 4 - 4 0 6 )  
P 

It is ava i lab le  exper imenta l l y  f rom measurements  of the stat ic d ie lec-  

tr ic constant  6 of (not too dense) gases. Wi th  n be ing the dens i ty  
gas 

of atoms in the gas, the C laus ius-Mosot t i  formula connects 6 to ~ accor- 
P 
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ding to 

6-I 4~ 
- n 

6+2 3 gas p 
(4-407) 

The po la r i zab i l i t y  of a conduct ing  sphere is s imply the radius of the 

sphere cubed, so that we can in terpret  

r H 1 1 3  ! (4-408) 
P P 

as an "ef fect ive po la r iza t ion  radius" of the atom. Exper imenta l  values 

of r (in atomic units) are l is ted in Table 8 for those neutra l  atoms, 
P 

for wh ich  a is known somewhat  accurately.  51 A lso repor ted are HF pre- 
45 p 

dict ions, wh ich  occas iona l l y  agree very  wel l  w i th  the exper imenta l  da- 

ta, but dev ia te  substant ia l l y  for many Z values in the Table. 

Let us now d iscuss a in the context  of ES-type models,  in 
P 

which the phys ica l  dens i ty  is ca lcu la ted from a pseudo dens i ty  as in Eq. 

(331), wh ich more genera l l y  reads 

9/11 V2 (p) + CSBE (4-409) 
n = p - 24----~ Uex 

+ ~, as in Eq. (356) and O is an (algebraic) funct ion Of Ues 

Table 4-8. Exper imenta l  values for po la r iza t ion  radi i  r 
P 

pared wi th  HF predict ions.  

Z E X P  H F  

2 I .114 I .14 

3 5.45 4.76 

4 3.36 3.74 

5 2.71 2.85 

6 2.28 2.27 

7 I .96 I .89 

8 I .75 I .70 

9 I .56 I .53 

10 I .39 I .38 

11 5.45 5.01 

12 4.2 4.57 

13 3.9 4.20 

14 3.3 3.58 

15 2.9 3.10 

Z 

16 

17 

18 

19 

20 

21 

36 

37 

38 

54 

55 

56 

8O 

82 

EXP 

2.6 

2.4 

2.23 

6.62 

5.54 

5.37 

2.56 

6.84 

5 7 

3 00 

7 4 

6 5 

3 24 

3 66 

(EXP) , corn- 

HF 

2.85 

2.60 

2.37 

6.33 

6.11 

5.65 

2.76 

6.77 

6.72 

3.31 

7.61 

7.70 

4.34 

4.29 
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P(~) = P[Ues(~)+~],  , (4-410) 

w h e r e  U and ~ are  d e t e r m i n e d  by  Po i sson ' s  e q u a t i o n  
es 

I V2 
4~ (Ues - Vext)  = p ' (4-411) 

sub jec t  to the  usua l  b o u n d a r y  cond i t i ons ,  and by the n o r m a l i z a t i o n  

(d~)p = N (4-412) 

Now, in  p e r f o r m i n g  the  CSBE in (409), the  d e n s i t y  is m o d i f i e d  by te rms 

tha t  are  s p h e r i c a l l y  s ymme t r i c  and do not  c o n t r i b u t e  in (405). Fur ther ,  

the  L a p l a c i a n  of  (409), w h e n  i n s e r t e d  in to  (405), i n t eg ra tes  to a nu l l  

resu l t .  Thus,  n can  be e q u i v a l e n t l y  r ep laced  by  p in Eq . (405) ,  

= f ( d r ) r p  (~) (4-413)  

C o n s i d e r i n g  a w e a k  cons tan t  e l e c t r i c  f i e ld  E in a d d i t i o n  to the  C o u l o m b  

f ie ld  of the nuc leus ,  we  have  

Z -~ -~ 
E.r  (4-414) 

V e x t  = r 

as the  e x t e r n a l  p o t e n t i a l  in (411). Consequen t l y ,  U cons i s t s  of the  
e s  

= 0 t e rm  U (0) and c o n t r i b u t i o n s  " (1) U(2) .. w h i c h  are l inear ,  qua-  
es Ues' es' " 

d ra t i c ,  ... in E: 

U = U (0) + U (I) + U (2) 
e s  e s  e s  e s  

+ . . . .  (4-415) 

Qu i t e  ana logous l y ,  one  has 

P = P(O) + P ( 1 )  + P ( 2 )  + . . .  ( 4 - 4 1  6) 

and 
(0) (1) (2) 

= ~ + ~ + ~ + ... (4-417) 

In v i ew  of  Eq. (410), we  have  

p ( ° )  .. (0) (0) 
= P(Ues + ~ ) (4-418) 

and 
p(1) 9p ,. (0) (0) ~. (1) (1) 

- ~u L%s * ~  ) X ~ % s  * ~ ] ~ 
e s  
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- p' (r) IU (I) ÷ (I) 
es (r) + E 1 

S ince  p(0) a l ready  i n teg ra tes  to N, the spa t ia l  i n teg ra l  o f  p 
(I) 

van ish .  Th is  imp l ies  ~ = 0, so that  

p(1) (~) = p ,  (r) U (I) (~) 
es 

+ ÷ 

I f  we m e a s u r e  U (I) in mu l t i p l es  of  E.r, 
eS 

U (I) (~) = - E .~  v(r) , 
es 

where ,  of course,  

(4-419) 

(I) 
must  

(4-420) 

(4-421) 

v(r) ÷ I for  r + ~  , (4-422) 

then  the induced  d ipo le  momen t  is, to f i rs t  o rde r  in the  app l i ed  f ie ld,  

g iven  by 

= / ( d ~ ) ~  p(1) (~) = ~ • ~(d~) ~ [ - p '  ( r ) ] v ( r )  , (4 -423)  

I r 2 ++ whe re  ~ ~ can be e q u i v a l e n t l y  rep laced  by ~ I, so tha t  we f ind 

4K fdr  r4[-p'  (r)]v(r) (4-424) 
~p  = 7 o 

B e c a u s e  of the  l a r g e -  r b e h a v i o r  of v( r ) ,  d i s p l a y e d  in (422), p' (r) 

mus t  t end  toward  zero fas te r  t han  I /r  5 as r ÷ ~ .  F u r t h e r  o b s e r v e  tha t  

p' (r) is nega t i ve ,  p rov i ded  tha t  the f unc t i on  of (410) is r easonab le  

and g ives a sma l l e r  d e n s i t y  for l a rger  va lues  of U (~) + ~. Then  ~ is 
es p 

ensured  to be pos i t i ve ,  as it mus t  be. 

The rad ia l  f unc t i on  v(r) is de te rm ined  by the  f i rs t  o rde r  terms 

in the P o i s s o n  equa t i on  (411), w h i c h  are 

I ?2 . (I) + + p(1) 
4~ (Ues + E.r) = , (4-425) 

and produce,  a f te r  i n s e r t i n g  Eqs. (420) and (421), the  d i f f e r e n t i a l  equa-  

t ion  

d2 
[d-r-f + r + 4Kp' (r)]v(r) = 0 (4-426) 

The c o r r e s p o n d i n g  i n teg ra l  equa t i on  
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eo IIdr r3r< 
v(r) = I - ~ o r~ [- p' (r')]v(r') (4-427) 

incorporates the boundary condi t ion (422). Here r< and r> stand for the 

smal ler  and the larger one of r and r', respect ively.  Upon us ing the 

ident i ty  

r< r' r' 
r--f = ~-/ + ( ~ 2  ~ ) q  (r'-r) (4-428) 

> 

in con junct ion wi th  Eq. (424), this in tegral  equat ion appears as 

oo 

v ( r )  = 1 - ~P + r ,  fdr' r ' ( ( ~ ) 3 - 1 )  [ - ~ p '  ( r ' ) ] v ( r  ' )  
.r 

(4-429) 

Since p' (r) approaches zero faster  than I/r 5, the remain ing integral  

t e n d s  t o  z e r o .  f a s t e r  t h a n  1 / r  3 ,  w i t h  t h e  c o n s e q u e n c e  

v(r) ~ I _ 13 for large r r 3 (4-430) 

or, w i th  (421) and (406), 

U ( 1 )  --- - ~ ' ~  + ~'~--T 
as  • 

(4-431) 

wh ich  correct ly  exhibi ts the d ipo le  potent ial .  At short d istances, it 

is f i t t ing to use the ident i ty  

r 
< r ( ~  r' 1 

r --f = r'2 2 ~ q(r-r') 
> 

(4-432) 

instead of (428), in (427), wh ich gives 

r 
, r '  31 ~ , = + f dr r' (I-(-~-) [ - - -p  (r')]v(r') v ( r )  v ° 

o 
(4-433) 

where 

co 

V O : V(0) : I - Sdr r [ - ~ p '  (r)]v(r) 
o 

(4-434) 

In part icular ,  if the connect ion (410) between the potent ia l  U 
es 

densi ty  p has the TF form for r÷0, then 

and the 

4 .2z . I /2  
- --p' (r) ~ ~-~(~--) for r ÷  0 , (4-435) 

which, inser ted into (433), impl ies the smal l - r  form 
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16 ,~. 3 I/2 
v(r) = Vo[1 + 2--~IzT.r ) + ... ] (4-436) 

A f te r  p i ck i ng  an a r b i t r a r y  (posit ive) va lue  9 ° as a guess 

for  Vo, one can then  use th is  in i t ia l  behav io r  of v(r) to s tar t  the nu- 

mer i ca l  i n t e g r a t i o n  of the  d i f f e r e n t i a l  equa t i on  (426). S ince  th is  equa-  

t ion  is l i near  in v(r) ,  the so lu t i on  v(r) thus ob ta ined  w i l l  be a mu l t i -  

p le  of  the ac tua l  v(r) ,  wh i ch  has the de f i n i t e  asymp to t i c  fo rm (430), 

a p p r o a c h i n g  un i t y  for r + ~. I nasmuch  as 

V o  ~ "} 
= - r--~3 Q(r) ~o(I ) 

3~ for  r ÷ ~ , 
d ~(r) = o p 

r~-~ v-- "r ~ 
o 

(4-437) 

we emp loy  the sca le  i nva r i an t  exp ress ion  

= l im {r 3 [I + 3~ ( r ) / r  ] - I~  

ap r÷~ d~ (r) /dr S 
(4-438) 

to ex t rac t  the po la r i zab i l i t y .  In p rac t i ce ,  th is l im i t i ng  p rocess  s imp ly  

means  tha t  we have  to p ick  a d i s t a n c e  r so la rge that  p' (r) is essen t i -  

a l ly  zero. 

Now, a f te r  th is  p r e p a r a t o r y  genera l  d i scuss ion ,  let  us see 

wha t  r equ i r emen ts  emerge  on the (Ues+~) -dependence  of p. F i r s t  obse rve  

tha t  Ues+~ tends to ~ as r ÷ ~ ,  

Ues + ~ ÷ ~ ~ ( Z , Z )  E ~o ' (4-439) 

wh i l e  p tends  to zero. Th is  imp l ies  

P IUes(~ )+~ l=  0 for Ues(~ )+~  ~ ~o ' (4-440) 

wh i ch  c o n d i t i o n  is sa t i s f i ed  bo th  by the TF and by the  ES re la t ion ,  

whe re  ~o=0 and ~o=Uo , respec t i ve l y .  As a c o n s e q u e n c e  of (440), a tomic  

ions have  an edge at r=r  O w i t h  

Ues(ro)  ÷ ~(Z,N) = Z-N + ~(Z,N) = ~o ' (4-441) 
r o 

beyond  w h i c h  the dens i t y  equals  zero, whe reas  neu t ra l  a tom may  ex tend  to 

in f in i ty ,  as is the s i t u a t i o n  in the  TF model ,  or  be l im i ted  to a f in i te  

vo lume  as wel l ,  as rea l i zed  in the  ES model .  Then  cons ider ,  as a genera -  

l i za t i on  of the TF re la t ion ,  power  laws 
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p(Ues + () ~ ~ [~o - (Ues  + C)] 

for  Ues + ( ~ ~o 

v+l 
(4-442) 

w i t h  cons tan ts  ~ and v. Th is  p roduces ,  in c o n j u n c t i o n  w i t h  the  P o i s s o n  

equa t i on  (411), 

d 2 
dr 2 (- rUes )  = 4%# r-V( - r U e s  )v+1 (4-443) 

as the  d i f f e r e n t i a l  e q u a t i o n  gove rn i ng  the la rge - r  asymp to t i c  fo rm of 

the n e u t r a l - a t o m  p s e u d o - p o t e n t i a l  Ues(r ) .  For  0 < v <  2, th is  asymp to t i c  

foma is a lgebra ic ,  

~1-v/2>1/V r-2/v 
Ues (r) --+ - k- -~--  , (4-444) 

and for v = 0 i t  is exponen t ia l ,  

Uco 
Ues(r)  --+ ---~- e x p ( - / ~  r) (4-445) 

w i t h  an u n d e t e r m i n e d  cons tan t  U~ .The  c o r r e s p o n d i n g  asymp to t i c  forms of 

Pt (r) emerge  f rom 

-p' (r) ~ #(v+1) [ -Ues( r ) ]V (4-446) 

for  t hese  neu t ra l  a toms,  w i t h  the  ou t come  

I(v+l (1-v/2) 1 
v2 rZ ~ ~-f , for 0 < v < 2 , 

-p' (r) --+ (4-447) 

= const.  , for  v = 0 

Such  p' (r) 's resu l t  in i n f i n i t e  p o l a r i z a b i l i t i e s  for  neu t ra l  a toms,  be- 

cause  p' (r) mus t  tend to zero fas te r  t han  I/r 5 in o rde r  to p r o d u c e  a fi- 

n i t e  ~p. Th is  we o b s e r v e d  at Eq. (424); a d i f f e r e n t  a rgument ,  based  upon  

(426) and (438), is the  sub jec t  of  P rob lem 11. 

We thus conc lude,  tha t  the  p o w e r - l a w  form (442) cannot  be the 

co r rec t  p o t e n t i a l - d e p e n d e n c e  of the  dens i ty ,  at least  for 0 ~ v < 2. The 

range v < 0 is i m m e d i a t e l y  d i s p o s e d  of, b e c a u s e  the re  Eq. (446) imp l ies  

a g rowth  of  -p': (r) at la rge  d i s tances .  On the  o the r  hand,  for  v ~ 2 the 

p o t e n t i a l  Ues i t se l f  dec reases  s lower  than  I/r, ce r t a i n l y  an u n r e a l i s t i c  

behav io r .  The i n f e r e n c e  is there fo re ,  tha t  p mus t  a p p r o a c h  zero fas te r  
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than  any power  of ~o- (Ues+~)  as th is  q u a n t i t y  tends to zero (from pos i -  

t i ve  va lues ,  of course) .  In the ES model ,  the s tep  func t i on  in (356) 

[or (363)] ensures  this.  But  here  the  t r a n s i t i o n  t h r o u g h  the a tomic  edge 

is too rapid.  In p' (r) we  mee t  a te rm 

-p' (r) = ... + Po 8 < U o -  (Ues +~)) ' (4-448) 

wh i ch  in the d i f f e r e n t i a l  equa t i on  (426) g ives r ise to a d i s c o n t i n u i t y  

of  d v ( r ) / d r  whe re  Ues + ~ = U o. For ions, th is  is at the edge at r=r  ° on- 

ly, for  neu t ra l  atoms, however ,  Ues + ~ = U ° in the en t i re  ex te r i o r  of  the 

atom, that  is for  al l  r ~ r o. No sens ib l e  i n t e r p r e t a t i o n  can be g i ven  to 

such a p' (r). The on ly  w a y  out  is to ins is t  tha t  p': (r) = 0 for  r > r al-  
2 o 

so for neu t ra l  ES atoms. Then, in v iew  of Ues ~ (ro-r) just  i ns ide  of 

the edge of a neu t ra l  atom, the De l ta  func t i on  in (448) imp l ies  v ( r= r  o) 
3 

= 0, so tha t  ap = ro, or  w i t h  (408) and (369): 

2.2 x z 0"I ~ r r ~ 3.1 x z 0"08 = , (4-449) 
p o 

w h i c h  - s u r p r i s i n g l y  enough  - rough l y  rep roduces  the numbers  of  Tab le  8 

o r d e r - o f - m a g n i t u d e  wise.  Of course,  we are not  go ing  to take  (449) ser i -  

ously.  

In search  for a d e n s i t y - p o t e n t i a l  r e l a t i o n  (410) tha t  is de- 

c reas ing,  at the  edge, more  rap id l y  than the power  law (charac te r is t i c ,  

for ins tance,  for the  TF model)  but  not  qu i te  as sudden  as the s tep func-  

t i on  p resen t  in the  ES model ,  one n a t u r a l l y  reca l l s  the smoo th  t r a n s i t i o n  

assoc ia ted  w i t h  the A i r y  func t i ons  in Eqs. (210) or  (219). W i t h  the em- 

phas is  on the  v i c i n i t y  of the a tomic  edge, an imp roved  t r e a t m e n t  of  the 

exchange  energy  was ach ieved  above  by r e p l a c i n g  the TF r e l a t i o n  by (397). 

In s t r i v i ng  for  an improved  v e r s i o n  of  the ES model ,  we  sha l l  use th is  

ins igh t  about  exchange  and pe r fo rm  the rep lacemen t  

- SCd l I 4/3 v2 o cr1(ylj2 14-450) 4--~ (3~2p) ÷ -  (d~) ~-~ y 

in the energy  f unc t i ona l  (342), whe re  y(~) is d e t e r m i n e d  by  

(4-451) 

Th is  is, of  course,  s imp l y  the exchange  energy  of (399), supp l i ed  w i t h  

the  - by now fam i l i a r  - fac to r  of 11/9 and t rea ted  as a f u n c t i o n a l  of  

the pseudo  d e n s i t y  p(~). 

C o n c e r n i n g  the c o r r e s p o n d i n g  m o d i f i c a t i o n  of  the  f i rs t  i n teg ra l  

on the  r i gh t - hand  s ide  of (342), the o b s e r v a t i o n  of 
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I v5/2 F3(2(u+~)/Vo) + 
4~ o 

for V + 0 , 
o 

invi tes the replacement  

(d~) ( - ~ )  [-2 (U+~) ] 
5/2 

wi th  the consequence 

i 5/2 
15Z2 [-2 (U+~) ] , (4-452) 

I V5/2 _ 
÷ f(d~) ( - ~  o )~3(2(U+{)/Vo) (4-453) 

I V3/2 F2(2 (U+~)/Vo) (4-454) P = ~ o 

Al though this looks qui te natural, it is s imply not good, because p(~) 

does not approach zero at large distances, where U +  0 and F2(...) + 

F2(2~/Vo)>0. Instead of (453), I would therefore like to propose 

( - 1 5 z 2  + f vs/2EF3(9   9/FI 
(4-455) 

w i th  the unders tand ing  that 9 is determined by 

3 
-(U+~) = ~ V ° F 2 (y)/F I (9) (4-456) 

in the c lass ica l ly  a l lowed regime where -(U+~)>0, whereas the integrand 

in (455) is set equal to zero for -(U+~)<0. Note that this is also a pro- 

perty of the or ig ina l  in tegrand wi th  its TF structure. In v iew of this 

consequence of (456) : 

3 F2 (~) Fo (9) 
6U = ~ Vo[1 ] 6y , (4-457) FI 2 (~) 

the response of (455) to in f in i tes imal  var iat ions of U is 

2 (9) F o (9)/F~ (9) ] ~9 3 V5/2 [_F2(9) + 2F 2(9) - F  2 f(d~l ~ o 

V O r (4-458) 

which ident i f ies p as a funct ion of U+~, 

I V 3/2 F2(9) for -(U+~)>0 
2~ o ' ' 

P = (4-459) 

0 , for -(U+~) <0 , 

w i th  y from (456), of course. 

Before cont inu ing the study of the impl icat ions of Eqs. (455) 

and (456), it seems necessary to of fer  some mot iva t ion  for these rela- 

t ions. Consider  the e l iminat ion of the pseudo potent ia l  U from the ES 
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energy functional. It amounts to 

(d~) { - 1 5 / 2  1---g~- [ -2  (U+ ( ) ] - (U+~) # } ÷: ~ (d~) 1 0 - ~  (3~2 #) 5 / 3  ( 4 - 4 6 0 )  

in (342), qui te analogous to the t ransi t ion from ETF(V~n,~ ) of Eq. (2-435) 

to the TF densi ty  funct ional  (2-95). The same procedure performed after 

the replacement (455) gives 

V5/2 (9) 2 (9)IFI (~)] _ (U+~)p} f(d l{3 o 

3 V5/2 F3(~) 
-* .i" (d~) ~ o 

(4-461) 

where now y is determined by the pseudo densi ty  through (459). For large 

(on the scale set by V 3/2)" y is large negative, so that wi th  (161) 
O • 

P ~ I V3/2 (-7) 312 
O 

(4-462) 

and 

3 V 5 1 2 8 ~  o F3(Y) u I0~ 21 V512(_9)5/2o 

__ I I__~T(32p)5/3 

(4-463) 

Thus we recognize (461) plus (459) as the natural  modi f ica t ion  of the 

r ight-hand side of (460). Translated into the potent ia l  language this 

produces (455) plus (456), where (459) becomes an impl ied statement. 

We shal l  now put things together. The modi f icat ions (450) and 

(455) turn the ES energy funct ional  (342) into that of the Modi f ied ES 

model, 

+ 2 (}) IF I (}) ] ) : f(d l  v5/2( 3(?1o 

Z 1 p (~) p (~') 

V 2 ~ 
11 o 2 
9 f (d})~-~ f dy' [F I (y') ] - ~N , 

Y 

(4-464) 

where y and y are related to U+~ and p by Eqs. (451) and (456). In the 

l imit Vo+O, the ES funct ional  (342) is reproduced. The stat ionary property 

of this new funct ional  wi th  respect  to inf in i tes imal  var iat ions of U im- 

pl ies (459), and the considerat ion of 6p produces 

z p(~') 
- (U+~)  + ](d~') ÷ ÷ + U = 0 , (4-465) 

ix_r, i ex 
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or in d i f fe ren t ia l  form 

I ?2(U_U + Z ÷ 
4 ~  ex ~) = p ( r )  , 

(4-466) 

where  the new pseudo exchange-po ten t ia l  

11 VI/2 FI (y) 
Uex = 9 o 

(4-467) 

ref lects the induced mod i f i ca t ion  of (334). In order  to estab l ish the 

po ten t ia l -dens i ty  re la t ion (410), f i rst  note that Eqs. (451) and (459) 

y ield y=y, then conc lude that for U+~>0 the van ish ing  of Uex is impl ied, 

so that the e lec t ros ta t ic  pseudo-po ten t ia l  Ues, def ined as in the ES mo- 

del, by 

U = U - U (4-468) 
es ex 

agrees w i th  U in the c lass ica l ly  forb idden region. For U+~<0, we have, 

af ter  combin ing  (467), (456), and (468), 

3 F2(Y) 11 VI/2 F1(Y ) (4-469) 
- (Ues +~) = 4 Vo F1(Y) 9 o 

The t roub le  of the ES model• namely the not un ique re la t ion between (U+~) 

and (Ues+~), wh ich  prompted the present  d iscussion,  is only avoided if 

the r igh t -hand side in this equat ion is (i) pos i t ive  for all va lues of 

y, and (i i)  mono t i ca l l y  decreas ing  as y increases. The f irst requ i rement  

is sa t is f ied  if 

27 V I/2 > 2 
47 o FI (Y)/F2 (y) , for all y , (4-470) 

the second one if 

27  V 112 > 
44 o 

2 
F o (Y) F I (Y) 

2 
F I (Y) - F 2(y)F o(y) 

• for all y (4-471) 

These two rat ios of F funct ions acqui re  their  max imal  values of 0.4749 
m 

and 1.0929 at y = -1 .42  and y = -0.50, respect ively,  so that both (470) 

and (471) are obeyed if the lat ter  one is, this be ing the s i tuat ion for 

VI /2 > 44 
o ~-~ x 1.0929 = 1.781 (4-472) 

Then (469) can be un ique ly  solved for y, wh ich  inser ted into (451) pro- 

duces the va lue of p cor respond ing  to the given Ues+~, to be used in 

Poisson's equat ion (411). Let us further recal l  that the physica l  den- 

s i ty n is then to be computed wi th the aid of (409), where  (467) is needed. 
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It remains to be demonst ra ted that this new model  is, indeed, 

more real is t ic  than the previous unmodi f ied ES model,  in the sense that 

the descr ip t ion of the atomic edge is improved. Let us begin wi th  consi- 

der ing the dense in ter ior  of the atom, where p is large [according to 

Vo )3/2 ] +~ (401) this means noth ing more than p ~ (0.15 and both y and Ues 

are large negat ive numbers. If we employ the asymptot ic  forms (161) of 

the Fn(Y) 'S , then Eqs. (469) and (451) read 

1 2/2 1 1 V 1 / 2 ( _ y ) 1 / 2  (4-473) 
- (Ues +~) = ~ Vo(-Y) 9~ o ' 

or 

and 

(_Voy)I/2 11 / 11 2 - ( ~ )  , 9r6 + + [-2 (Ues+~) ] (4-474) 

I 3/2 
P = 3--~-(-VoY) , (4-475) 

which combine to reproduce the ES re la t ion (356). Thus, the MES dens i ty  

agrees wi th the ES one as long as one stays away from the edge of the 

atom. Near  the edge, y is large posit ive, and the asymptot ic  forms (165) 

apply. In (469) and (451) they yield 

3 -I/2 
-(Ues+~) = ~ V ° y (4-476) 

and 
4 _ 3 / 2 ,  I V3/2 y-3/2 e x p ( - ~ y  j (4-477) 

P - 32~ 2 o 

so that we have 

16 )/V~/213 9 Vo 3 
P - 27~z [- (Ues ÷~ exp ~ 1--~[_(Ues+~)] } (4-478) 

Here it is: "a dens i ty -potent ia l  re la t ion (410) that is decreasing, at 

the edge, more rapid ly than the power law ... but not qui te as sudden as 

the step funct ion ...", which we have been looking for. There is a pr ice 

for the intr ins ic s impl ic i ty  of the MES model: it contains a parameter,  Vo, 

for which we do not know a reasonable value beforehand, except for the 

rest r ic t ion (472), where one should expect sensible values to be conside-  

rably larger than this absolute bound. Such an addi t ional  parameter,  U o, 

was al ready present  in the ES model. That U o could be ident i f ied as the 

min imal  b ind ing energy of neutra l  atoms, about which we have no indepen- 

dent accurate knowledge [notwi thstanding the vague statement  (306)]. The 

new parameter  V o can be given a hand-wav ing in terpre ta t ion  in terms of 
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the gradient  of the potent ia l  near the atomic edge, as suggested by (396). 

Therefore,  the deta i ls  of the shape of the density,  for instance, wi l l  

depend sens i t i ve ly  on Vo, and so wi l l  the po lar izab i l i t ies .  This of fers 

the poss ib i l i t y  of ad jus t ing V ° by compar ison w i th  some exper imenta l ly ,  

or for this mat te r  independent ly  theoret ica l ly ,  known quant i ty.  

The MES model  just proposed has not yet been tested numer ica l -  

ly, except for some pre l im inary  results that  look encouraging.  An exten- 

sive s tudy is cer ta in ly  necessary, and poss ib ly  very  rewarding. In do ing 

so, one should not forget the poss ib i l i t y  of fur ther  modi f icat ions,  such 

as choos ing two d i f fe rent  values for V o in (450), (451), and (455), (456), 

w i th  the consequence that y and y are no longer ident ical .  For the sake 

of s impl ic i ty,  we opted for just one Vo, and this should suff ice. 

Exchange IiI. (Exchange potent ia l ) .  In order  to go f inal ly  beyond the 

s impl i f ied descr ip t ion  of the ES model, we need a more real is t ic  ex- 

change potent ia l  in the Poisson equat ion 

I V 2 (V- Vex + Z 4~ 3 ) = n (4-479) 

where we recal l  that the task of express ing the dens i ty  n in terms of 

the ef fect ive potent ia l  V has a l ready been performed. The result  is the 

sum of the dens i ty  of the innermost  electrons, nIME, and the remain ing 

ones, ~, 

n = n i M  E + ~ , (4-480) 

wh ich  are reported in Eqs. (198) and (210) [or (219)]. 

It is t rue that  the der iva t ion  of the exchange energy (259) 

employed the TF approx imat ions (251), so that upon inser t ing the quantum 

corrected dens i ty  we shal l  not obta in the correct  quantum correct ions to 

the exchange energy. These, however, are correct ions of a correct ion;  at 

the level of accuracy present ly  considered they are i r re levant.  We feel, 

therefore,  just i f ied in us ing (259) to f ind the exchange potent ia l  needed 

in (279). Wi th  this in mind, let us change ~ in f in i tes imal ly ,  wh ich  leads 

to 
~n 2 

6Eex = ~ f ( d ~ ) 6 ~ ( ~ )  , (4-481) 

the cor respond ing  change of the dens i ty  being 

6 ~n 6n = ~ 

Since var ia t ions of Eex ident i fy  the exchange potent ial ,  

(4-482) 
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6Eex = f(d~) 6n Vex , (4-483) 

the combinat ion of Eqs. (48!) and (482) tel ls us 

~n 
Vex = ~ ~--~ , (4-484) 

where n is thought to be expressed in terms of V+~, so that the inser- 

t ion of (484) into (479) suppl ies the desi red d i f ferent ia l  equat ion for 

V. 

Before proceeding, let us br ief ly  i l lust rate Eq. (484) in the 

context of Dirac 's approx imat ion to Eex, 

Eex - f (d~) I [n(r)]4/3 = ~ , (4-485) 

for which Vex is given in (325), 

I (3~2n) I/3 (4-486) 
Vex - 

Since (485) is val id in the TF regime, we have to use the TF expression 

for the densi ty  in (484), wi th  the result  

V 
ex 

i 3/2} 
= Z W~3--~[-2 (V+~)] 

= - 1 [ -2(V+~)] I /2  = - 1(3a2n)1/3 

(4-487) 

indeed. 

As a preparat ion for apply ing (484) to (480), let us consider  

the dependence of the funct ions Fm, as given in Eq. (181), 

J 
F m(v, I~V I) = ~---wj [F m(y)-F m(y j ) - (y j -y )Fm_ I (yj)] , (4-488) 

3=I 

upon their  arguments V and I~VI, which enter v ia 

y = 2(V+~) 12~V1-2/3 , yj = 2(V+~j) 12~V1-2/3 (4-489) 

Changing the potent ia l  and its gradient  (locally) induces 

~y = 212~v1-2/3 6v-~i2~v1-2 y 6(~V) 2 (4-490) 

and the corresponding var ia t ion of yj. Consequent ly,  
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J 

6 F m = ~ w j  {- [Fro_ I (y) +Fm_ I (yj) ] 6y+ (yj-y) Fro_ 2 (yj) 6yj } 

3=I 

= - 2 1 2 ~ V 1  "'2/3 Fm_ 1 6V (4-491) 

+ ~12~v1-2 8(~v)2~wj{YFm_1(yl-YFm_I(Yj)'~Yj-Y)yjFm_2(Yj)} 
j=1 

or, after u t i l i z ing the recurrence re lat ion (157), 

6 F  
m 

212~v1-2/3 = - Fm_ 1 6V 

+ I -2[ _ 
][2~V[ % - 3  (4m-2)Fm] 6(VV)2 

(4-492) 

where, as the der iva t ion  implies, it is understood that ~ and the ~.'s 

are meant  to be unchanged. With the standard factor of 12~VI (2m_i)/3~ l 

Eq. (492) reads, more compactly, 

6( 12~vL (2m-I)/3 Fm ) 

= -212~v[ 2m/3-I 1 12~V [ ( 2 m - 7 ) / 3  
Fro-16V + --g- Fm_36 (?V) 

(4-493) 

Another  preparatory  remark concerns Eq. (484) itself. There n 

is to be inser ted as a (local) funct ion of V+~, ~V, and possib ly  h igher 

der ivat ives.  Note in par t icu lar  the fundamental  dependence on the sum 

V+~, wh ich has the consequence that the der ivat ive wi th  respect to ~ can 

be equiva lent ly  replaced by ~/~V wi th  the impl ic i t  unders tand ing that 

the der ivat ives of the potent ia l  are kept constant, 

Vex = ~ ~ n(V+~,?V .... ) (4-494) 

In apply ing this s tatement to the Scott-  and quantum-cor rec ted dens i ty  

(480) we shal l  d isregard the contr ibut ions from the innermost electrons, 

so that we do not take into account the Scott cor rect ion to exchange; 

fur ther we shal l  be content wi th  the f irst term of (219). Thus we get 

V 
e x  

= - 1 2 ~ i  1 / 3  F l ( v , l ~ v l )  

(4-495) 

where (493) for m=2 has been used for var iat ions of V only. Inasmuch as 

F I is constructed accord ing to Eq. (488), it contains the typical  s t rong 
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cancel la t ions in the v ic in i ty  of the nucleus, and the compensat ing term 

referr ing to the innermost  electrons is missing. Consequent ly ,  this ex~ 

change potent ia l  is par t ly  corrected for the s t rongly  bound electrons, 

but not in a ful ly consistent  way. Here appl ies the same argument  that 

is val id for the quantum correct ions [part ly mani fest  in (495) because 

of the dependence on the gradient of V], namely that we need not be con- 

cerned wi th  correct ions to exchange. In other words: for the main  body 

of the atom, where exchange effects make themselves feel, the approxi-  

mat ion (495) suff ices. 

In a certa in sense, even the s imple express ion (495) is st i l l  

too compl icated for our purposes. When inserted into (479), t heLap lac ian  

of this Vex exhibi ts th i rd der ivat ives of the potent ia l  V, whereas the 

densi ty  contains only f irst and second der ivat ives, as we observed in 

the d iscuss ion  of Eq. (210). If one wants, as we do, to main ta in  the ba- 

sic s impl ic i ty  of the TF approach, one ingredient  of which is the low 

order of the d i f fe rent ia l  equation, then one should aim at a second-or-  

der d i f fe rent ia l  equat ion and look for a sensible approx imat ion of V2Vex. 

Since we must preserve the d ivergence proper ty  of V2Vex in or- 

der to not dest roy  the boundary condi t ions of V, we real ly  need an ap- 

prox imat ion of the gradient  of the exchange potent ial .  This is achieved 

by t reat ing ~V like a constant  when evaluat ing ?+Vex, 

~Vex -1/3 
~Vex ~ ~ ~V = 212~V I Fo(V, I~v l )~v (4-496) 

In pass ing we remark that one can do s l ight ly  bet ter  if V is spher ica l ly  

symmetr ic,  deta i ls  being d iscussed in Ref.47; here we are sat is f ied wi th  

(496). Upon tak ing the d ivergence of this equat ion we get, wi th  the aid 

of (493) for m=0, 

?2Vex ~ 212~vl -I/3 v2v % -12~vI~_i 
(4-497) 

4 -7/3 ÷ ÷+ ÷ ÷ ~ 12~vl  ?v.vvv.vv 3_3 , 

which  is by const ruct ion an exact total  d ivergence and contains only 

f irst and second der ivat ives of the ef fect ive potent ial .  

New d i f fe rent ia l  equation. Wi th  this Lap lac ian of the exchange potent ia l  

and wi th  the dens i ty  of (198) and (210), the Poisson equat ion (479) ap- 

pears as 

_ 1 V2 (V+  Z 4~ 4~ 3 ) = nIME + ~ - ?2Vex = 
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I ÷ 2 ÷ I /3V2 v 
= n i M  E + ~ I 2 V V I F  2 - ~ I 2 V V I -  % 

+ ~L2#vIF_ I 

I ~ I 2 # V l - 5 / 3 [ ( V 2 V ) 2 - # # V . . ~ # V ] F _ 2  

(4-498) 

1 ÷ - 7 / 3  2 ÷ ÷ ÷  ÷ 
+ ~-~I2VVI [V2V(VV) - 4 V V . V V V . V V ] F _ 3  

1 ÷ ] - 11 /3  . . . . . . . . .  
27~12VV [V2V ~ V . V V V . V V - V V . V V V . V V V . V V ] F _ 5  

Th is  s e c o n d - o r d e r  d i f f e r e n t i a l  e q u a t i o n  for  V is as a m a t t e r  of fac t  

l i nea r  in  the  second  d e r i v a t i v e  i f  one adopts  a c o o r d i n a t e  sys tem such 

tha t  V depends  on ly  on one of the  (or thogonal )  coo rd ina tes .  We i l l us -  

t r a te  th is  for  the  s i t u a t i o n  of  sphe r i ca l  symmet ry ,  V=V( r ) ,  as is f i t -  

t i ng  for  the  a p p l i c a t i o n  to an i s o l a t e d  a tom for  w h i c h  (498) is a c t u a l l y  

wr i t t en .  

In s p h e r i c a l  coo rd ina tes ,  we have  for  V=V( r ) ,  

~ v  - ~ v  
Dr r r 

-~ ÷ 

÷ ÷  D 2 v ~ +  (7 r r  I DV 
VVV - Dr 2 r r 7 7 ) r Dr 

: V 2 V  ~ ~ + ~ ÷ _ 3 r  ~ 1 3V 
r r  7 7  ) r Dr 

(4-499) 

V2V _ D ZV 2 ~V I D z 
Dr 2 + r Dr r Dr z (rV) 

f rom w h i c h  we  d e d u c e  

÷÷ 4 DV V2 V 2 I DV 2 (V2V) 2 - ~ V . - V V V  = r Dr - (7 ~-r) 

+ ÷+ ÷ DV 2V2 v 8 DV 3 V2V(~V)2  _ 4VV-VVV .VV  = - 3(~7) + 7 ( ~ )  

V2V ÷ ÷÷ + + ÷÷ +÷ ÷ V V . V W . V V  - V V - V V V . V V V - V V  

(4-500) 

2,3V, 3 _ 4 ,DV, 4 : 7 1 ~ I  V2V ~-f~-~1 

Indeed,  t hese  r i g h t - h a n d  s ides are l i nea r  in V2V. 

At th is  s tage,  we  have  

1 V 2 Z 
- 4--~ ( V + r )  : { n I M E +  2 ~ I 2 ~ V I F 2  + 4~ I2~VIF -1  + 
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I I 113 + 1 I12Vv12/3C3 + 36~ r 212~vl F-2-9-E 

1 1 /2~v1113 %5} 
+ 1 0 8 u  r z 

4 ~12~vi-2/3 L2 + v2v {- i2 v1-1/3 
(4-501) 

I -2/3 -!12~vl -I/3 L3 ~2~ rI2~vl %5 } 3 

where the upper (lower) sign refers to ~V/3r > 0(<0) and or ig inates in 

~V ± I 
3--r = 2 12~vl (4-502) 

(Under the standard c i rcumstances only the upper sign wi l l  occur. Since, 

however, these equat ions could be appl ied to negat ive ions, where ~V/3r 

changes sign beyond the atomic edge, we keep the two signs for the sake 

of completeness.)  The factor mul t ip ly ing  V2V on the r ight -hand side of 

(501) vanishes thoroughly  at r=0 which permits the rep lacement  

V2V ÷ V 2 ( V +  Z) (4-503) 

Af ter  solv ing for this Laplacian, the new d i f fe rent ia l  equat ion is ob- 

ta ined in its f inal form: 

Z - V 2(V +-)  = Num / Den , (4-504a) 

where the numerator  and denominator  are 

Num = 4uniM E + 12~VI (2 F 2 + F_I) 

÷ ~ ~12~vl I/3(3 t2 ÷ <5 ) (4-504b) 

4 1 2~v12/3 F_ 3 ± ~  

and 

Den = I I 2~vi-I/3 - ~ (8 ~ + %3) 

1 1 12~vi-2/3( ~ 7 ~  12 C2 + C5 ) 

(4-504c) 

One must cer ta in ly  admit that this, a l though being an extension of the 

TF d i f fe rent ia l  equat ion (2-48), no longer has any s t r ik ing resemblance 

to it. However, there are common features: first, it is a second-order  
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d i f fe rent ia l  equation; second, it is one equat ion for all systems, as 

compared to HF formulat ions,  where  going from N to N+I changes the num- 

ber of funct ions to be found; third, d i f fe rent  N and Z enter  the prob lem 

via the boundary  condi t ions,  w i thout  d i rect  ef fect  on the d i f fe rent ia l  

equation. 

There are enormous d i f ferences,  too. But they are of a more 

techn ica l  natur. In the case of the TF equation, the numer ica l  chal lenge 

was mere ly  to f ind V and ~ such that the d i f fe ren t ia l  equat ion along 

wi th  the boundary  condi t ions 

f -  Z as r ÷ 0  
r V [ (Z-N) as r ÷ 

was sat isf ied.  Now, we encounter  addi t iona l  compl icat ions because of the 

specia l  t reatment  of the s t rong ly  bound electrons. The new parameters ~j 

and Qj, that are impl ic i t  in nIME, are given in terms of in tegrals in- 

vo lv ing  the potent ia l .  These are Eqs. (3-50) and (197), respect ively.  The 

numer ica l  p rocedure  for hand l ing  these parameters was a l ready descr ibed 

in Chapter  Three in the context  of the TFS model  where  the same compl i -  

cat ion is present.  The main  change from what  is done there comes from 

the abundance of Ai ry  funct ions in the new d i f fe ren t ia l  equat ion (504). 

That makes it numer ica l l y  more involved (and more expensive),  but again 

this is not a fundamenta l  depar ture  from the TF equation. 

Before proceed ing  w i th  the d iscuss ion  of Eq. (504) and its im- 

p l icat ions,  I must  point  out that this equat ion is not ident ica l  w i th  

the one obta ined and studied in Ref.47, wh ich  produced the numbers of 

Table 7. The d i f ferences between these two equat ions ar ise pr imar i ly  

from the use of the energy funct ional  (186) instead of (183) in Ref.8. 

A minor  change or ig ina ted in add i t iona l  terms in the approx imat ion  to 

~Vex, Eq. (496), that are made use of in Ref.47. The numer ica l  resul ts 

obta ined wi th  Eq. (504) do not d i f fer  substant ia l l y  from the ones of Ref. 

47 (the d iamagnet ic  suscept ib i l i t ies  are somewhat  larger  here), but the 

t ime needed for the numer ica l  computa t ion  is about one third less for 

the new d i f fe ren t ia l  equat ion than it is for the o lder  one of Ref.47. 

[Since from the numer ica l  point  of v iew the main  d i f fe rence consists in 

the reduct ion of the number of F ' s  from 14 in Ref.47 to 9 in (504), one 
m 

can safe ly  in fer  that a substant ia l  amount of the computa t ion  t ime is 

spent on the eva luat ion  of the F funct ions.]  The fo l lowing d iscuss ion  
m 

wi l l  focus upon the new d i f fe ren t ia l  equat ion (504); the reader inter-  

ested in a compar ison w i th  the o lder  one is referred to Ref.47 for de- 

tails. 

(4-5O5) 
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Small distances. When approaching the site of the nucleus at r=0, we 

encounter the strong cancel lat ions that are inherent in the structure 
l l (488). In the F m s, y and the yj s are for small  r given by 

Z 2Z -2/3 /3 y,yj a 2 ( -~ )  (~-/) = - (2Zr)I (4-506) 

[cf. Eq. (173)], their  d i f ference being 

£Yj 
2Z -2/3 yj - y  = 2(~j-~) (~-f) 

~ - ~  
= ~ (2Zr) 4/3 

(4~507) 

This implies that the Fm'S, for r ÷  0, behave like 

F m = Z. w j [Fm(Yj -Ay j) - Fm(Y j) - £yjFm_ I (yj) ] 
3 

1 )2  1 3+ 
= 5"- W [~Fm_2(Y j )  (Ay j (Ayj) ] j J + ~l Fro_3 (Yj) ... 

~ - ~  
1(2Zr) 8/3 Fm_2(0) ~ wj('Z~2")2 

] 

We insert this into (504b) and (504c) and learn that the denominator  ap- 

proaches unity as r ÷ 0, whereas the numerator  has contr ibut ions from 

niM E and from the term which possesses the factor (I/r 2) [ 2 ~ V [ I / 3 % r  -8/3. 

Thus 

(4-508) 

-V 2 (v + z) 

(4-509) ~.-~ 
4 nTMEI01+( )313<410)+F 7(0)i Wj( 12 

3 

for r ÷  0. This tells us that the potent ia l  is per fect ly  wel l  behaved in 

the v ic in i ty  of the nucleus. 

Correspondingly,  the densi ty at r=0 has contr ibut ions from 

niM E and from the term in (210) involv ing F 2 and F_4. These are 

n 
o 

Clearly, the 

atomic shells. Here, nIME(0) 

(3-77) , 

= n(r=0) = nINE(0) + ~(0) 
(4-510) 

(2Z) 3 I ~ '-~ 
= nINE(0)+--~---- [7~ F-4(0) +2--~ F-7(0)] I wj ('Z-~) 2 

3 

(small) term H(0) represents the s-electrons in the outer 

is given by the expression found in Eq. 
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(2Z) 3 [~ -~ns- 1 3 Q j_] 
niM E(0) - 4~ [~___(nT) + Z w. 

n' =I j 3 
2nj J 

and in ~(0) we can employ the recurrence re lat ion (157) 

Fm_3(0) = (4m-2)Fm(0) , 

to es tab l ish  the ident i ty  

1 I 5 _ 5/3 
7-2 F_4 (0) + 2--~ F-7 (0) = ~ F_1 (0) 36~ 

52 
which uses 

F_I (0) 

= 0.1326... 

= 2[Ai(0)]x[-Ai '  (0)] 

[3 -I/6 2 [3 I/6 1 , 

= 2L 2"-Y~ (-~): ] L-Y~-(-~) ' ]  

1 ( - 3 )  ' ( - ) '  1 1 

2~ 

I 

211: sin (~/3) 

for y=0, 

(4-511) 

(4-512 ) 

(4-513) 

(4-514) 

Upon inser t ing (511) and (513) into (510), we have 

n / (2Z)3 ~ s -  ~--- | J  r Qj 5/~ ~__~,Z 2 

n'=1 j=1 

2] 
(4-515) 

wh ich is the s ta t is t ica l -model  pred ic t ion for the e lectron dens i ty  at 

the site of the nucleus. 

One could now improve the TFS predic t ion (3-166) by inser t ing 

into (515) what here replaces Eqs. (3-135) and (3-139). This has not been 

done as yet. 

Large distances. We turn to the region of large distances where all terms 

that refer to the innermost e lectrons are e f fec t ive ly  zero. Thus, all 

Fm'S are now just Fm(Y)'S, and niM E is absent. By "large r" we mean dis- 

tances suf f ic ient ly  far beyond the edge. That becomes more concrete by 

stat ing that the potent ia l  V is small  compared to ~, a l lowing the appro- 
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ximation 

y = 2(V+~)I2~VI -2/3 ~ 2~12~v1-2/3 (4-516) 

In conjunction with the asymptotic form (166), this produces 

Fm(Y ) __ 2_~(8~)-(m+1)/2]2~Vl (m+I)/3 

(4-517) 

x exp ( 2 (2~) 3/2 

3 I~vl ) 

The large-r behavior of V, as enforced by (505), implies that, for ions, 

I~V 1 approaches zero like I/r 2 and even faster for neutral atoms. Conse- 

quently, in a sum of Fm'S the one with the most negative subscript domi- 

nates. 

When applying this observation to the new differential equa- 

tion (504), we find that, for r + = ,  the numerator and denominator are, 

respectively, given by 

Num -= ~ 2 .~__~12Vv[ 

D e n  ~- I , 

exp f- 2(2C)3/2/l~vl] 
(4-518) 

SO that the asymptotic shape of the potential is determined by 

-V2V ~ 2 ~  ~2 rI__TI2~VI-I exp 6-2(2~)3/2/i~VII (4-519) 

For an ionized system, where V(r)÷ -(Z-N)/r, the additional information 

thus obtainted is 

V(r) ~ Z-N[ I + r  24zI rl 16 exp [_2(2~)3/2 zr__~2NI] , (4-520) 

which is not part icularly remarkable. For a neutral atom, the unknown 

asymptotic behavior of v(r) emerges from (519), at least in principle, 

if not in practice. To see what is involved, let us write 

2 I~Vl -- (2~) 3/2 h(p)/p , p H 6rc~r , (4-521) 

with the consequences 

= I V2V ~-~ %_~(r21~vl) = 2r~(2~)5/2 1 7 ~ h(p) 
(4-522) 

32 (2 1 -I 5 /2  I 
27~ r-/ I2~vl = 2~(2~) h(o) ' 



285 

which  turn (519) into 

_ p2 p2 
d h(p) exp( - (4-523) 

d-~ h(p) h - ~  ) 

What we need to know is: How does the so lu t ion of (523), obey ing the 

boundary  cond i t ion  h(p+~)=0, approach zero as p ÷ ~ ?  This would  te l l  us 

the asymptot ic  shape of the neut ra l -a tom ef fect ive potent ia l  in the sta- 

t is t ica l  model.  Unfor tunate ly ,  I have not been able to extract this valu- 

able informat ion.  Wi thout  this knowledge, however, the d i f fe ren t ia l  equa- 

t ion cannot  be eas i ly  in tegrated for neutra l  atoms. The standard inward 

in tegra t ion  is not feasib le because of this lack of in i t ia l  values. [This 

is d i f fe rent  from the s i tuat ion in the TFS model, where one knew that 

the neut ra l -a tom potent ia l  at large d is tances is a rescaled TF potential; 

see Eq. (3-171).] On the other  hand, a s imple outward integrat ion,  be- 

g inn ing w i th  a tr ia l  va lue for the addi t ive constant  in 

7, 
V ÷ - --- + const  , for r ÷  0 , (4-524) 

r 

is unstab le  due to its sens i t iv i ty  to round-of f  errors; and a mixed stra- 

tegy of in tegra t ing  in both d i rec t ions from an in termediate  point  wou ld  

in t roduce two more numer ica l  parameters (such as the va lue of the poten- 

t ia l  and its gradient  at the in termediate  point). Therefore,  we resort  

to ex t rapo la t ing  the N=Z data from results obta ined for ions in the man- 

ner descr ibed in Chapter  Three. For this ex t rapo la t ion  we use the three 

ions wh ich  have f ixed N and these values of Z-N: 

I I I 
v - Z-N = 2' 5' I-~' -= v1' v2' v3 (4-525) 

Suppose the quant i ty  to be ca lcu la ted is denoted by ~(v) and we possess 

the three numbers Bj = B(vj). A re l iab le  procedure for the ex t rapo la t ion  

to v=0 is, as exper ience indicates,  suppl ied by represent ing  the data in 

terms of an a lgebra ic  function, 

~ 0 + t l  v 

~ ( v )  - 1 + X2v 

The ex t rapo la ted  value Bo = B(v=0) is then 

o r ,  

~o 

~o 

~ iv2v3(B2-B3)+~2V3Vl  (~3-~I )+B3VlV2(~I -B 2) = 

(4-526) 

v2v3(~3-~ 3) + v3v I (~3-~i) + VlV2(~1-~2 ) (4-527) 

5~i~ 2 + 3~2~ 3 - 8~3~ I 
,5~3 _ 3~ I + 8~ 2 (4-528) 
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when the v. of (525) are inserted. 
3 
This d iscuss ion of the asymptot ic  shape of the ef fect ive po- 

tent ia l  assumed impl ic i t ly  that ~ < 0 for neutra l  atoms. We now demon- 

strate why it cannot  be zero for N= Z. Suppose it were. Then y would 

cer ta in ly  be negat ive for large r, wi th  two possib le l imits: 

Y = 2VI2VVI-2/3 ÷ { Yo ~ 0, as r ÷ ~  (4-529a) 
_ ~ ~ _ ~ Q ~  

The exchange potent ia l  (495) is, outs ide the region of the s t rongly  

bound electrons, given by 

2 I 
Vex = -12VVl I/3 F I (y) = V 12~V11/3 ( - ~ ) F  I (y) (4-530) 

Since F1(Y) is pos i t ive for all y, the real izat ion of (529a) would imply 

that Vex becomes an arb i t rar i ly  large mul t ip le  of V as r ÷ ~. This is 

phys ica l ly  unacceptable,  so that (529a) cannot be the situation. If how- 

ever, (529b) happens, then the asymptot ic  form of Fo(Y), (Eq.167), in- 

serted into (496) produces 

I /2 4 3/2] 
~Vex = ~V { (-2V) -I [1+sin<~(-y) ] (4-531) 

+ 

~Vex is arb i t rar i ly  larger than VV, as r ÷ ~; again we Here we see that 

encounter  an unphys ica l  behavior. So (529b) is equal ly  d iscredi ted.  

The lesson learned here is that, indeed, ~ is pos i t ive for 

neutra l  atoms; and V, ~V, and ?2V exceed Vex, ~Vex, and V2V by amounts 

that are bas ica l ly  c o n t r o ~ e d  by the exponent ia l  factor in (517), as r÷~. 

Further, we observe that ~=0 appl ies to a negat ive ion, one wi th  an ex- 

cess of electrons. Here, for instance, Eq. (530) immediate ly  predicts 

IVexl<<IVl  for large r, because y is now a large pos i t ive number under  

these c i rcumstances. Numer ica l  solut ions cor responding to this s i tuat ion 

of negat ive ions have not been calculated as yet. Of course, the excess 

of charge must be at least equal to one for ~=0; o therwise the solut ions 

wi th  ~ < ~(Z=N) are phys ica l ly  meaningless.  This is, indeed, what seems 

to happen, when the ext rapo la t ion to find ~(Z=N) is extended to y ie ld 

N-Z when ~=0. For example, one gets N-Z ~ 0.035 for N=36 and ~=0. We in- 

fer that negat ive ions very probably  do not exist in the s tat is t ica l  mo- 

del, as they do not in the TF and TFS models. 

Numer ica l  results. We shal l  now report  numer ical  results for the inert 
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gases Z=N = 18,36,54, and for the re la ted ions w i th  Z=N+I and Z=N+2. 

The numer ica l  procedure descr ibed in Chapter  Three requires a 

choice to be made for the number  n s of Bohr  shel ls of s t rong ly  bound 

electrons wh ich  we want  to t reat  in the specia l  way. Going w i th  it is 

the number  J of represen ta t i ve  ~j's and the weights  wj. As in the nume- 

r ical  study of the TFS model  we are content  w i th  the s implest  choice J=2, 

w1=w2=1/2.  In pr incip le,  the va lue of n s should be such that N s, the 

number  of spec ia l l y  handeled innermost  e lectrons,  obeys the re la t ion 

(3-14) 

I << N << Z (4-532) 
s 

We are, however, now dea l ing  w i th  real ist ic,  and there fore  rather modest  

values of Z and N, and it is qu i te  imposs ib le  to take (532) very  seri-  

ously. The best one can do is to opt for that N s which, on a logar i th-  

mic scale, is ha l fway between I and Z. Another  way of s ta t ing this is 

to say that we choose that N s wh ich  is c losest  to the square root of 

Z(~N). For N=18 and N=54, the answer is unambiguous:  N =I and 2, respec-  
s 

t ively. In the N=36 systems, both Ns=2 and Ns=10 are equal ly  d is tant  

from 6, the square root of N (or Z); we vote for n =I, N =2 in order  to 
s s 

avoid the danger  of ove rco r rec t ing  for the s t rongly  bound electrons. 

The resul ts thus obta ined are d isp layed in Table 9. The num- 

bers in the co lumn IS are the in i t ia l  s lopes (V+Z/r)/Z 2 essent ia l ly  the 

add i t ive  constant  of (524). It is not necessary  to comment on these num- 

Table 4-9. Values of the parameters  ~, ~I' 

t ia l  s lope (IS) as obta ined for N=18, 36, 

in the s ta t is t ica l  model.  

z__ ~ _!i_ 

18 0.0095 106.8 

18 19 0.35901 121 .14 

20 0.84605 136.56 

--!~2-- 

7.24 

9.164 

11 . 379 

61 .12 

66.1 03 

71 .377 

14.96 

16.871 

18.939 

36 

36 0.0094 498.6 

37 0.33467 529.42 

38 0.76868 561.29 

54 

54 0.0093 152.1 

55 0.31170 160.14 

56 0.70229 168.50 

~2' QI' Q2' and of the inl- 

and 54, Z=N, N+I, and N+2 

--QI- --Q2- ~s 

0.745 3.25 0.2239 

0.7517 3.316 0.21513 

0.7582 3.375 0.20691 

0.823 4.10 0.1430 

0.8251 4.137 0.14027 

0.8276 4.168 0.13761 

4.42 10.5 0.1176 

4.441 10.55 0.11598 

4.463 10.62 0.11444 
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bers, so we only remind the reader  of the fact that entr ies re fer r ing 

to neutra l  atoms are the outcome of the ex t rapo la t ion  procedure d iscus-  

sed above, and are therefore less rel iable. 

Next, we look at var ious plots of  radia l  densi t ies 

D(r) = 4~r 2 n(r) , (4-533) 

wh ich are always presented w i th  the absc issa l inear in the square root 

of r, in order  to s t re tch the smal l - r  region where the dens i ty  curves 

have most  of thei r  structure.  We begin, in Fig.9, w i th  the radial  den- 

si t ies Of the potass ium (N=18=Z-1), the rub id ium (N=36=Z-1), and the 

cesium (N=54=Z-1) ions. We see that  the s ta t is t ica l  model  y ie lds a va- 

r ie ty  of shapes for the e lec t ron ic  densi t ies of systems wi th d i f fe rent  

120 

100 

80 

--~ 60 Q 

40 

20 

1 

c s  + 

K÷ 

I I I 

0 
0 0.2 0.5 1 2 4 

r 

F i g . 4 - 9 .  R a d i a l  e l e c t r o n  d e n s i t i e s  o f  K +, Rb +, and Cs +. A b s c i s s a  i s  

l i n e a r  i n  t h e  s q u a r e  r o o t  of  r .  
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N and Z; in contrast,  the TF model  gives a un i form look - now there is 

a lot of ind iv idual i ty .  The K + ion has an almost  s t ruc ture less dens i ty  

spread out over  a large volume. The dens i ty  of Rb + is much more loca- 
+ 

l ized and has somewhat  more structure.  For Cs we get a smooth, we l l -  

concent ra ted  main  peak accompanied by a smal ler  one which is far ther 

away from the nucleus. The obvious ques t ion  is now: How do these densi -  

t ies compare wi th  those obta ined by HF ca lcu la t ions? 

A 

t , . , .  

C) 

60 

z,O 

20 

0 
0 /-. 

I i L I HF SM~F 

I I I I 

0.2 0.5 1 2 

F i g . 4 - 1 0 .  Rad ia l  e l e c t r o n  d e n s i t y  i n  Rb +. Comparison of HF p r e d i c t i o n  

wi th  t h a t  of t h e  s t a t i s t i c a l  model (SM). A b s c i s s a  i s  l i n e a r  in  t h e  

square  r o o t  of r .  

For the compar ison wi th  the HF predic t ion,  we pick the Rb + ion 
53 

- it is the most  s t r ik ing example. F igure 10 shows the d i f ferences.  

The two dens i t ies  agree only in the domain  of the s t rongly  bound elec- 

trons. We observe qu i te  d i f fe ren t  peak s t ructures and not ice  that at 

large d is tances the HF dens i ty  is s ign i f i cant ly  larger. Unfor tunate ly ,  

there is no s imple way of te l l ing  wh ich  one is c loser to rea l i ty  be- 

cause e lect ron dens i t ies  cannot be measured  direct ly.  One can, of course, 

compare der ived quant i t ies,  such as r z, the expec ta t ion  value of the 

square distance.  We refer to Tables 3,6, and 7 (the latter reports the 

numbers obta ined in Ref.47, but no matter) .  

One should not take the deta i led  s t ruc ture  of this s tat is t i -  
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cal-model  Rb + densi ty  too l i teral ly. In part icular,  it cer ta in ly  con- 

tains some residual  Bohr-shel l  art i facts that are not removed by the 

simple average over ~s employed in the computat ion. This is conf i rmed 

by Fig.t1. It shows the decomposi t ions 

D = 4~r2niME + 4~r2~ ~ DIM E + D (4-534) 

and 

D = (-r272V) - (-r2?2Vex) E D V - DVe x (4-535) 

60 , , 60 

40 

£3 

20 

0 0.2 0.5 

/~0 

(::3 

20 

0 

- 2 0  L 
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t T 

rex 

l L J 1 

02 05 I 2 
r 

1 
4 

F i g . 4 - 1 1 .  Rad ia l  e l e c t r o n  d e n s i t y  of Rb +. L e f t - h a n d  s i d e : d e c o m p o s i t i o n  

D = DIM E + D; r i g h t - h a n d  s i d e :  d e c o m p o s i t i o n  D = D v - DVe x .  A b s c i s s a  i s  

~ i n e a r  i n  t h e  squar e  r o o t  of r ,  

We note that the "fine structure" of the min imum between the two main 

peaks may wel l  be spurious. Both DIM E and D are much smoother, and only 
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the rapid decrease of DIM E on top of the equal ly  rapid increase of B 

produces the wiggles.  L ikewise said fine s t ructure is made by the inter-  

play of D V and DVe x which are both smoother, though osci l la t ing.  

F igure 11 of fers a remarkable  observat ion.  Near  the edge of 

the atom (V+(=0 at r=3.34, see below) the magni tudes of D V and DVe x are 

almost equal. Su f f i c ien t ly  beyond this edge, D V is, of course, much lar- 

ger than DVex, inasmuch as we find, ana logous ly  to the der iva t ion  of 

(519), 

4 I e x p l _  2 3/2/ , V2Vex s - -~  ~ ~ ~(2C) I~VI ]  (4-536)  

for large r. This is smal ler  than V2V by a factor  of 

9 _rrl2V+V[ 9 Z-N I 
1--6 ( - 8 ~ } , (4-537)  

so that D V exceeds DVe x subs tan t ia l l y  in the exter ior  of the atom. 

I I 

# 3[I; 

--5 I I I I I I I I 

0 1 2 3 I., 
r 

F i g . 4 - 1 2 .  Exchange p o t e n t i a l  f o r  Rb ÷ as a f u n c t i o n  of t h e  d i s t a n c e  r 

from t h e  n u c l e u s .  

This compensat ion  of D v by DYe x at the edge is a mani fes ta-  

t ion of the a t t rac t ive  nature of the exchange potent ia l :  the dens i ty  of 

e lectrons in the ou£er  reaches of the atom is reduced to the benef i t  of 

the inter ior.  Since we are at it, why not take a look at Vex i tsel f  ? 
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In Fig.12, the exchange potent ia l  of Rb + is p lo t ted as a funct ion of r. 

It is, indeed, at t ract ive.  The dashed curve is the cor respond ing  Di rac-  

Jensen exchange potent ia l  (486). It agrees wi th  the actual  one in the 

range 0.3 ~ r ~ I, wh ich is the TF regime; at larger d istances,  it s igni-  

f icant ly  exceeds the real Vex, which, as we recall ,  is the or ig in  of the 

t rouble in the TFD and ES models. At smal l  d is tances,  we observe that V 
ex 

tends to zero; this is very l ikely not a rea l is t ic  behav ior  but a conse-  

quence of the way the s t rongly  bound electrons are handled here. Fol low-  

ing Eq.(495) there is the remark that our Vex contains the typ ica l  can- 

ce l la t ions near r=0 [cf. Eq.(508)] ,  whereas the compensat ing  term refer-  

r ing to the innermost  e lect rons is missing.  Future deve lopments  wi l l  tell 

to wh ich extend a mod i f i ca t ion  of V is ac tua l ly  necessary.  
ex 

A last p lot  is that of y, YI' and Y2 for Rb + in Fig.13, wh ich  

2 

> :  

:< 0 

-2  
0 

, , , , { ~  , 

O.OZ, 0.3 I 2 5 8 

Fig .4 -13 .  y, YI' and Y2 f o r  Rb + as a f u n c t i o n  of r. A b s c i s s a  i s  l i n e a r  

i n  t h e  cubic  roo f  of r. 

should be compared w i th  Fig.3. What  was observed then, is conf i rmed here: 

y does not become a large negat ive  number. We recal l  that one needs y 

-1.5 for the asymptot ic  forms of the Fm'S to be val id. From this point  

of view, the TF l imit is not expected to be par t i cu la r l y  accurate for 

real  atoms; but it is, as the ev idence of Fig.6 shows. 

The sign change of V+~, or  equ iva lent ly  of y, marks the edge 

of the atom. In Rb + it occurs at the d is tance 3.34 wh ich  we cal l  the 
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classical radius rclas of this atomic system. Of course, Yl and Y2 turn 

posit ive far inside the atom, at 0.055 and 0.26, respectively. Outside 

the domain of the strongly bound electrons, they are very large positive. 

In Fig.13, the abscissa is chosen linear in the cubic root of r, so that 

the y(r) functions are straight lines in the plot for r÷0, as is implied 

by (506). As a consequence, the region of small r is enormously stretched 

in the plot, which creates the misleading impression, that the sign 

change of Yl and Y2 happens at a distance that is a good fraction of 

rclas. This is an optical illusion. 

Problems 

4-I. Derive the normalized wave-funct ions (143) of the constant-force 

potential from the known time transformation function <~',tl~",0>. [Re- 

call that the approximations (45), (47), and (50) are exact for a linear 

potential.] 

4-2. Find recurrence relations for the polynomials that are mentioned 

in connection with Eqs. (158) and (159). 

4-3. Show that Fm(Y) obeys the dif ferential equation 

d3 
[ ~ -  4 + 4m-2 Fm(Y)] = 0 l 

and demonstrate that it is consistent with the asymptotic forms 

(161), and (170). 

166), 

4-4. For which complex values of the integration variable x in Eq. (140) 

is the phase of the integrand stationary? Use this insight to deform the 

path of integration to contours appropriate for a stationary phase eva- 

luation of the integral for y ~I  and y <<-I, respectively. Confirm Eqs. 

(163) and (164). 

÷ -2/3 
4-5. Find the minimum of y = 2VI2VV I for the neutral-atom Tietz po- 

tential (222). Compare with the corresponding TF result (174). 

4-6. Derive Eq. (109) from Eq. (219) . 

4-7. Demonstrate that ~ I )  and nv(2) , given explicit ly in Eqs. (234) and 
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(236), and related to each other through (242), obey Eq. (231). 

4-8. Confirm Eq. (280). 

4-9. Expand the right-hand side of Eq. (374) in powers of (~(y)/y)I/2 

What do you get if you keep only the leading term? Now, keep also the 

next-to-leading contribution. What is then the asymptotic form of ~(y) 

as y ÷ ~  for a neutral atom? [More about this in Ref.54.] 

4-10. Show that 

(n+1)F 2 d~ [_~F (y) IF2 I F 2 ] 
n+1 (y) = 4 n+1(Y)Fn-1 + 8  n (y) +2y  n+1 (y) 

For n =-I, this has the special implication that the contents of the 

square brackets is a constant. Find this constant. Then use the state- 

ment for n=0 to perform the integration over y' in Eq. (399). Demonstrate 

that the result ing exchange-energy density 

2-~ - 4  ~I(Y) F I ( Y ) + 8  o (y) + 2Y n+1 (y) 

[with y determined by n through Eq. (400)] is equal to the Dirac-Jensen 

result 

I 4/3 
- 4~3(3~2n) 

if n is suff iciently large, or V ° sufficiently small. 

4-11. Show that a p' (r) of the form (447), inserted into (426), produces 

a v(r), for which the scale invariant expression (438) gives ap =~. 



Chapter  Five 

SHELL STRUCTURE 

In the preced ing Chapter  we obtained, in Eq. (4-267), the sta- 

t i s t i ca l -mode l  p red ic t ion  

-Estat 0.768745 Z 7/3 I Z 2 Z5/3 = - ~ + 0.269900 (5-I) 

for the b ind ing energy of neutra l  atoms; it is compared wi th the corre-  

sponding integer-Z HF numbers in Fig.4-6. The deviat ions between Estat  

and EHF , ind iscern ib le  in that plot, shal l  be the subject  of this Chap- 

ter. 

We begin wi th a look at the re lat ive dev ia t ion between the HF 

and the s ta t is t ica l -model  predict ions,  presented in Fig.1 for 6 ~ Z & 120 
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F i g . 5 - 1 .  R e l a t i v e  d e v i a t i o n ,  i n  %, b e t w e e n  HF b i n d i n g  e n e r g i e s  and t h e  

s t a t i s t i c a l - m o d e l  p r e d i c t i o n  ( I ) ,  as a f u n c t i o n  o f  Z, f o r  z = 6 , 7 , 8  . . . .  

120 .  
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(for Z = 1,2,3,4, and 5 the respect ive deviat ions are -7.2, 4.8, 3.8, 

2.3, and 0.9%). One sees that the re lat ive d i f fe rence between EHF and 

Estat is less than one percent  for Z ~ 5, less than one- f i f th  of a per- 

cent for Z ~ 22, and less than one- ten th  of a percent  for Z ~ 56. We fur- 

ther observe that this dev ia t ion is osc i l la to ry  wi th  a per iod that in- 

creases s lowly wi th  Z. Denot ing the d i f fe rence between the actual  ener- 

gy and Estat, therefore, by Eosc, 

E = Estat  + Eos c , (5-2) 

we expect  that E is an osc i l la tory  funct ion of Z I/3 wi th  an ampl i -  
osc Z4/3 

tude propor t iona l  to , so as to fit into the pat tern laid out by 

Eq. (I). The HF pred ic t ion  for Eosc, that is: 

(Eoso>HF = EHF - Estat  , (5-3) 

exhib i ts  this ant ic ipated Z-dependence, as demonst ra ted by Fig.2, wh ich  
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F i g . 5 - 2 .  A b s o l u t e  d e v i a t i o n  between HF binding  e n e r g i e s  and t h e  s t a t i -  

s t i c a l - m o d e l  p r e d i c t i o n  ( I ) ,  d i v i d e d  by z 4 / 3 ,  as a f u n c t i o n  of Z I / 3  

S t a r s  mark i n e r t - g a s  atoms.  
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shows a plot of -|E / \ ~ /Z 4/3 as a funct ion of ZI/3 I 
\ osc/HF 

These a tomic-b ind ing-energy  osc i l la t ions possess some very re- 

markab le  features. Certainly,  thei r  ex t remely  high regular i ty  is surpr i-  

sing; there is no essent ia l  d i f fe rence between smal l  and large values of 

ZI/3;" even hydrogen (Z I/3" = I) is no except ion. Another  par t icu lar ly  in- 

terest ing proper ty  of Eos c is that the min ima in Fig.2 are sharp and 

s t ructure less in contrast  to the broad maxima wi th  their  evo lv ing double- 

peak structure. 

E_xperimental evidence. When p lo t t ing Figs.1 and 2, the HF numbers are, 

of course, taken ser iously.  One can, I think, t rust  these numbers to the 

necessary  five or six s ign i f icant  digits, but  there is the poss ib i l i t y  
2 

that the osc i l la t ions of Fig.2 are noth ing more than a HF art i fact. To 

make sure that these b ind ing-energy  osc i l la t ions are a real phys ica l  

phenomenon, we need the compar ison wi th  exper imenta l  neu t ra l -a tom bin- 

ding energies. This knowledge has to be ext racted from spect roscopic  
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F i g . 5 - 3 .  B i n d i n g  e n e r g y  o s c i l l a t i o n s .  S t a r s  a r e  e x p e r i m e n t a l  v a l u e s  f o r  

z = 1  . . . .  , 2 0 .  Curve  a shows t h e  n o n r e l a t i v i s t i c  HF o s c i l l a t i o n s  of  F i g . 2 .  

Curve  b c o n n e c t s  HF v a l u e s  w i t h  r e l a t i v i s t i c  c o r r e c t i o n s .  
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3 data, the analysis of which suppl ies s tep-by-s tep ion izat ion energies. 

Unfor tunate ly,  this has produced b ind ing energies only up to Z = 20. For 

more mass ive atoms, the ion izat ion potent ia ls  af ter the f irst 20 elec- 

trons are rare ly  known. In short, we can compare Estat of (I) w i th  rea- 

l i ty only for the f irst 20 members of the Per iodic Table. This is done 

in Fig. 3, which displays, in addi t ion to the exper imenta l  data, also the 

nonre la t iv is t i c  HF osc i l la t ions of Fig.2 and, for Z ~ 31, the resul ts of 
4 

HF ca lcu la t ions wi th  re la t iv is t ic  correct ions.  Please observe two 

things. First, the exper imenta l  values do conf i rm the ex is tence of bin- 

d ing-energy osci l la t ions.  Second, there is, on this scale, a s igni f icant  

d isc repancy  between exper iment  and the HF values, even after inc lud ing 

re la t iv is t ic  effects. This is a reminder  that the HF model  is not exact, 

the l ion's share of the miss ing b ind ing energy being the cor re la t ion 

energy of Eq. (4-248). In Fig.3 the d i f ference between curve b and the 

stars represent ing  exper imenta l  data is roughly a constant,  imply ing the 

est imate 

E ~ -0.013 Z 4/3 , (5-4) 
corr 

which somehow supports the w idespread remark that the inc lus ion of cor- 

re la t ion ef fects would  change HF energies by an amount propor t iona l  to 

Z 4/3 (for smal l  values of Z). 

The general  t rend of the exper imenta l  data in Fig.3 is qui te 

wel l  reproduced by the re la t iv is t ic  HF results, which, in con junc t ion  

wi th the fact that  the re la t iv is t ic  cor rect ion i tsel f  depends smooth ly  

on Z, tel ls us that these b ind ing-energy  osc i l la t ions are of nonre la t i -  

v ist ic  origin. It wil l, therefore,  be appropr ia te  to compare the out- 

come of our nonre la t iv is t i c  semic lass ica l  ca lcu la t ion wi th  the HF osc i l -  

lat ions of Fig.2. 

For large values of Z, the re la t iv is t ic  correct ions are, evi-  

dently, more impor tant  than the nonre la t iv is t i c  osc i l la t ions  that  we 

are address ing in this Chapter. These are, however, to ta l ly  d i f fe rent  

problems. It is cer ta in ly  poss ib le  to consider  these b ind ing-energy  

osc i l la t ions independent  of the re la t iv is t ic  correct ions. We shal l  there-  

fore at this moment  be content  wi th  f ight ing the wrong impress ion wh ich  

Fig.3 might  create, namely that re la t iv is t ic  effects dominate  the tota l  

b ind ing energy for large values of Z. As a mat ter  of fact, even in ura- 

n ium the re la t iv is t ic  cor rec t ion  amounts to less than 10% of the total  
4 5 

b ind ing energy; more general ly,  a rule of thumb, given by Scott, says 

that "the error in the total  b ind ing energy resu l t ing f rom neg lec t ing  

re la t iv i ty  is roughly (Z/30)2%. " 
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Qual i ta t ive  arguments.  There is a common react ion to Fig.2 that  these 

osc i l la t ions have someth ing to do wi th  the f i l l ing of the atomic shells. 

This not ion does, however, not expla in  a s inale quant i ta t ive  detai l .  In 

fact, as a class, the iner t -gas atoms [He(Z=2) ,Ne(10) ,Ar (18) ,Kr (36) ,Xe 

(54),Rn(86), and another  one wi th Z=118, for wh ich  the chemists have not 

invented a name as yet] do not res ide on prominent  sites of the HF curve 

in Fig.2. They are, on the other  hand, not randomly d is t r ibu ted  over the 

osc i l la to ry  curve either, but show a clear tendency toward the maxima 

and away from the minima. We infer, therefore,  that there is a connec-  

t ion between the energy osc i l la t ions and the ex is tence of c losed atomic 

shells, no tw i ths tand ing  that  their  Z values cannot be pred ic ted  by simp- 

ly looking at Fig.2. These two phenomena are mani fes ta t ions  of one phy- 

sical effect. 

To answer the quest ion what ef fect  that is, let us recal l  the 

or ig in  of atomic shells. The reason for their  be ing is the ex is tence of 

quantum numbers in a spher ica l ly  symmetr ic  potent ia l :  angular  quantum 

number l, and radial  quantum number n r. But I and n r alone wou ld  not 

account  for shells; we also need the fact of energet ic  degeneracy.  States 

of d i f fe r ing  quantum numbers may have almost the same b ind ing energy. 

This is, of course, fami l iar  for the Coulomb potent ia l  where the ener- 

= +Z+I [a c i rcum- gies depend only on the pr inc ipa l  quantum number m' n r 

s tance that we have made use of in Chapter  One, see Eq.(1-10)] leading 

to the we l l - known 2m'2- fo ld  degeneracy.  Thus, in Bohr atoms the maximal  

radial  quantum number equals the maximal  angular  quantum number. Such is 

the s i tua t ion  in a h igh ly  ionized atom where dynamics is dominated by 

the nuc leus-e lec t ron  in teract ion,  the in tere lec t ron ic  forces be ing com- 

para t ive ly  small. Not so for neutra l  atoms, where the rat io of the maxi-  

mal values of n r and 1 is roughly  2:1, prov ided that Z is su f f i c ien t ly  

large. For example, u ran ium possesses 7s e lect rons (nr=6 , l=0) and 5f 

e lect rons (nr=1,/=3). The degeneracy  of the weak ly  bound outermost  elec- 

t rons is cer ta in ly  not of Coulombic  type. We can learn more about it 

f rom another  look at the Per iod ic  Table, this t ime at the last row. 

There the 7s, 7p, 6d, and 5f e lect rons are f i l led in, but not in a given 

order, instead they compete w i th  each other - a sure sign of degeneracy.  

In an /-n r diagram, Fig.4, these 4 states do not lie on a s t ra ight  line; 

degenera te  states are connected by bent curves wh ich  are the steeper, 

the larger  1 is. Deep ins ide the atom, we expect Coulombic degeneracy  

for the s t rongly  bound electrons. In this s i tuat ion,  states wi th  the 

same b ind ing energy do l ie on a s t ra ight  l ine in the /-n r diagram. In 

Fig.4 this is i l lus t ra ted by the 2s and the 2p state. 

It is c lear that  a theore t ica l  descr ip t ion  of the b ind ing-  
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Fig .5-4 .  Energet ic  degeneracy in  a large  atom. 

energy osc i l la t ions in Fig.2 must be based upon a deta i led energet ic  

t reatment  of those few electrons wi th least b ind ing energy. This v iew 

is suppor ted by the re lat ive size of the effect we are looking for, 

wh ich  is of order Z4/3/Z7/3"" = I/Z as compared to the leading TF term in 

(I), or, l ike a few electrons compared to the tota l i ty  of Z electrons 

in the neutra l  atom. This should be contrasted wi th the re lat ive size 

of the correct ions to the TF energy d iscussed in Chapters Three and 

Four, namely Z6/3/Z 7/3 = Z2/3/Z and Z5/3/Z 7/3 = ZI/3/Z, respect ively,  

wh ich we now interpret  as showing that  large fract ions of the total  num- 

ber of e lectrons cont r ibute to these correct ions.  

Bohr atoms. As a f irst step toward a computat ion of the b ind ing-energy  

osci l la t ions,  we study Eos c in the simple s i tuat ion of NIE. In Chapter  

One we found that the total  b ind ing energy of a Bohr atom is given by 

2 {- 
E = z2{y ½÷ <<y>2 ¼)cy <y>>2} 

[this is Eq. (I-20)], where y=y(N) is the so lut ion of (I-12), 

y3 1 3 
- ~ y  = ~ N  , 

and we recal l  that <y> di f fers from y by the integer part of y + I/2 

(5-5) 

(5-6) 

[Eq. 
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(I-14) ] , 

<y> = y - [y+I/2] , (5-7) 

so that [Eq. (I-15)] 

I < <y> < I (5-8) - ~ =  

The two- term approx imat ion  of (I-21), 

Y = (3N]1/3 + 1 ~  I~N)3 - 1 / 3  (5-9) 

is actual ly  exact up to order N -4/3 (see Problem I). Consequent ly,  we 

can exhibi t  the cont r ibut ions to E in Eq. (5) up to this order. This cal- 

cu la t ion employs the ident i ty  

Y - 5 <y> _ I 
(y_<y>) 2 Y k=0 \ y / (5-10) 

and resul ts in 

_ E / Z  2 = (3N)  1 / 3  _ _ - I E o s c / Z 2  (5-11) 2 

wi th  

+ 3/3(<y>2 i ,5 2 
(5-12) 

I 2 

+ ' '  - t 

where y, as given in (9), is to be inserted. In <y> one must not neglect  

the second term of (9) because that would produce a wrong phase of the 

osc i l la t ions at smal ler  values of N. 

In Fig.5 the exact amount of 

-Eos c (_E/Z 2 /3 }) = + (5-13) z2/N1- ~ N I/3 _ (~N) I 
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F i g . 5 - 5 .  B i n d i n g - e n e r g y  o s c i l l a t i o n  of Bohr atoms as a f u n c t i o n  of 

(~N) I / 3 ~  . Th ick  c u r v e  i s  t h e  a c t u a l  amount.  Th i nne r  curves  are  t h e  

s u c c e s s i v e  a p p r o x i m a t i o n s  of  E q . ( 1 4 ) :  (a) l e a d i n g  t e rm only ;  (b] t erms  

up to  order  N-I/3; (c) t e rms  up to  order  N-2/3; (d) t erms  up to  order  

N-3/3 

is compared to the success ive approx imat ions that resul t  f rom the expan- 

sion (12), 

- E  
OSC 

Z2/N~/3 = 

+ 1 )  
(5-14) 

+ . ° .  

Dur ing the f i l l ing of the f irst shell, that is " ~  -(~N) I/3 < 3 I/3 = 1 . 4 4 ,  the 

exact Eos c natura l ly  does not yet show the shape of the large-N osc i l -  

lations. Note, in part icular ,  how good a l ready is the leading term of 

(14). Three terms are suf f ic ient  to make the d i f fe rence between the two 
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curves ind iscern ib le  for N k I, that is "q[~N] I/3• ~> 1.14. 

So far we have been f i l l ing the Coulomb potent ia l  w i th  a cer- 

ta in number of electrons. Let us now shi f t  our a t tent ion to a d i f ferent ,  

though related, problem. Consider  the Coulombic potent ia l  

Z 
V(r) = -~ * 1o (5-15) 

wi th  the constant  [ ° determined such that the TF count of negat ive ener- 

gy states, 

NTF f(dE) 1 312 = ~ [-2V(r) ] , (5-16) 

equals a certain, g iven mu l t ip le  of Z, 

NTF = < Z , <>0 (5-17) 

The in tegra l  in (16) is of the s t ruc ture  encountered in (I-34), so that, 

as in (I-35), 

2 { z 2 ~3/2 
NTF = ~ \Y~o] ' (5-1 8) 

which  produces 

E o = Z 4 / 3 / ( 1 8 K 2 )  1 / 3  , ( 5 - 1 9 )  

showing that [o is p ropor t iona l  to Z 4/3. The Z-dependence of the poten-  

t ial  is, therefore,  somewhat more compl icated now. It is remin iscent  of 

that of the smal l - r  TF potent ia l ;  ac tua l ly  both (15) and the TF potent i -  

al are of the form "Z 4/3 t imes a funct ion of z l /3r."  More about this in 

Problem 2. 

Let us now study the Z-dependence of the energy when all nega-  

t ive energy states are occupied in the Coulombic potent ia l  (15). In this 

s i tuat ion,  the number of e lectrons is 

j ) N = 2m' 2 G _ Eo 

m' =I (5-20) 

where we have in t roduced 

- < Z ( 5 - 2 1 )  
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Obviously,  the pr inc ipal  quantum number of the last Bohr shel l  wi th ne- 

gat ive energy is the integer part [I 0 ] of ~o" Likewise, the b ind ing 

energy is 

= Z2[lo ] - EoN (5-22 

I N} : z2{~x o] - T T ~  ° 

Smooth and osc i l la tory  contr ibut ions are exhib i ted after employ ing 

I I 
[~o ] = ~ o - 2 -  <~o + 5  > (5-23 

in Eqs. (20) and (22). The outcome is 

= 2 I Eosc/Z2 -E/Z2 ~ o - 5  - (5-24 

where 

-Eosc/Z2 = <~o 5 > 

(5 -25 

+ ~  <I  o+  > < l  o + ~ >  - 
%o 

Since ~o is propor t iona l  to Z I/3, this Eos c is propor t iona l  to Z 5/3 

Before proceeding, a remark concern ing par t ly  f i l led shells 

is in order. Whenever  1 ° is an integer, say ~o=m'o' the energy of this 

m'- th Bohr shel l  equals zero. We can descr ibe it as par t ly  f i l led if 
o 

we assign the whole range of values between m~-1 and m o to [Io] , when 

lo=m''o Equivalent ly ,  the step funct ion ~(x) equals any number between 0 

and I for x=0. This way the number of occupied states, as ca lcu la ted in 

(20), can equal any des i red amount. As far as the b inding energy (22) 

is concerned, these subt let ies do not matter,  because the step funct ion 

is mul t ip l ied by its argument; this product, x~(x), equals zero for x=0 

independent  of the value given to ~(x). Indeed, the resu l t ing energy, 

d isp layed in Eqs. (24) and (25), is a cont inuous funct ion of 1 o. 

Let us be somewhat more speci f ic and consider  <=I, that is 

neutra l  atoms in the TF limit. Then focusing on the leading term, Eq. 

(25) gives 

= + r l  

(5-26) 

+ ° °  ° • 
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which we contrast  w i th  the N=Z vers ion of (14), 

_Eosc/Z5/3 = (2) l /3/<(2z)l/3+~(_~Z)1 2 -1/3>2 _1> 

4 -  ° o . 

(5-27) 

These osc i l la t ions  are marked ly  di f ferent ,  in par t icu lar  in sign and 

phase, as i l lus t ra ted by Fig.6. As a consequence,  the c losed-she l l  values 
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- 0 . 2  
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0 2 4 6 3 _~1/3 (gzJ 

Fig .5 -6 .  B ind ing-energy  o s c i l l a t i o n s  of Eq.(26) (upper curve) and Eq. 

(27) ( lower curve ) ,  as f u n c t i o n s  of I~z!  I / 3 -  . Stars  mark the  z values of 

c losed  Bohr s h e l l s .  

3 I/3 
of Z[I~Z 1 = 1.44, 2.47, 4.38, 4.48, and 5.48] mark the sharp maxima 

on the lower curve of Fig.6, which refers to Eq. (27), whereas they sit 

c lose to the tops of broad maxima on the upper curve re fer r ing to Eq. 

(26). The lat ter  s i tuat ion is remin iscent  of Fig.2. This is, of course, 

not accidental ,  as we shal l  learn in the sequel. Despi te  this similarity, 

there are essent ia l  d i f fe rences wh ich  one must not forget: in Fig.2, the 

osc i l la t ions are of order  Z 4/3, not Z 5/3 as in Fig.6; and the Z values 

of c losed-she l l  atoms, as a rule, do not co inc ide wi th  the maxima of 

the energy osc i l la t ions  p lo t ted in Fig.2. One can state that the c los ing 

of a shel l  in real atoms is a much less dramat ic  event than in Bohr 

atoms. 

TF quant izat ion.  The qua l i ta t i ve  d iscuss ion  given above and the study 

of energy osc i l la t ions  in Bohr atoms indicate that  a quant i ta t i ve  t reat-  

ment  of E has to proceed from an improved eva luat ion  of 
osc 
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E I = t r(H+~)~(-H-~) , (5-28) 

an eva luat ion that goes beyond the phase space integrals that we have 

been using so far. In part icular,  the d iscreteness of the (relevant 

part of the) spect rum of H must be taken into account. 

The ef fect ive potent ia l  V(~) is spher ica l ly  symmetr ic,  V=V(r), 

in the s i tuat ion of an isolated atom. We conf ine the d iscuss ion to po- 

tent ia ls wi th this property. The eigenvalues Ei ,nr  of H are then label-  

led by the angular  quantum number i and the radial  quantum number nr, 

both being non-negat ive integers. The trace in (28), computed as a sum 

over i and nr, now reads 

E I = 2 ~  (2~+1) (E i +~)~(-E~,nr-  ~) , (5-29) 
£,nr=0 ,nr 

where the factors of 2 and 2~+I ref lect  the spin mul t ip l i c i t y  and the 

angular  mul t ip l ic i ty ,  respect ively.  The lat ter one is, of course, due 

to the independence, of the energy eigenvalues, of the magnet ic  quantum 

number  m=Z,Z- I , . . . , -Z .  

The funct ional  dependence of (29) upon V(r) and ~ can only be 

invest igated if we have an expl ic i t  express ion that relates Ei ,nr  to 

both the quantum numbers and the potent ia l .  At the present  stage V(r) 

is quite arbi trary,  and therefore such a re lat ion can obv ious ly  be only 

an approx imate one. Such an approx imat ion is suppl ied by a semic lass ica l  

argument  of remarkable simpl ic i ty.  

For a start, consider  a one-d imens iona l  Hami l ton operator  

HiD(X,Px) , for which the t ime independent  SchrSdinger  equat ion 

I ~ (x') = E XE(X') (5-30) HID (x', y )X E 

tel ls us the e igenvalues E =Eo,EI ,E2,  . . . .  About HID we shal l  only as- 

sume that its spect rum contains a d iscrete part -~<Eo<EI<E2<.. .  and that 

a possib le cont inuous part consists of E values larger than the d iscrete 

eigenvalues.  In other  words: HID is supposed to be long to a reasonable 

physica l  system which possesses a ground state, some exci ted bound states, 

and, poss ib ly  but not necessar i ly ,  scat ter ing states. We are only  inter-  

ested, here, in the d iscrete part, so that the wavefunct ions XE(X' are 

normal izable,  

~dx '  IXElX')[2 = I (5-31) 

The quant i ty  
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= tr q[E-HiD(X,Px) j ' "  n E 
(5-32) 

=>. .  q(E-Ej) 

J 

is the count  of e igenvalues of HID less than E; or: n E equals the num- 

ber of bound states w i th  energy below E. Thus, n E is p iece-wise constant, 

n E = n for En_ I < E < E n (5-33) 

In a plot of n E versus E, Fig.7, we see its s ta i rcase character.  Obvi-  
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F i g . 5 - 7 .  S k e t c h  of  n E ( s o l i d - l i n e  s t a i r c a s e )  and v E (dashed smooth  curve)  

as a f u n c t i o n  of  E. 

ously, n E can be regarded as cons is t ing  of a cont inuous smooth part VE 

plus an osc i l la to ry  (and discont inuous) supplement  nE-v E. We c a n  find 

VE by eva luat ing the t race in (32) TF wise, 

dx 'dp l  
vE = f 2~ ~(E-HIDIx ' 'P~) )  ' 15-34) 

as in Eq. (I-43). (Again, we use pr imed quant i t ies  x',Px' to d is t ingu ish  

numbers from operators  X,Px.) Now, if v E does indeed smooth out nE, it 

wi l l  equal some number  between n and n+1 for E= E n. It is natura l  to ex- 
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pect this number to be about n÷I/2. Consequent ly,  an impl ic i t  and appro- 

x imate way of ca lcu la t ing  E n is to find the value of E for which VE 

equals n+I/2. In short: 

v E ~ n + I/2 (5-35) 
n 

is the TF quant iza t ion  condi t ion in one dimension. In part icular,  if 

HID has the standard st ructure 

I 2 
HID(x'Px) = 2 Px + V(x) , (5-36) 

this is 
I dx 'dpl  I 

n + ~  ~ f ~ i E n _ ~  p i 2 - V ( x ' ) ]  
2z 

- I  Sd x, /2(En-V(x') ] - { 

(5-37) 

H = 1 ~2 +V(r )  (5-38) 

The radial  and angular  dependence of the wave funct ions can be separated, 

<~'IE> : ~,Ri,E(r ' )  Y%m(@l~ ') , 

wi th the aid of the spher ical  harmonics Yim" 

then impl ies a d i f ferent ia l  equat ion for R(r'), 

d 2 
(r') E (r') (5-40) I £(Z+I) ]~ 

- 2  dr--r 7-T~ V(r') + 2r-~-~TT--]~,Z, E = Ri, E , 

wh ich determines the energy e igenvalues E. 

This d i f fe rent ia l  equat ion cannot, as it stands, be read as 

the Schr~dinger  equat ion associated wi th a one-d imens iona l  Hami l ton 

operator  HiD(x,Px). The ident i f ica t ion of r' w i th  x and -id/dr' w i th  Px 

(5 -39 )  

The Schr~dinger  equat ion 

where the range of in tegrat ion extends over the c lass ica l ly  al lowed re- 

gion inside which the argument of the square root is non-negat ive.  (As 

always, we use the convent ion that ~ =  0 if z < 0.) 

The reader, so I trust, recognizes that (37) is ident ica l  wi th 

the fami l iar  WKB quant iza t ion rule, and also not ices that our der iva t ion 

of (37) is much simpler than the WKB reasoning, which makes extensive 

use of approx imate wave functions. 

Now we turn to the three-d imens iona l  spher ica l ly  symmetr ic  

Hami l ton operator  



does not work, because t h e  range of r '  is r e s t r i c t e d  t o  p o s i t i v e  va lues ,  

a s  i s  i l l u s t r a t e d  by t h e  normal izat ion i n t e g r a l  

Therefore, w e  must, dur ing an in termediate s tage ,  in t roduce a new va r i -  

ab le ,  x ' ,  t h a t  ranges from -- t o  m .  The phys ica l  d i s tance  r '  is now ex- 

pressed as  a func t ion  of t h i s  a u x i l i a r y  va r i ab le :  r '  = r 1 ( x ' ) .  It i s  cer- 

t a i n l y  reasonable t o  r e s t r i c t  ourse lves do such t ransformat ions f o r  

which d r r / d x '  > 0 and r g ( x '  + m )  = O r  r 1 ( x '  + a )  =- .  I n  o the r  words: a s  x '  

grows from -m t o  m,  r ' ( x r )  inc reases  monotonically from 0 t o  -. The nor- 

mal izat ion i n t e g r a l  (41) i s  then 

is going t o  be t h e  wave funct ion i n  t h e  new va r i ab le  x ' .  The d i f f e r e n t i -  

a l  equat ion f o r  X ( x '  ) i s  

Now we can i d e n t i f y  x '  + x  and - id /dxt  + p x  a s  coord inate and momentum o f  

an e f f e c t i v e  one-dimensional desc r i p t i on .  The assoc ia ted  Hamilton opera- 

t o r  is 

'(' 'I) (6-45 

where s ( x )  is def ined by 

S (x )  =  XI ]'I2 . 
d r  (x  /dx 

The i d e n t i t y  

- s 2 ( x )  2 s 2 ( x )  - -  I d 2 s  (x )  
r (x )  px 

+ -[I +4s r] 
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s imp l i f i es  (45) to 

1[dr (x) ]-I [dr (x) ]-I + V(r(x)] 
HID(x 'Px)  = 2L d-~-~--] px2 L dx ] 

(~+i/2) 2 3 d 2 + s (x) s (x) + 
2r 2 (x) 2r 2 (x) dx 2 

(5-48) 

If we inser t  th is  HID in to  the TF q u a n t i z a t i o n  ru le (35), we f ind tha t  

the rad ia l  mo t i on  is (approx imate ly )  q u a n t i z e d  acco rd i ng  to 

I dx ' dp l  

+ = ~ ~ [ E £ , n r -  (x' ,px )] nr 2 2u HID ' 

= ~I fdx' dx'dr Ir / 2 r 2 ( E % , n r - V ( r ) ] •  - (Z+I/2) 2-s 

• dr 
or s ince dx' ~ - -~=dr ,  

(5-49) 

3 d2s 
d--~2 , 

+ I/2 I ~ [E]~, nr_ v .< , - - ~ 2 - { - -  n r : ~ f  / 2 r  2 (r ) ) - (£+I /z,  -s (5-5o) 

We compare  th is  w i t h  what  we wou ld  have ob ta i ned  by w r o n g l y  t ak ing  (40) 

as a o n e - d i m e n s i o n a l  S c h r 6 d i n g e r  e q u a t i o n  and obse rve  tha t  Z(%+I) is 

r ep laced  by (I+I/2) 2 + s 3 d2s /dx  '2. The la t te r  t e rm is d i m e n s i o n l e s s  by 

cons t ruc t i on ,  i nasmuch  as (46) shows tha t  s 2 has the d i m e n s i o n  of  x. 

Consequen t l y ,  as a f unc t i on  of  r th is  te rm has to be a cons tan t  because  

e l sew ise  we wou ld  be fo rced  to i n t r oduce  an a r t i f i c i a l  sca le  for r. The 

func t ions  s(x ' ) ,  for  w h i c h  s 3 d2s /dx  '2 is i ndependen t  of x', are g iven  

by 

slx,l = [So÷S I Ix,-Xol2] I12 , ( 5 - 5 1 )  

> 0, s I > 0, and x are cons tan ts .  Now reca l l  tha t  r' ÷ 0; ~ for  whe re  s o = o 

x' + - ~ ; ~ ,  so that  log r ' ÷ ± ~  for x' ÷ ±~. In terms of s(x') th is  means  

S dx log r,x   dX[s x ] 2 
- - co  - - co  

co  

dx' 

= -~f So+S1(~=Xo )z 

(5-52) 

The la t te r  in tegra l ,  however ,  resu l t s  in a f i n i te  number  un less  s I 

equa ls  zero. Then  s(x') = const . ,  and (46) imp l ies  

r(x) = r O e x /so  , r O > 0 . (5-53) 
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The term s 3 d2s/dx 2 in HID of (48) vanishes accordingly.  

The par t icu lar  choice for r O and s o is i r relevant,  we can put 

both equal to unity. Then 

1 1 [  2 1211 x 
HID(x,Px) = ~ p + ( £ + ~ )  --+V(r) ,  r = e , (5-54) 

and the resu l t ing TF quant iza t ion  rule 

+ I  1 [ (E~'nr (£+1 /2 )2  ]I/2 
n r ~ = far 2 -V(r) ~ j (5-55) 

has the fami l iar  WKB form. This is how we shal l  re late Ei, n to both 

the quantum numbers and the potent ia l ,  for eventual  use in ~q. (29). 

Before proceed ing wi th this development,  I would l ike to of fer  

a remark. The necess i ty  of rep lac ing the na ive ly  expected "centr i fugal  

barr ier"  I (£+I) / (2r  2) by (£+I/2)2/(2r 2) is, of course, we l l -known since 

Kramers 6 observed, in 1926, that the correct  behavior  of the WKB wave- 

funct ions near r=0 is not obta ined otherwise.  The reasoning given above, 

however, is qui te d i f ferent  f rom Kramers' argument. Instead, it is in 

the spirit of Langer 's  7 der iva t ion  in 1937. The main d i f fe rence is that 

Langer sett les for r=e x r ight away, whereas it is shown above that this 

is, in some sense, the only  reasonable mapp ing of 0 ~ r < ~ to -~ < x < ~. 

So much about the jus t i f i ca t ion of ~(~+I) ÷ (Z+I/2) 2. But this is not 

the only reason for be ing so expl ici t .  It is c lear that in eva luat ing 

the t race of qIE-HiD(X,Px)l  one wants eventua l ly  to go beyond the TF 

approx imat ion  (34) by, for instance, in t roduc ing the re levant  Airy ave- 

rages. For that purpose, one must deal w i th  the HID given in (54). No- 

th ing of this has been worked out as yet, and it would cer ta in ly  be in- 

te res t ing  to f ind the resu l t ing modi f ica t ions of the quant iza t ion  rules 

(37) and (55). For our present  ob jec t ive  of s tudying Eos c it suf f ices 

to employ Eq. (55). 

For large quantum numbers ~ and n quant iza t ion  accord ing to 
r 

the TF (or WKB) rule (55) is h ighly accurate by construct ion.  What can 

we say about the smal l  quantum numbers assoc ia ted wi th the s t rongly  

bound electrons? For these the potent ia l  is bas ica l ly  a Coulombic po- 

tent ia l  (15) w i th  a (small) addi t ive constant  E . Inserted into (55) it 
o 

produces (see Prob lem 4) 

+ 1 Z 
n r ~ = - (Z + I/2) (5-56) 

~2 (Eo-Ei,nr) 

or 
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Z 2 

Ei ,n r  = E ° 2 (n r+Z+1)2  (5-57) 

Th is  is the  exac t  answer  w i t h  its w e l l - k n o w n  d e p e n d e n c e  on  the p r i n c i -  

= +I+I Thus TF q u a n t i z a t i o n  (55) pa l  q u a n t u m  number  (nr+I/2) + (~+I/2) n r . , 

is a lso ve ry  good for smal l  q u a n t u m  numbers .  

Here  is an a d d i t i o n a l  pay-o f f .  S ince  (55) g ives  the co r rec t  

ene rg ies  for the s t r o n g l y  bound  e lec t rons ,  the spec ia l  t r e a t m e n t  d i s -  

cussed  in Chap te r  Th ree  is no longer  asked for. In pa r t i cu la r ,  w h e n  the 

EZ, n va lues  of  (55) are  used to eva lua te  the spec t ra l  sum of  E I in Eq. 

(29) r, the  Sco t t  c o r r e c t i o n  to the ene rgy  is the re  w i t h o u t  f u r the r  ado. 

More  abou t  th is  la ter  in th is  Chapter .  

F o u r i e r  fo rmu la t i on .  The new e x p r e s s i o n  for E I (V+~) ,  Eq. (29), w h i c h  is 

a sum over  the q u a n t u m  numbers  Z and n r w i t h  E i n a p p r o x i m a t e d  by (55), 
, . I r . 

is no t  we l l  su i t ed  for a p rac t i ca l  c a l c u l a t l o n  as it s tands.  We the re -  

fore  rewr i t e  (29) in a few steps.  

F i rs t ,  we reca l l  tha t  we can sh i f t  the emphas is  f rom the ener -  

gy E I to N(E),  the coun t  of  s ta tes  w i t h  ene rgy  less than  E, 

N(E) = t r  q(E-H) , (5-58 

b e c a u s e  [see Eqs. (209) and (2-20), and no te  tha t  N (E )=N(~= -E ) ]  

E I = t r (H+~ )~ ( -H -~ )  = - f~dE N(E) , (5-59 

so that  i n f o r m a t i o n  about  N(E) is i m m e d i a t e l y  t u rned  in to  k n o w l e d g e  of  

E I - 

Then, i ns tead  of  summing  ove r  £ and n r, we e q u i v a l e n t l y  i n te -  

g ra te  over  I and v, g i ven  by 

i - i +  I/2 , v - n + I/2 , (5-60 
r 

and i n t r oduce  

El, v E E i , n r  , (5-61) 

wh ich ,  a c c o r d i n g  to (55), is r e l a ted  to I and v by 

I I/2 
= ~ ; ~  [2r 2 (Ex, -V ( r ) ) -12  ] (5-62) 

A f t e r  the i n t r o d u c t i o n  of  De l ta  func t i ons  to s e l e c t  the  d i s c r e t e  quan-  
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rum numbers, we arr ive at 

N(E) = 2 ~ (21+1)q( ) 
i , n r =  0 E-E~,n r 

co S 1 
= 4 [d l  t 6 ( Z + 2 - 1 )  

o Z=-~ 

(5-63) 

oo 

n ~  = ~ (E-EI, v of 1 - v )  ) x dv 6 (n r + 

r 

Now, the twofo ld  app l ica t ion of the Poisson ident i ty  

f )k I i2~kl 
6 (1  + ~ ' -  I) : (-I e , 

~=-~ k=-,~' 

1 6 ( n r + ~ _  v ) = (-I) j ei2~j v 
n =-~ q =-~ 

r 

(5-64) 

produces 
o o  o o  c o  . 

N(E) = 4 >  (-I) k+j 5dlle i2~kl ~dve 12~jv q(E-EI, v) 

k ,j =-~ o o 

(5-65) 

So far we have been reading Eq. (62) [and l ikewise (55) before] 

as impl ic i t l y  def in ing El, ~ for given I and v. However, another v iew is 

more useful. It understands v as a funct ion of I and E, V=VE(1), 

= I ~ IE_V(r)I ] , (5-66) VE (I) ~ 5  [2r2 -I 2 I/2 

which for each E def ines a "l ine of degeneracy"  in a l ,v-diagram. The 

term degeneracy is appropr ia te  here because such l ines connect  (l,v) 

values be long ing to the same energy E. If it should happen that several  

(i,n r) pairs of (integer) quantum numbers refer to (l,v)'s on the same 

l ine of degeneracy,  then there is more than one (orbital) state wi th  

the cor respond ing energy; these states are degenerate  (in addi t ion to 

the general  spin and angular  momentum mul t ip l ic i ty) .  This is cer ta in ly  

poss ib le  among the l ines of degeneracy  that are straight,  but it can al- 

so occur for bent ones. 

The domain of in tegrat ion in (65) consists of all l,v below 

the l ine of degeneracy  rE(1). For a f ixed value of I, the step funct ion 

in (65) selects, therefore,  V~VE(;,), 

q(E-El, v ) = qIVE(1)-v! (5-67) 
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On the other hand, if I exceeds IE, defined by 

1/2 
X E - Max [2r2(E-V(r))] 

r 
(5-68) 

then the argument of the square root in (66) 

plying 

VE(~ ~ ~E) = 0 

is negative for all r, im- 

(5-69) 

Consequently, we now have 

N(E) 4 ~ ,.!_l)k+ j tE rE(X) = f d~ ~ e i2~k~ fdv e i2Ejv 

k,j=-~ o o 

which, inserted into (59), enables one to compute E I. 

• (5-70) 

Isolatin~ the TF contribution. The j=k=0 term in (70) gives the result 

of integrating of I and v, without reference to the Delta functions that 

enforce the integral nature of I-I/2 and v-I/2. Therefore, we expect it 

to reproduce the TF version of N(E), 

(N(E))TF 5(d~) I ]3/2 = ~ - [ 2  (E-V) (5-71) 

Indeed• this happens when rE(1) of (66) is put into the j=k=0 term of 

(70) : ;~E 

(N(E))j=k=0 = 45 d l l  rE(1) 
o 

~E 4 dr I/2 = ~f-~- f dlI[2r2(E-V)-I 2] (5-72) 
o 

4 dr 3/2 
= --3E~-r- [2r 2(E-V)] 

which, in view of (d~)= 4Er2dr, agrees with (71). 

This observation implies the decomposit ion of N(E) into its 

TF part and a supplement that represents quantum corrections, 

N(E)  = ( N ( E ) ) T  F + Nqu(E)  , ( 5 - 7 3 )  

where the term "quantum corrections" is used with the meaning given to 

it in the paragraph after Eq. (I-43). In the present context we approxi- 

mate Nqu(E) by the right-hand side of Eq. (70) without the j=k=0 term. 

Quite analogously, E I is split into the TF expression plus a quantum cor- 
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rect ion 8 (not to be confused wi th  AquF I of Chapter  Four). We shal l  see 

that this cor rec t ion  is usual ly  smal l  compared to the TF part, a l lowing 

its per tu rba t ive  evaluat ion.  As a prepara t ion  we f irst col lect  in forma- 

t ion about  the lines of degeneracy  VE(I) wh ich  are the basic ingredients 

in (70). 

Lines of degeneracy.  The max imum of Eq. (68) is located at the d is tance 

r E , 

2 = 2r~[E,V(r  E)] (5-74) IE 

This max imum proper ty  impl ies that r E obeys 

V(rE ) + d~Ed IrEV(rE)I = 2E , (5-75) 

which has the consequence 

2 d 
2 = rE<d-~E 1-E>[rEV )] (5-76) ~E (rE 

Another  immediate impl icat ion is 

d 2 
= 2r2E (5-77) d--~ ~E 

This shows that if we were given IE for some range of E, we could cal- 

culate r E and then employ (74) to f ind V(r) for r in the cor respond ing 

range of r E . As an i l lus t ra t ion hereof, consider  

1 E = Z / ~  , E < E o , (5-78) 

for wh ich  (77) gives 

rE _ Z/2 r E > 0 (5-79) 
Eo- E ' 

so that 

_ Z/2 2 Z r E (5-80) 
E = r E + Eo ' IE = ' 

and, us ing Eq. (74), 

2 
IE 

V(r E) = E - -  
2r~ 

= - Z/rE+E 0 , (5-81) 
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the Coulombic potent ia l  (15) emerges. Indeed, Eq. (56) is equiva lent  to 

rE(1) = z / / ~ T ~ - ~ -  I = IE-I , (5-82) 

w i th  l E from (78), which is to be supplemented by 

v E(1) = 0 for I > I E (5-83) 

as required by (69). 

It is an important  lesson that IE, in its dependence on E, 

contains a lot of in format ion about the potent ia l  V(r). Since the range 

of l E is poss ib ly  l im i ted  (short-range potent ia ls do not bind states 

wi th  very large angular  momenta),  the cor respond ing range of r E need not 

extend to inf inity. Then I E determines V(r) w i th in  a sphere, of f ini te 

radius, around r=O. 

For values of I c lose to IE, the domain of in tegrat ion in (66) 

is a smal l  ne ighborhood of r E . There one can approx imate the argument  

of the square root by a quadrat ic  polynomial  in r-rE, 

2r2(E-V(r) ) -  12 2 2 1 2 IE - I - ~ E ( r - r E )  2 , (5-84) 

w i th  
2 = d 2 

OJ E ~ [2r 2[v(r)-E]] 
r=r E 

d z d 1 ] [rEV(rE) ] 
= 2 [r E ~ + dr E rE 

The relat ions 

(5-85) 

2 4rE d (I~)/dE 
= 8 (5-86) 

~°E drE/dE d 2 (I~) ~dE 2 

ind icate that, again, knowledge of 1 E is suff ic ient.  

The integral  that results f rom inser t ing (84) into (66), 

I dr ~ I 2 ~E (I) ~ E f-~ [I -I 2 2] I/2 -y wE(r-r E (5-87) 

has the st ructure of the one producing the VE(1) associated wi th  the 

Coulomb potent ial :  

I 8 9  7. -~ [2r2 (E+Z/r)-12] I/2 
¢_-y~ 

(5-88) 

The evaluat ion of (87) is, therefore,  immediate. We find, for I S IE, 
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I E 
rE(1) ~ / ~ -  (IE-I) ~ErE 

(5-89) 

In the l imit I ÷ I E this is exact, so that 

IE v~ z - ~ ~ E ( 1 ) I  = / ~ - -  

1 = l  E ~ErE 
(5-90) 

Please note that, v ia Eqs. (77) and (86), the E dependence of I E deter-  

mines the I dependence of rE(1) near I=I E- 

Higher der ivat ives of rE(1) at I=I E can be calculated by a me- 

thod (described in the Appendix  to Ref.9) which improves upon the appro- 

x imat ion (84). For example, the second der ivat ive  

equals 

V "  - ~ 2 
E -  ~I z rE(1) I (5-91) 

i=I E 

3 ,  1 5 2  3 
rE" = ~AE[I-(v~)2 + ~ E V 3  _8_V3  +~v4l  , (5-92) 

where the coef f ic ients  

k 
k! ( )k[r V(rE) ] (5-93) 

depend on E, and could be expressed in terms of E der ivat ives of 1 E. 

The recogni t ion that, for a spher ica l ly  symmetr ic  potent ia l ,  

I d 2 
r dr 2 (rV) = V2V , 

I 
( ~ - r ) ( r v )  = ~.~v , 

(5-94) 

enables one to rewr i te  the r ight -hand side of (90), the outcome being 

-112 
~ = [I + r 2 v 2 V  I ] (5-95) 

~ .~V r=r E 
+ +  

The force -~V is towards the center at r=0, so that r 'VV is posit ive. 

On the other  hand, the Lap lac ian of an atomic potent ia l  is re lated to 

the dens i ty  (-V2V = 4~n, in the s implest  approximat ion) and is therefore 

negative. As a consequence, the contents of the square brackets in (95) 

are less than one, imply ing 

~VE(~) 
v~ = ~I I=IE > I " (5-96) 
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The l imit of uni ty is approached for large b ind ing energies -E belon- 

ging to s t rongly  bound electrons for which V ~  -Z/r. Note that (96) is 

not t rue for any potent ia l  because ?2V can be posit ive. An example is 

the osc i l la tor  potent ia l  V=(K/2)r  2 where v~=I/2 for all energies E > 0. 

Our interest,  however, is in atomic potent ia ls which approach -Z/r as 

r +  0 and vanish for r + ~ .  For these, Eq. (96) holds. 

The der ivat ion of (90) can also be done by using the general  

express ion 

VE( l  ) 1 t 
- %'-'~" = " ~ 5 " ~  [2r2(E_V(r))_12]I/2 

, (5-97) 

together  wi th  the approx imat ion (84) (see Problem 5). Let us now employ 

(97) to f ind ~E/~l for l ÷  0. No, the answer is not zero, for in this 

l imit the in tegrat ion reaches down to r=0 from which ne ighborhood a fi- 

n i te cont r ibut ion arises. We isolate that part of the integral  by intro- 

ducing an upper l imit r, independent  of I and so small  that V ~ - Z / r  al- 

ready is a good approximat ion.  At this stage we have 

8 r E ( l )  1 S ~  r -  

i=0 x2/(2z) /~Y9:7 ~ ,~+o 

Now the subst i tu t ion 2Zr = 12 (1+x 2) y ields 

2 7 dx 
'~E = ~ o ~ = I (5-99 

This s tatement  holds for all E,except E=0, where there is the possib i l i -  

ty of an addi t ional  cont r ibut ion from the upper l imit of the integral.  

This is the s i tuat ion if V ~  r -m for r ÷= ,  wi th  m > 2. Potent ia ls  wi th  

m < 2 are long-range potent ials,  of wh ich the important  example is the 

ef fect ive potent ia l  of an ion where V = -(Z-N)/r  for large r. In such a 

long-range potent ia l  there is no l imit to the quantum numbers, and the 

ent i re l ine of degeneracy  Vo(1) is in f in i te ly  d is tant  from the or ig in 

in the l ,v-diagram. On the other hand, for m >  2, we have a shor t - range 

potent ia l  wi th  a l imit to the possib le quantum numbers. 

Again we isolate this upper part of the integral,  now by a 

l - independent  lower l imit  ~, large enough to just i fy V(r) ~ -c/r TM 

(C> 0 ,m> 2): 

(2c/12) I / (m-2) 

I f dr I/r I/2 1 = 
[2cr2-m-12 ] [I÷0 
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• o o  

I 2 dx _ I (5-100) 
m-2 ~ f 1+x 2 m-2 ' 

o 

where the subs t i tu t ion  2cr 2 - m =  12 (1+x 2) has been made. Thus, for poten- 

t ials w i th  V ( r ÷ ~ ) ~ - I / r  m, m >  2 we have 

~VE(l) ~ I for E < 0 , 

' r E  = 2 t  I = L 1 m-1 (5 -101)  
t=0  1 + m - ~  = m-----2 >1 f o r  E = O .  

For given I, rE(1) increases cont inuous ly  w i th  growing E. 

Therefore,  the sudden increase of the in i t ia l  s lope at E=0 for short-  

range potent ia ls  must he accompanied by a rapid change of ~E(I=0) as 

E approaches zero. This is conf i rmed by the eva luat ion of 

I 5d r r 
~--~ rE(1) = ~ [2r2(E_V)_1211/2 

(5-102) 

for I=0, per formed ana logous ly  to Eq. (I00), wh ich  produces 

~E(O) - ~ v E (0) 

- C I/m (I/m-I/2)! {_~i 

72--{ (1 /m-1 )  ! 

(2+m) / (2m) 
(5-103) 

for E ~ 0. This has the consequence 

c I/m (I/m-3/2)! (m-2)/(2m) 
VE(0) ~ ~o (0) + /-~ (I/m-I) ! (-E) (5-104) 

for E ~ 0. Please note that, because m > 2, the numer ica l  coef f ic ient  in 

(103) is posi t ive, whereas it is negat ive in (104), and that the expo- 

nent of (-E) in (104) is a pos i t ive number  less than !/2. Indeed, rE(0) 

grows rap id ly  as E + 0. 

Equat ions (103) and (104) are i l lus t ra t ions of the fact that 

rE(0) for E ~ 0 tests the outer reaches of the potent ial .  However, the 

E-dependence of rE(0) is not conver ted into knowledge about V(r) as 

easi ly  as the E-dependence of 1 E [recall the remark af ter  Eq. (83)]. 

In Eq. (I03) we in t roduced a dot symbol iz ing the der ivat ive 

w i th  respect  to E. This nota t iona l  s impl i f i ca t ion  wi l l  prove useful  in 

the sequel. Wi th  this convent ion,  Eqs. (77) and (86) can be wr i t ten  as 

2 
r E = IEI E , 

(5-105) 2 = " ~ 2 " "  " 
~E 4 rE / rE  = 8 ~ E ~ E / ( ~ E ~ E + I E  ) ' 
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and (90) impl ies 

- 4 ( v ~ )  - I 
" 2  

IE 

D i f fe ren t ia t ion  of (85) gives 

d 2 = rE d 2 4 d 2 
a~EWE = - -  rE  ~E 

~ [  2 d 3 d 2 d + r~ ] [ rEV( rE)  ] 
= rE ~ + 2rE dr~ dr E 

of wh ich  a more usefu l  form is 

2 

1 d 2 ~ (  
4 dE ~E = 2 E\3+rE d~E>V2V(rE ) - (rE)2 

This wi l l  later be needed in 

° I 

tEVE 1 -2(v.)2E 4~vEjl' , ,2  d 2 - - ~ - E  ~ ' 
g 

the der iva t ion  of wh ich  I leave to the reader. 

(5-106) 

(5-107) 

(5-1 08) 

(5-109) 

C lass ica l  orbits. Some of the equat ions of the preced ing sect ion pos- 

sess an e lementary  s ign i f i cance when in terpreted as re fe r r ing  to c lassi-  

cal orbi ts of a par t ic le  in the spher ica l ly  symmetr ic,  a t t rac t ive po- 

tent ia l  V(r)° For instance, the ve loc i ty  in a c i rcu lar  orbi t  of energy 

E and radius r E is determined by the k inet ic  energy 

I 2 
v = E-  V(rE) , (5 -110) 

wh ich  combined wi th  the s tatement  that the grad ient  of V must  supply 

the necessary  centr ipa l  force, 

d v 2 
- dr--~ V ( r E )  = r E (5-111) 

reproduces (75). In other words: rE, as obta ined from (75), is the ra- 

dius of the c lassical  c i rcu lar  orbi t  w i th  energy E. Further,  inser t ion  

of (110) into (74) ident i f ies IE as the c lass ica l  angular  momentum in 

this c i rcu lar  orbit. It is, indeed, wel l  known that of all orbi ts to a 

cer ta in energy the c i rcu lar  one has the maximal  angular  momentum. 10 

If the angular  momentum I is less than IE' the c lass ica l  or- 

bit  is of the k ind sketched in Fig.8. The radial mot ion  is an osc i l la -  



321 

t i on  b e t w e e n  two d i s t a n c e s  r I and r 2 w h i c h  de f i ne  the  c l a s s i c a l l y  al-  

lowed domain .  These  d i s t ances  are the  l im i ts  of  i n t e g r a t i o n  in Eqs. (66), 

(97), and (102). The d i f f e r e n t i a l  e q u a t i o n  of  the  o rb i t  is (the s ign  

changes  w h e n e v e r  r=r  I or  r=r  2) 

dr  l 
d# = ± - -  ; (5-112) 

r ¢2r  2 <E-V (r)) -I z 

i t  d e t e r m i n e s  r as a f unc t i on  of  the  a z i m u t h  ¢. In pa r t i cu la r ,  the angu- 

lar  pe r i od  ~ of  the  orb i t ,  r (~+~) = r(#),  is tw i ce  the d i f f e r e n c e  in 

\ \  \ \  / i 

i / i 

F i g . 5 - 8 :  S k e t c h  of t y p i c a l  c l a s s i c a l  t r a j e c t o r y  i n  a s p h e r i c a l l y  symme- 

t r i c ,  a t t r a c t i v e  p o t e n t i a l .  

a z i m u t h  c o r r e s p o n d i n g  to r = r I ÷ r = r2: 

f 2d~ r2 

r 
r I r I /2r2(E-V)-I 2 

(5-113) 

C o m p a r i s o n  w i t h  (97) e s t a b l i s h e s  

% / 2 ~  
= - ~--7 ~ E  (X) ; ( 5 -114 )  

the s lope  of the l ines of  d e g e n e r a c y  is the  angu la r  pe r i od  of  the cor -  

r e s p o n d i n g  c l a s s i c a l  o rb i t ,  m e a s u r e d  in un i ts  of 2~. 

Th is  i ns i gh t  can be used to f ind rE(1) for  bo th  the Cou lomb  

p o t e n t i a l  and the  h a r m o n i c  o s c i l l a t o r  po ten t ia l .  For  the  f i rs t  ~ is 2~, 

for the second  it is ~. A c c o r d i n g l y ,  we have 
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I I for V = -Z/r , 

v E (1) = = I 2 
21 I/2 for V ~<r  , 

(5-115) 

or, 

~ l  E - I for V = -Z/r 

rE(1) = [ 1  I 2 
(IE-I) for V = [Kr 

(5-116) 

In conjunct ion wi th  

I Z / - ~  for V = -Z/r , 

IE = E/K for V = ½Kr 2 , 
(5-117) 

this leads to the cor responding energy spectra 

i 
r I 2 )2 

- ~Z / (nr+Z+1 
EZ = 

"nr K (2nr+~+3/2) 

for V = - Z / r ,  

I 2 
for V = ~<r , 

(5-118) 

demonst ra t ing once more that the TF (or WKB) quant iza t ion  is exact for 

these potent ials.  

The orbi ta l  mot ion is also per iodic in t ime t, the period T 

being related to ~ through ~(t+T) = ~(t) + ~. Since 

dt = ~ d ~  =+_dr r , (5-119) 
/2r 2 (E-V(r)) -I ~" 

we find 

r2  r T = 2  dr 
r I /2r 2 (E-V)-I 2 

• (5-120) 

so that• in v iew of Eq. (102), the analog to (113) is 

T/2~ = ~ rE(1) (5-121) 

The energy der ivat ive of rE(1), mul t ip l ied by 2~, equals the orbi t 's  

per iod in time. Note how Eqs. (113) and (121) pair  angular  momentum and 

angle as wel l  as energy and time. 

Apply ing (121) to (116) wi th (117)• we obta in 

I 2~Z/(-2E)3/2 for V = -Z/r • 
T = I 2 (5-122) 

~/K for V = ~<r • 

which are fami l iar  results. 
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Degeneracy in the TF potential. After this excursion into the realm of 

classical mechanics we now return to the quantum world of atomic phy- 

sics. 

Insert ing the neutral-atom TF potential V =-(Z/r)F(x) into 

(66) produces 

2 I/2 

Z1-7~ = [ 2ax + ~ a  - (5-123) 

This way of wri t ing it makesl explicit that VE(X)/ZI/3 is a Z-indepen- 

dent function of both I/Z I13 and E/Z 4/3. These lines of degeneracy are 

plotted in Fig.9, for the binding energies -E/Z 4/3" = 10,1,10-I,...,10 -5 , 

0. Please observe that rE(1) is steeper for larger values of I; in par- 

ticular, note that the slope is -I for l=0 (and E < 0) whereas it exceeds 

1.6 

1./. 

1.2 

1.0 
¢o 

N 

> 0.8 

0.6 

O.Z, 

0.2 

C, 
0 0.2 Oi, 0.6 0.8 1.0 

k /Z  4/3 

Fig .5 -9 .  Lines of  degeneracy for the  neutra l -a tom TF p o t e n t i a l .  



un i ty ,  i n  magnitude, f o r  A = A E r  where v = O .  This i s  t h e  message of ~ q s .  
E 

(96) and (1 01 ) . The l a t t e r  s t a t e s  i n  add i t i on ,  t h a t  

f o r  t h e  TF p o t e n t i a l  [m = 4  i n  (1 01) 1 .  Indeed, t h i s  i s  t h e  i n i t i a l  s lope  

of  t h e  € = 0  curve i n  Fig.  9. Further ,  t h i s  f i gu re  confirms Eq. (1 04) (here 
3  2 wi th  m=4  and c=144a =81n / 8 ) ,  

f o r  E 5 0, inasmuch as  v (0)  does change very rap id ly  as  E+O. The maximum 
E 

of v E ( X )  i s  

which uses t h e  numerical va lue of t h e  i n t e q r a l  es tab l i shed i n  Problem 

2-3." The dev ia t ion  of vE (0 )  from vo(0) is given by (104).  

f o r  €50, where we a l s o  repo r t  t h e  next term wi th  t h e  exponent ( l + y ) / 4  = 

0.443000 [ r e c a l l  t h a t  y = ( m - 7 ) / 2 1 ;  f o r  d e t a i l  consul t  Ref.9. 

Some o ther  important numbers, r e f e r r i n g  t o  E = O ,  can be com- 

puted s t a r t i n g  from t h e  knowledge t h a t  t h e  funct ion xF(x)  has i t s  maxi- 

mum a t  

where 
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• in terms of x and F(x o) , see Problem 2-4 We express r ° and Io o 

-I/3 
r = a x  Z 

O O 

1 ° = / 2 a x  ° F (x  o) Z I/3 

Next, Eq. (85) appears as 

2 
W 

O 

2 [x d d I 4/3 

Ix=x 
_ 4 F(Xo) I Z 4/3 o 

a x [ I - ~ X o ~ ]  
O 

so that (90) provides 

v '  = [I-ix Jv-vTv-7] -I/2 
o 2 o' "'o- ' " o '  

(5-130) 

(5-131) 

(5-132) 

With the aid of the d i f ferent ia l  equat ion obeyed by the TF potent ia l  

f o r  r>0,  V2V = ( -4 /3g)  (-2V) 3 /2 ,  Eq. (108) i s  s i m p l i f i e d  t o  

r 2 

8 -,-~[~3+r< d - i ]  ( - 2 V ( r E ) ) 3 / 2 - ( v ~ )  2 
3~ ~E" ~ dr/, 

8 r[ 2 I/2 I d 
= ~ o3~ [-2V(rE)] (~E+d--~E] [rEV(rE )] - ( r E  )2 

I d 2 
4 dE ~E 

Now Eqs. (74) and (75) are employed to arr ive at 

I d 2 = 16 rE 2 
4 dE ~E -~ E( ) ~ ~ - - 7 [ -  (v~) 2 , 

w E 

which inser ted into (109) produces 

• ! 

IEVE - [(v~)2-I] 2 + ~( -E) ( rE/OJE)2{ ( IE / rE)z-2E 
• ! 

XEV E 

In part icular,  for E=0 we get 

~2/r2 
~0 = -2(V0)2/~o = -4 0 - o 3  

W o 

-2 

I -3/2 Z-2/3 
= -~axo/F(x  o) [I - ~  X o / ~  ~ ]  

and • ! 

loVo 

(5-133) 

(5-134) 

(5-135) 

(5-136) 

(5-137) _ [(Vo)2_I]2 I 3 I • , = ~ x F(x o) [I - ~  Xo/XoF(Xo)] 

loV o 
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The c o r r e s p o n d i n g  numer i ca l  s ta temen ts  are 

ro /Z - I / 3  = 1 .86278 , 

Io /Z I /3  = 0 .927992 , 

~o/Z 2/3 = 0 .363593 , 

V ! 
o : 1 .93768 (~2 - i~) 

-~o/Z -2/3 = 20 .6527 , 

o o 

iv '  
o o 

= 7.58781 

In add i t ion ,  f rom Eqs. (105) and (106) we ob ta i n  

io/Z -3/3 = ( ro /Z -1 /3 )2 / ( Io /Z1 /3 )  = 3 .73920 

Io~o 2 
- 4(v') - I  = 14 .0184 , 

o i2 
o 

a n d  (92) leads to (see P r o b l e m  7) 

I v" I ~, [(v.2)_i] [_5(~.)4 + 23(~_,)2 15] 
O O = ~ O u u c) 

= 0 .193647 

(5-138) 

(5-139) 

(5-140) 

These numbers  w i l l  be used be low.  

For  the pu rpose  of i l l us t ra t i on ,  we present ,  in F ig .10,  var i -  

ous quan t i t i e s  as a func t i on  of E/Z 4/3" . Obse rve  in p a r t i c u l a r  tha t  for 

la rge b i n d i n g  energ ies ,  tha t  is -E ~ Z 4 / 3 , ~ E ( 0 )  equa ls  1 E. Th is  is t yp i -  

cal  for  Cou lomb ic  po ten t i a l s ,  for w h i c h  these  re la t i ons  hold:  

~E(O)IZII3 = IEIZ I13 , 

rE/ZI/3 = (IEIZI/3) 2 , 

OOEIZ2/3 = WY l (IEIZ I13) 

(5-141) 

see Eqs. (78), (79), and (82). Of  course,  Cou lomb ic  d e g e n e r a c y  for s t rong-  

ly bound  e lec t rons  is not  unexpec ted ;  reca l l  the d i s c u s s i o n  a round  Eqs. 
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(56) and (57). 
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i i i 

-2.0 -1.5 -1.0 -0.5 0 

~lZ 413 

E/Z 4/3 Fig .5 -10 .  AS a f u n c t i o n  of are  shown: (a) rE~Z-I~3 , (b) lE/Zl/3 
{c) vE(0)/zl /3,  (d) eE/Z2/3 ; f o r  t h e  n e u t r a l - a t o m  TF p o t e n t i a l .  

TF degeneracy  and the systemat ics of the Per iodic  Table. Is there any 

rea l i ty  to the energet ic  degeneracy  as pred ic ted v ia the neut ra l -a tom 

TF potent ia l?  

Our a f f i rmat ive  answer begins w i th  po in t ing out the s imi lar i ty  

between Figs.4 and 9. In quant i ta t i ve  terms we note that the curve con- 

nect ing 7s w i th  5f in Fig.4 has termina l  s lopes of about -I and -2, 

wh ich  agrees w i th  those of rE(1) for E~0; in part icular ,  ~VE/~l at I=i E 

for E<0 is p rac t ica l l y  equal to -v' wh ich  accord ing  to (138) d i f fers 
O '  

f rom -2 by a smal l  amount. Further, the maximal  values of v and I in 

the Per iod ic  Table are v = 6 ÷ I/2 and I = 3 + I/2, re fer r ing to nr=6 and 

~=3 (Ts and 5f, respect ive ly) ,  whose rat io 

6+I/2 
3 + I ~  = 1.86 (5-142) 

does not d i f fe r  much from the TF number 

9o (0) 1.659 Z 1/3 
- = 1.79 . (5-143) 

Io 0.928 Z I/3 

Next, cons ider  a cer ta in  value of Z, say Z = 88, wh ich  is the atomic num- 
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her of radium. For this Z, the TF l ine of degeneracy  Vo(l ) is p lo t ted 

in Fig.11, where the phys ica l  values of I and v are marked on the axes 

and label led by the cor respond ing  values of the in teger  quantum num- 

bers n r and Z. The lat t ice points thus def ined mark  the orb i ta l  states 

spec i f ied by these quantum numbers. The line Vo(1) separates those 

ava i lab le  in the TF potent ia l  from the ones that are unavai lab le.  For 

the chosen va lue of Z we see that the TF pred ic t ion  about the occup ied 

orb i ta l  states is in per fec t  agreement  w i th  spect roscop ic  observat ions.  

/. 

0 

1 l I 1 1 

+ 8s 
occupied 

7so~+ 7 p + unoccupied 

~ ~ \+6d 

~ 5d~~ 

• ~ /*f~ + 

I I I I \ I 

0 1 2 3 & 
1 

Fig.5-11.  TF p r e d i c t i o n  for occupied s t a t e s  in  radium (z=88). 

Let us now imagine that we increase Z. Then the curve of Vo(1) 

w i l l  move away from l=v=0 in Fig.t1, thereby keeping its shape. It is 

mere ly  s t re tched propor t iona l  to Z I/3. The next states that become avai-  

lable are the 5f and the 6d states wh ich  are crossed by Vo(1) for prac-  

t ica l ly  the same value of Z. For an even larger Z we obta in  the 8s elec- 

trons, and so on. Whenever  a new pair  of in teger quantum numbers Z, n 
r 

lies be low the v (I) curve, the TF potent ia l  can bind 2(2Z+I) e lect rons 
o 

more. Obviously ,  the tota l  number of bound states does not always agree 
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wi th  Z; as a rule, it is a l i t t le bit  less or more than Z. When p ick ing  

Z=88 we made a lucky choice in Fig.t1. However,  this f igure speaks in 

favor of the TF po ten t ia l  not because the number  of bound states agrees 

wi th  Z, but because the states se lected by Vo(l) are the ones that are 

spec t roscop ica l l y  known to be occupied. No doubt,  there is rea l i ty  in 

the TF potent ia l .  A prec ise s ta tement  is the fol lowing: the TF potent ia l  

reproduces the correct  order  in wh ich  the orb i ta l  states are f i l led as 

Z increases. This order  is, both  as der ived from the TF Poten t ia l  and as 

known from the sys temat ics  of the Per iod ic  Table: Is, 2s, 2p, 3s, 3p, 

4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, . . . .  The corres-  

pond ing  values of Z I/3 are l is ted in Table I below. It is remarkab le  

that  the rat io of Z I/3 va lues of two success ive  orb i ta l  states in this 

sequence d i f fer  the least for 4f and 5d, and for 5f and 6d (dif ferences: 

1.5% and 1.7%, respect ive ly) .  This is cons is ten t  w i th  the s t rong compe- 

t i t ion  be tween these states known f rom the e lect ron ic  s t ructure of the 

lanthanides and the act inides. 

Genera l  features of N . We shal l  now learn more  about N (E) =N(E)  - qu-  qu 
~N(E)iT F for the TF potent ia l .  For s imp l ic i ty  we conf ine ourse lves to 

E = 0, for a start, and ask the quest ion:  how does N(E=0) depend on Z? 

In o ther  words: how many e lect rons can the TF potent ia l  b ind for a g iven 

va lue of Z? In the l imi t  of Z ÷~ ,  Nqu is small, so that  N(E=0)~IN(E=0)IT F 

= Z. Consequent ly ,  Nqu(E=0) descr ibes the dev ia t ion  of N(E=0) from its 

asympto t ic  value, Z. 

A de ta i led  answer is somewhat  e laborate,  and we present  it in 

a later sect ion. However,  some general  qua l i ta t i ve  features of N can qu 
be demons t ra ted  w i thou t  great effort. This is our ob jec t i ve  here. 

Let us f i rst  cons ider  the sequence of states Is, 3p, 5d, ... 

wh ich  is charac te r i zed  by the constant  value of the rat io 

n +I/2 
v r 0+I/2 I+I/2 2+I/2 
7 = Z+ I /2  = 0+I/2 ; I + I ~  ; 2+172 ; . . . .  I (5-144) 

In the i , n r -  d iagram Fig.11 these states are on the st ra ight  l ine 

th rough v=l=0 wi th  uni t  slope. Now observe that the respect ive  d is tan-  

ces f rom v=i=0 are in propor t ions  of 1:3:5:. . .  wh ich  is an immedia te  

consequence of the c i rcumstance that  the phys ica l  values of ~ and v are 
I 

al l  odd mul t ip les  of ~. Also recal l  that  the l ine of degeneracy  Vo(1) 

s t re tches p ropor t iona l  to Z I/3 This impl ies that the Z I/3 va lues at 

wh ich  the success ive  states of this sequence become ava i lab le  are in 

propor t ions  of 1:3:5:. . .  as well.  The con t r ibu t ion  to the number  of 
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avai lab le states made by said sequence of states is, therefore,  g iven 

N(Is) (Z) = 

by 

0 for (Z/Z1s)I)3 < I , 

2 for I < (Z/Zls)I/3 < 3 , 

2+6 for 3 < (Z/Z1s)I/3 < 5 , (5-145) 

2+6+10 for 5 < (Z/Z1s)I/3 < 7 , 

2m 2 for 2m-I < (Z/Z1s)I/3 < 2m+I , 

where Zls stands for the min imal  value of Z requi red to bind the Is 

state, the f irst state in this sequence. In (145), m is the integer 

part of ~(Z/Z1s 

(Is) 

)I/3 + I/2, so that we can write, w i th  the aid of Eq. (7) , 

= 2<½cz/ is)l/3  ½(Z/zls  I/3>12 

- 2 N(Z/Zls) 

(5-146) 

The funct ion N thus def ined is universal ,  which is to say: it is the 

same for each such sequence of states character ized by a common rat io 

~/l = (nr+I/2)/(£+I/2). This is so because in each sequence the d is tances 

from l=v=0 are in propor t ions of the odd integers, 1:3:5: . . . .  And this 

is the only ingredient  in N. For any sequence we have accord ing ly  

N(sequence) (Z) = 2(2£o+1)N(Z/Zmi  n) (5-I 47) 

where 2(21o+I) is the mu l t ip l i c i t y  of the ini t ia l  s ta te  of the sequence, 

and Zmi n is the Z value at wh ich  this in i t ia l  state becomes avai lable. 

Table I gives the essent ia l  numbers for the f irst f i f teen sequences of 

states, ordered by increasing Zmi n. 

The total  number of occupied states, N(E=0), is then given by 

the sum over all sequences 

N(E=0) = > mul t ip l i c i t y  × N(Z/Zmi n) (5-148) 

sequences 

It is techn ica l ly  imposs ib le  to per form this summation. Nevertheless,  

we can cer ta in ly  use it to study the st ructure of N(E=0) as a funct ion 

of Z. Note that for large Z, N(Z/Zmi n) appears as 
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Table 5-I. In i t ia l  state (IS), charac ter iz ing  rat io v:l, mul t ip l i -  

c i ty (MULT) of in i t ia l  state, and min imal  Z I/3 of in i t ia l  state, 

for the f irst 15 sequences of states (ordered by increas ing ~I/3, 
amin J" 

The orb i ta l  states 3p, 5d, and 6p do not in i t ia l ize  a new se- 

quence. 

IS v:l MULT Z I"3 / 
min 

Is 1:1 2 0.822 

2s 3:1 2 I .41 

2p 1:3 6 1.90 

3s 5:1 2 2.00 

[3p 1-I (Is sequence) 3 × 0..822 = 2.47] 

4s 7:1 2 2.60 

3d 1:5 10 2.97 

4p 5:3 6 3.05 

5s 9:1 2 3.19 

4d 3:5 10 3.54 

5p 7:3 6 3.63 

6s 11:1 2 3.79 

4f 1:7 14 4.05 

[5d 1.1 (Is sequence) 5 ×0.822 =4.11]  

[6p 3.1 (2s sequence) 3 × 1.41 = 4.23] 

7s 13:1 2 4.39 

5f 3:7 14 4.61 

6d 7-5 10 4.69 

I 
N(Z/Zmi n) = ~(Z/Zmin)2 /3  

+ (Z/Zmin)I/3 < l (Z /Zmin)  I/3 > + ... 

(5-149) 

where the leading terms have been exhibi ted: a smooth term of order 

Z 2/3, and an osc i l la tory  term of order Z I/3. The sum over sequences has 

to turn the smooth term into the TF part  IN(E=0)ITF = Z. Thus this smooth 

term gains a factor of Z I/3 when all sequences are summed. This wi l l  not 

be equal ly  t rue for the osc i l la to ry  terms. An ind iv idual  one has the pe- 

r iod ic i ty  Z I/3 ÷ Z  I/3 + 2 ~I/3 but as Table I shows the var ious sequences 
ami n , 

have what looks l ike randomly assigned values of zl~ 3. The ampl i tude of 
mln 

each osc i l la to ry  term is also determined by Z I/3 in con junct ion w i th  the 
min 

mu l t ip l i c i t y  of the sequence. There is noth ing regular  about these ampli- 

tudes as well. Therefore,  we have to sum osc i l la to ry  funct ions that al l  
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have the same shape but i r regular  ampl i tudes and periods. The in ter fer -  

ence of these osc i l la t ions cannot be construct ive.  We conc lude that 

the resu l t ing  f luc tuat ing funct ion of Z I/3" has an ampl i tude factor of 

Z I/3" as do the ind iv idual  osc i l la t ions,  no enhancement  takes place. 

What we have found is: 

Nqu(E=0 ) = Z I/3 x { f luctuat ing funct ion of Z I/3} (5-150) 

As a mat ter  of fact, the per iods of the osc i l la t ions of the var ious se- 

quences are not real ly assigned randomly. They are all de termined by 

the shape of Vo(l). Accordingly ,  there is a l i t t le bit of ampl i f i ca t ion  

of the ampl i tude. The deta i led analysis g iven below shows that the lea- 

d ing osc i l la to ry  term in N is of the order  Z I/2 = Z I/3" × Z I/6. However, 
qu 

for it to real ly dominate  the terms of order Z I/3, one needs the enor- 

mous va lue of 5 × 1010 for Z. In the smal l-Z range of phys ica l  interest,  

this " leading" osc i l la t ion  is u t ter ly  ins igni f icant .  

Our a lgebraic results about N(E=0) and N (E=0) as a funct ion qu 
of Z are conf i rmed by the plots presented in Figs.12 and 13, of wh ich  

the f irst one shows the s ta i rcase shape of (145) and compares it to the 

s t ra ight - l ine  TF result,  and the second one i l lust rates (150). 

300 

Z 

150 

0 
0 

t 
150 300 

Z 

F i g . 5 - 1 2 .  N(E=O) as a f u n c t i o n  o f  Z f o r  t h e  n e u t r a l - a t o m  TF p o t e n t i a l ,  

The s t r a i g h t - l i n e  i s  (N(E=O))T F = Z. 
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Fig .5-13.  Nqu(E=O)/Z1/3 = [N(E=O)-Z]/Z 1/3 aS a func t ion  of Z 1 /3  f o r  the 

n e u t r a l - a t o m  TF p o t e n t i a l .  

General  features of E . Armed wi th  all this insight into the number of qu-  
avai lab le states, we can now employ Eq. (59) and gain related in format ion 

about the energy. What we have said about N(E=0) holds also for E < 0 if 

we keep the rat io E/Z 4/3" f ixed when changing Z. This is an impl ica t ion 

of the par t icu lar  dependence of VE(1)/zl/3 on E/Z 4/3 and l/Z I/3, and 

therefore a consequence of the sca l ing propert ies of the TF model. 

This means that IN(E)ITF equals Z t imes a smooth funct ion of 

E/Z 4/3~ (for the TF potent ia l ,  of course, or more genera l ly  for every 

potent ia l  of the form "Z 4/3 t imes a funct ion of zl/3r")." Indeed, we know 

it does: 

3/2 
(N(E))T F f (d~) I (r))] = 3---~[2 (E-VTF 

E ]3/2 
= z o f dx  x l / 2 [ F l x l  + ax 

(5-151) 

The in tegrat ion thereof  over E, 

(El (~))TF = - ~ dE (N{E))T F 
- o o  
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5/2 
= S ( d ~ ) ( - 1 5 r ~  [ -2 (VTF(r )+~) ]  

5/2 (5-152) 
- 52 Z 7/3a ofdX x -I /2 [F (x) -ax Z4--~3] ,, 

results in (E I )TF%Z 7/3 so that a factor Z 4/3 is acquired. This is not 

surpr is ing since the d i f ferent ia l  dE is of this order: 

dE = Z 4/3 d(z4--~3 ) (5-153) 

In addi t ion to the smooth term (151), N(E) has the osci l la-  

tory contr ibut ion Nqu(E). General iz ing (150) we state that it equals 

Z I/3 t imes a f luctuat ing function, the argument of which is the product 

of Z I/3 and a smooth funct ion of E/Z 4/3. An example for this structure 

is provided by 

"Nqu(E)" = h E sin(l E) (5-154) 

Upon per forming successive part ia l  integrat ions, this produces 

"E (~)" = - S dE "N (H)" qu -~ qu 
(5-155) 

-~ IE cos(h E ) =- f  dE d-~[-__ 

+ I_~ -~ --- d (A_~E) sin(IE) + ... ] , 

% 

~E ~E 

where  t h e  d o t  r e p r e s e n t s  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  E, and t h e  e l -  

l i p s i s  indicates further terms. The contents of the square brackets, 

evaluated at the upper limit, are osc i l la tory  funct ions of Z I/3. Their  

respect ive ampl i tudes are of the orders 

hE/~ E % ZI/3/Z -3/3 : Z 4/3 , 

(5-156) 
I d (hE] ~ I I Z4/3 = Z3/3 

then Z 2/3, and so on. In short: when N ~ Z I/3, then the osc i l la tory  qu 
part of Equ is ~Z 4/3. Osc i l la tory  terms merely gain by a factor of Z 3/3. 

We in fer  that the b ind ing-energy osc i l la t ion -Eos c is, for 

the TF potent ial ,  of ampl i tude Z 4/3 and (in some sense) per iodic in 

Z I/3. Indeed, as promised, this is small compared to the leading TF 

energy term (~Z 7/3) if only Z is suf f ic ient ly  large. A per tubat ive 
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t rea tment  of these osc i l la t ions is fu l ly  just i f ied. We shal l  arr ive at 

quant i ta t i ve  statements about ampl i tude and per iod below, after a short 

detour. 

We did not ident i fy  E w i th  E , because E also contains 
qu osc qu 

nonosc i l la to ry  contr ibut ions.  Since the semic lass ica l  spectra l  sum (29) 

handles the s t rongly  bound electrons correct ly,  whereas they are mis-  

represented in (EI)TF, the Scott  cor rec t ion must be part  of Equ. Accor-  

dingly, Nqu possesses a re lated smooth term. The s l ight  asymmetry in 

Fig.13, somewhat larger negat ive peaks than pos i t ive ones, is consis-  

tent w i th  the presence of such a term. In the fo l lowing section, we 

shal l  exhib i t  the Scott  cor rec t ion expl ic i t ly .  Further, E must  con- qu 
ta in (at least part  of) the quantum correct ions to E I , that  were dis- 

cussed in Chapter  Four. So far it has not been demonst ra ted how one can 

iso late them in E qu 

L inear degeneracy.  Scott  correct ion.  Let us br ie f ly  look back at the 

energy of Bohr atoms wi th  f i l led shells, Eqs. (24) and (25). There the 

leading osc i l la to ry  term has an ampl i tude of order Z 5/3. Why is the 

chain of arguments that we appl ied to the TF potent ia l  not equal ly  va- 

lid for a Coulombic potent ia l?  The reason is that for the TF potent ia l  

the l ines of degeneracy  ~E(1) are bent, for 0 ~ -E/Z 4/3 ~I ,  not s t ra ight  

as for Coulombic  potent ia ls.  A s t ra ight  l ine results in sequences of 

states for wh ich  the respect ive  N(Z/Zmi n) are per fect ly  in phase. The 

random character  of the periods, wh ich  we have observed for the TF po- 

tent ia l  in Table I, is absent in the s i tuat ion of l inear  degeneracy,  

that is when rE(1) is a l inear funct ion of ~, a s t ra ight  line in the 

l ,~-diagram. In other  words: the ex is tence of a pr inc ipa l  (or energy) 

quantum number is what  d is t ingu ishes Coulombic potent ia ls  f rom the TF 

potent ia l .  As a mat ter  of fact, one can demonst ra te  12 that l inear de- 

generacy near E = -~ always leads to an energy osc i l la t ion  of order Z 5/3. 

The main  example of a physica l  system d isp lay ing  l inear dege-  

neracy th roughout  is a h ighly ion ized atom, where  the ef fect ive poten-  

t ial  d i f fers but l i t t le from a Coulombic potent ia l•  In neutral  atoms, 

one has l inear degeneracy  for the s t rongly  bound electrons. As in Chap- 

ter  Three, we iso late these e lectrons by in t roduc ing a separat ing bin- 

d ing energy ~s = -Es  that selects the part of the spect rum wi th  Coulom- 

bic degeneracy.  Thus we wr i te  

E I (~) = [E 1 (~) - E  I (~s)] + E  I (~s) 

Accord ing to (24) and (25), E I (~s) is g iven by 

(5-157) 



336 

EI(~s)  : - Z 2  [ 231E s 21 ;kE1 (<),Es +1>2-1-~)  + . . . ]  , (5-158) 
s 

where [Eq. (78)] 

IEs = Z/¢2 (E0-E s) , (5-159) 

E ° being the/ addi t ive constantl of Eq. (15); for the TF potent ia l  it 

equals Z4/3B/a = 1.79374 Z 4/3. The leading term of E1(~s) is, as always, 

the TF contr ibut ion 

_ ~2 Z 21E s = _ 23 Z3/d2 (Eo-Es) 

: f (d~) ( - 1 z 1--~-Z- ) [2 (E s + r - Eo)] 
5/2 

(5-160) 

= (E 1 I % - - -  E s ) ) T  F , 

when we insert (15) into (152) [see also (I-36)]. It combines wi th the 

TF part of the integral  

E I ( ~ ) -  E1(~s) = _ f dE N(E)  

-~s 
(5-I 61 ) 

to produce IEI(~)ITF . More in terest ing is the next - to- lead ing term of 

E1(~s). It equals ~Z 2 and does not depend on E s. Actual ly,  being the 

only part of E1(~s) independent of ~s = -Es' this term is the only v is i -  

ble contr ibut ion of the strongly bound electrons to EI(~). Al l  the other 

terms in (158) cannot themselves be present in El(~) since El(~) does 

not depend on ~s" 

We have thus ident i f ied the two leading contr ibut ions to EI(~), 

E lit) = 6EI (~ ) )T~+ lz  2 + .-- (5-162) 

thereby red iscover ing the Scott correct ion to which Chapter Three is 

dedicated. Please note that at that ear l ier  stage E ~  was evaluated TF 
s 

wise wi th the consequence that the Bohr shel l  osci l la t ions of (158) [or 

(3-22)] had to be removed expl ici t ly.  In (157) we compute E ~  s wi th the 

aid of the semic lass ica l  sum (29), so that all Bohr shel l  art i facts are 

taken care of automatical ly.  

Per turbat ive approach to Eosc~ After e l iminat ing the dens i ty  in favor 
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of the ef fect ive potent ia l  from the energy funct ional  (2-434) and sepa- 

rat ing the e lec t ron-e lec t ron interact ion energy E into its e lectrosta-  
ee 

tic part and a remainder E' as in (2-36) the potent ia l  funct ional  of 
ee' 

the energy (2-40) 

Z ! 
E(V,~) = E 1 ( V * ~ ) -  ~N-  8~ ~ (d~) [ ~ ( V + - ~ - V e e ) ]  

+ {E'ee(n) - / (dr)  nVee(n) }n=n(V)  

2 

(5-163) 

emerges, for Vex t = -Z/r. We recal l  that the densi ty  is expressed in 

terms of the potent ial ,  symbol ical ly:  n=n(V), by solv ing Eq. (2-432), in 

which V = V (n), for n. The potent ia l  V' is V minus the electrosta-  ee ee ee ee 
tic potent ia l  (2-28) [see (2-37)]; its l ion's share is the exchange po- 

tential. 

We exhibi t  the TF part of (163) by spl i t t ing E I into (EI)TF 

and E qu' 

E I (V*~) = f I d a ) ( - l S - - ! ~ ) > 2  (v+~)] 5/2 . ~qu(V+~) 

= (E I (V+<))TF + Equ(V+{) , 

(5-164) 

and by employ ing the ident i ty  

I Z , ]2 V' 
8z f ( d ~ ) [ ~ ( V + r - V e e )  - /(dr) n e e  

I 
8~ / ( d ~ ' ) [ ~ ( v + Z ) ]  2 + 8~ f(d~)(~Vee ) 

(5-165) 

Thus, 
2 

E(V,6) = (E 1 (V+~))T F I - 8--{ f(d~)[}(V+C)] - ~ N  

+ Equ (V+~) E l + { ee (n) + 8-~ f (d~)[~Vee(n)]2 } 
I 

n=n (V) 

= ETF(V,~) + Equ(V+~) (5-166) 

+ {Eee(n) + 8~ f (d~) [~Vee(n)] 2}I 

n=n (V) 

where we recognized the TF energy funct ional  (2-45). 

We evaluate 

E = - f d ~  N (E)  
qu -oo" qu 

(5-167) 
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approx imate ly  by inser t ing 

Nqu(E) = 4 ~ - - - ( - 1 )  k+j }Edl I e i2~kl 

k, j =~ o 

iE(1) v ei2~j v 

o 
, (5-168) 

where the pr imed sum does not include the j=k=0 term. This N (E) is, 
qu 

of course, the d i f f e r e n c e b e t w e e n  N(E) of Eq. (70) and the TF term (71) 

or (72). Now we recall, that for given Z and N, the energy funct ional  

(166) is s tat ionary for the actual potent ia l  V and the actual value of 

~. Also, ETF alone has a stat ionary property; it is opt imized, for neu- 

tral  atoms, by V =- (z / r )F(x)  and C=0. Above we have observed that, wi th 

the C and V, the leading osc i l la t ion in E is re la t ive ly  small at suf- qu 
f ic ient ly  large Z. A ~  this means that we are just i f ied in evaluat ing 

Eos c per turbat ive ly  by s imply inser t ing ~=0 and V =VTF  =- (z / r )F(x)  in- 

to Equ. In other words, we are going to extract  Eos c out of (167) by 

using the TF lines of degeneracy ~E(1) in (168). 

The terms in cur ly brackets in (166) are ignored in this pro- 

cess. This cont r ibut ion to the energy is main ly  exchange energy, which 

is smal ler  than the TF cont r ibut ion by a factor of Z -2/3. Consequent ly,  

the resu l t ing modi f ica t ion  of the ef fect ive potent ia l  is a smal l  correc- 

tion, and the enerqy osc i l la t ions that grow out of the exchange inter- 

act ion are expected to be smal ler  than the leading osc i l la tory  term by 

said factor of Z -2/3. They are, therefore, negl ig ib le  at the present 

level of accuracy. 

~- quant ized TF model. Let us start  our quant i ta t ive  t reatment  of (168) 

by p ick ing out the j=0 terms. With the d isappearance of exp(i2~jv) all 

reference to the Del ta functions, that in i t ia l ly  enforced integral  val-  

ues for n r = v-I/2, is gone. We are thus, in effect, in tegrat ing over 

n r instead of summing. Consequent ly,  we are cons ider ing now the improve- 

ment obta ined by quant izat ion of angular mot ion only, wi thout  having 

radial  mot ion also quantized. We call this the iTF model, short for £- 
13 

quant ized Thomas-Fermi  model. 

Equat ion (168) is here reduced to 

(Nqu(E)!£TF = 4 >  (-I) k ~IEdl I ei2~klvE(1) 
k~0 o 

k=1 o 

E (I) cos (2~kl) 

(5-169) 
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Repeated par t ia l  in tegrat ions prov ide the ident i ty  

VE(1)c°s (2~kl) 

+m-1 
W -cos(2~k~ T~) (~)m(~E(~)~ 

= y - ~ -  / (2~----~)%+~ , , m=0 

(5-170) 

which, inserted into (169), suppl ies osc i l la tory  terms from the upper 

l imit of integrat ion. The smooth terms from the lower l imit are of no 

interest  to us here. Thus we found 

2 i osc  )! = I (2~k)m+iCos(2~kIE + ~ ) ,  (5-171) 

m=1 )t=~.E k=l 

where,, because vE(X E) = 0, no m=0 term is present, l~/Since X ~ Z  I/3 and v~ 

%Z 1/3, the m-th term in this series is of order Z '2-m''3; we exhibi t  the 

leading ones: 

~ -  1-I ) kco s 
(Nosc(El)~T~ = -2X E ~ /TA-~TT (2~kXEI 

k=1 

+ (XEVE+2V~)~-( - I ) -  k " ~ . _ _ ~ )  ~ sin(2~klE) 

k=1 

+ 0(z -I/3) 

= -2 ~ E ~  (<~E> 2 - ~ 1  (5-172) 

+ >2 I 3"2 (tEV~+2v~) <,~E >(<tE _~.) 

+ 0(z -I/3) 

The notat ions in t roduced in Eqs. (90) and (91) have been used; and the 

sums have been recognized to be the ones of Eqs. (3-29). 

The cor responding ITF approx imat ion to Eos c is obta ined by 

inser t ing  (172) into (167) and p ick ing out the contr ibut ions from the 

upper l imit (~=0 for neutral  atoms) of the E integrat ion. For this pur- 

pose, successive part ia l  in tegrat ions are employed analogously  to (155). 

For instance, 

o 
- f dE lEV~ cos (2~kl E) = 



s i n  (2nkX E )  A E v i  cos (2nkXE) 
+ - -  + ...I 

ddE(2nki 2nki 

where, once more, t h e  do t s  symbolize d i f f e r e n t i a t i o n  w i th  r espec t  t o  E.  

The terms d isp layed  a r e  of  t h e  o rde rs  z ~ / ~  and z ~ / ~ ,  t h e  e l l i p s i s  i nd i -  

c a t e s  terms w i th  ampl i tudes p ropor t iona l  t o  Z 2 / 3  , z ~ / ~ ~  and s o  on. 

This way w e  f i nd  

1 ho;d, h 'X' A v" k 
- -  2 - hz(3t5-7- O O + q)x v fi cos (2nkho) 

0 
(xk) 

0 0 k = l  

A f te r  supplementing (3-29) by 

and i n s e r t i n g  t h e  TF numbers repor ted  i n  Eqs. (1 38) , (1 39) , and (1 40) , 
t h i s  reads 

w i th  ho = 0.927 992 dl3. We s e e  t h a t  ho determines t h e  p e r i o d i c i t y  of 

t h e  RTF energy o s c i l l a t i o n s ,  namely z ~ / ~  + z ~ / ~  + z ' / ~ / A  = z ~ / ~  + 1.078, 
0 

which agrees q u i t e  we l l  w i th  t h e  per iod of t h e  HF o s c i l l a t i o n s  of Fig.  

5-2. 
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In Fig. 14 the leading ZTF cont r ibut ion to Eos c is compared 

wi th  the HF predict ion. We see that the iTF model  gives the correct  pe- 

riod and phase, but accounts only  for about half the ampli tude; the 

other hal f  is expected to be suppl ied by radial  quant izat ion.  Also there 

is no sign of the in t r igu ing double peak st ructure that the HF curve 

displays. 

In p lo t t ing this f igure, we ext rapola ted the large-Z I/3 re- 

0 . 0 6  

(-Eosc)ZT F ~ 0.32 Z 4/3 <0.928 Z I / 3 > ( ~ - < 0 . 9 2 8  ZI/3> 2) 

down to smal l  values of Z I/3. This procedure needs just i f icat ion.  It is 

prov ided by Fig.15, where the nex t - to - lead ing  ZTF osci l la t ion,  that is 

the cor rec t ion  of re la t ive size z -I/3 in (176), is recognized to be a 

smal l  cor rec t ion to the leading one. The sum of both has the overa l l  

character is t ics  of the leading ZTF osci l la t ion,  the main d i f fe rence ap- 

(5-177) 

0.02 

0 . 0 4  

- 0 - - - ~  
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Fig .5-14 .  Comparison of t h e  b ind ing -energy  o s c i l l a t i o n s  as p r e d i c t e d  

by t h e  H F  method (curve a) wi th  t h e  lead ing  I T F  o s c i l l a t i o n  (curve b). 
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Fig.5-15.  Nex t - to - l ead ing  ITF o s c i l l a t i o n  (curve a) and leading plus 

n e x t - t o - l e a d i n g  I T F  o s c i l l a t i o n  (curve b), compared to HF p r e d i c t i o n  

(curve c) .  

pearing at Z I/3 5 2. It is reassuring that in this range the agreement 

with the HF predictions is somewhat better for curve b in Fig. 15 than 

in Fig.14. 

j~0 terms. Leading energy oscillation. Having dealt with the j=0 term 

in Nqu(E), we now turn to the j#0 terms in Eq. (168). It is expedient to 

rewrite the relevant double sum according to 

) S  (_1)k+j i2~(kl+jv) e 

= ~ ~ (-1)k+J[ei2~(kl+Jv) + ei2~(kl-Jv) 1 

j=1 k=-~ 

(5-178) 

= 2 R e T  ~ ( - I )  k+j e i2~(kl+jv) 

j=l k =-~ 



34S 

The u integration in (168) then produces 

(Nqu (E)) j~0 
= 4 Re ~ ' -  ~ (-1)k+Ji~j- f~EdA tei2Rkt(:2~JVE(t)-l)o 

j=1 k=-~ (5-179) 

With the aid of Poisson's identity (64), we establish 

(-1! -j ~ - i )  k ~Edl  l e  i2~kl 
i~3 o 

j =I k =-~ 
(5-180) 

¢o  

i ~ - ~  1 I 
: ~ ( l o g 2 )  ( i + ~ ) n ( l  E - ~ -  Z) , 

~=0 

which - and this is the point - is purely imaginary. Therefore, the "-I" 

in (179) does not contribute, so that 

(Nqu (E) ) 
j~o 

~ y - ~  (-1)k+J ~IEdl I exp[i2~(kl+JVE (I)] ] = 4 Re " i~ j  

j=1 k =-~ o 
(5-181) 

The required ~ integration cannot be performed explicit ly because of the 

complicated ~ dependence of the exponent. 

The integrals in (181) are largest for those j,k pairs for 

which the phase is stationary at some value of I. For these values of j 

and k, the equation 

~v E 
k + j 3--~-(~) = 0 (5-182) 

is obeyed by a ~ in the range 0 < ~ ~ l E. (For notational simplicity we 

leave the dependence of ~ on E,j, and k implicit.) The possibi l i ty ~=0 

is only apparent because there is the weight ~ in the integral. Now, 

since Fig.9 tells us that 

~VE ~VE 3rE 
'~E = I a~ (~=0) ~ I ~ i..(~) ~ i [ ( ~ = ~ E  ) = ~ , (5-183) 

such a ~ exists only if 

J 'VE < k ~  jv~ (5-184) 

For E < 0, 'u E equals unity, see Eq. (I01); and u~ does not exceed its 

E=0 value, which is ~ = 1.938 ~ 31/16, see Eqs. (138). Thus, there is a 
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point of s tat ionary phase for the I in tegrat ion only if 

31 
j < k < ~  j < 2j (5 -I 85) 

That is for j=2, k=3; j=3, k=4,5; and so on. These const i tu te a small 

f ract ion of all j,k pairs in (181) 14, but the cor responding I integrals 

are par t icu lar ly  large and promise compensat ion for their  small number. 

For j,k obeying (184) we expand the exponent in (181) around 

the point of s tat ionary phase, 

kX + jVE(1) ~ k ~ +  j~E(~) -½ [ -  j (~)] (i-~) 2 , (5-186) 

and obta in (i = I-7) 

IE dl I exp [i2~ (kl+j VE (I)) ] 
o 

92v E _ 

7 exp[ i2~(k~+jv E(7))] ~dl exp [ - i~ ( -  ~--~--(I))~2] 

_ ~2VE _ 

= 1[-j~--~i-(1)]-I/2exp[i2~(kg+JVE(g)) - i=/41 

(5-187) 

The cor responding cont r ibut ion to Nos c (E) is then 

c o  _ 4 ~ - - - ~ ( _ 1 ) k + J  _ ~2%) E _ -I/2 
(Nose (E)) i,~ : /------/__ - I [-j ~--~-f-- (I) ] 

j=2 k ~3 (5-188) 

× cos[2~IkT+JVE(7) 1 +~/4] , 

where the range of the k summat ion is given by (184). The subscr ipt  l,v 

stands for "mixed l,v osc i l la t ions,"  wh ich name wi l l  become p laus ib le  in 

the next section. 

Since I ~ Z I/3 and v E ~ Z I/3, the ampl i tude of these osc i l la-  

t ions is % Z I/2. They const i tu te the leading cont r ibut ion to Nos c. How- 

ever, the d i f ference between Z I/2 and Z I/3 is not large of Z Z 100; it 

is at most a factor of about two. Therefore, the cont r ibut ion to E osc 
that results from (188) does not dominate the ITF cont r ibut ion (and 

others to be found below) for the Z values of interest. 

The dependence of the r ight-hand side of (188) upon E is com- 

pl icated because of the impl ic i t  E dependence of ~. This is the techni-  

cal reason for wh ich we approx imate 9E(1) by 

I v,,(IE_I)2 (5-189) 
VE (I) ~ VE( IE - I )  - ~ E 
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Used for the computat ion of the ZTF cont r ibut ion to Eosc, this approxi -  

mat ion reproduces the leading and the nex t - to - lead ing terms correct ly,  

as a glance at Eqs. (172) and (174) demonstrates.  This is the pr inc ipal  

jus t i f i ca t ion for (189). In the present  context,  d i f ferent  from the ZTF 

calculat ion,  the slope of v[(1) at I=0 is crucial.  In order to main ta in  

its correct  value, 

(5-190) = I ! -- V ~  
1 V E 21 ( t = 0 )  ~ VE E ' 

we have to set 

v~ = (v~-I) /~<E (5-191)  

in (189), insteat  of the actual  second l -der ivat ive of r E ( l )  at 1=1 E. 

In part icular,  for E=0, we use 

-I/3 (5-192) " = ( ~ - I )  1 1 0  = I. 0 1 0 4 4  Z 
V o 

which  is about f ive t imes the actual  v "=0 .208674 Z -I/3, see Eq. (140). 
O 

contrary  to the immedia te  expectat ion,  this replacement  does not cause 

a s ign i f icant  error in Eosc: the coef f ic ient  of the nex t - to - lead ing  iTF 

osc i l la t ion  in (176) is changed from 0.287660 to 0.254497, which d i f fer -  

ence is ind iscern ib le  in Fig.15. We should fur ther remark that 'v 
O 

equals 3/2 for the TF potent ia l ,  whereas 'vE=1 for E<0. This abrupt 

change of 'VE, however, can hardly  be taken ser iously,  since it refers 

to the unrea l is t i ca l l y  s low decrease of the potent ia l  at large distances. 

Any real is t ic  potent ia l  has 'v =I. With this jus t i f ica t ion we shal l  from 
O 

now on adopt the approx imat ion  (189) w i th  v~ from (191). 

Then we f ind from Eq. (182) that ~ is g iven by 

• I , ! i i  

= + : ( , , E - t E , , E I 1  1 5 - 1 9 3 1  

In the latter vers ion we recognize 'rE of (190), so that ~ and ~-1 E are 

re lated to 'rE and v~, respect ively,  in an ident ica l  manner:  

~ = jlv--~(k-j'v [) 

7-i  E : j ~ ( k - j v ~ )  

(5-194) 

These equat ions t rans la te  the range 0 < ~ IE into the range for k given 

in (184), wh ich  is, of course, the or ig in of our emphasis on correct  
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terminal  slopes of rE(1). 

We integrate (188) over E once by parts, as required by (167), 

and obtain the leading term of the corresponding contr ibut ion to E 
osc' 

(-Eosc)I, ~ = - Z 2 - ~ Z ~  -(-1)k+j3; ~[-j~-f--(1)]~2v[ -- -I/2 

j=2 k (5-I 95) 

-I 
sin [2z (k~+ j v[ (7) ] +~/4] I + . . . .  

E=0 

With (189) we have 

[=0 

(5-196) 

and 

[--0 

o 12 , • , , * ,, 2 VoVoVo/Vo- (Vo)2 j2_ 2j (v~) [ +I] (k-j 
2 ] 

(5-197) 

Di f ferent ia t ion of (I 91) suppl ies 

G"o = ~'/Io o - v"'olo/Io = 59.7680 Z -5/3 (5-I 98) 

so that the ampl i tude of an indiv idual  term of the double sum of (195) 
15 is given by 

4 (uo)1/2 -1 
- ~r ~,-----7 ~ ( - 1 ) k + j  ~ [ [ 2 v ' ~ ' v " / ~ " - ( ~ o  ) 2 + 1 ) j 2 - ( k - j ) 2 ] ,  o o o o 

U 
o 

= - 0.006816 Z 3/2 (-I) k+j 
(k-j)/j 3/2 

1.127j2-(k-j) 2 

4/3 
= Z × 

I _  0.000 687 Z I/6 

0.000 144 Z I/6 

0.000 427 Z I/6 
) 

0.000 050 Z I/6 

- 0.000 121 Z I/6 

0.000 283 Z I/6 

for j=2,k=3 , 

for j=3,k=4 , 

for j=3,k=5 , 

for j :4,k=5 , 

for j=4,k:6 , 

for j=4,k=7 , 

(5-199) 

Compared to the leading ZTF osci l lat ion, Eq. (174) and Fig.14, which has 
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an ampl i tude of 

V I 
I o o 

18~ io 
- 0.015425 Z 4/3 (5-200) 

the mixed l,v osc i l la t ion  of (195) is very smal l  in the smal l -Z I/3 range 

of interest.  For large values of Z, unphys ica l ly  large values, (195) is 

the dominant  contr ibut ion,  as ant ic ipated,  but it has prac t ica l ly  no 

s ign i f icance for Z ~ 100, when Z I/6 < 2.2. 

For the sake of completeness,  let us also report  the per iods 

of the terms in (195). The argument  of the sine funct ion changes by 2~ 

if Z I/3 increases by 

2J~o Z1/3/ [ ( (vo )2_I Ij2+ (k_j)2] 

2.021 j 
2.755j2+(k- j )  2 

0.336 for j=2,k=3 , 

0.235 for j=3,k=4 , 

0.211 for j=3,k=5 , 

0.179 for j=4,k=5 , 

0.168 for j=4,k=6 , 

0.152 for j=4,k=7 , 

(5-201) 

The ampl i tudes (199) and periods (201) are not wel l  matched so that the 

terms of (195) wi l l  tend to in ter fere destruct ive ly ,  thereby reducing 

the size of these osc i l la t ions even more. We infer that what appears to 

be the leading cont r ibut ion to E is rather i r re levant  for the Z values 
osc 

of phys ica l  interest.  

Fresnel  integrals. Af ter  u t i l i z ing  ~ and the approx imat ion  (189) in wr i -  

t ing 
I . . 

kl+JVE(1) = k - f+ jvE(~) -~3~E( I -~)2  

(5-202) 
i ,, xE_712_i ~ = klE + ~3VE( ~3 (I-7) 2 

Eq. (181) becomes 
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(Nqu(E))j~ 0 = 4 R e  Z (-I) k+j I. 2) i r c ~ e x p  [i2r~ (kl E + ~3v~ (IE-Y) ] 
j=1 k=-~ 

lEd I (5-203) x ~ I exp[-i~jv~(l-~) 2] 
O 

The weight factor i in the integral can be equivalently replaced by 

i2zjv~ 21 (5-204) 

which allows an immediate partial integration. At this stage we have 

(Nqu(E)) j~ 0 

k+1 exp (i2~j v E (0)) -exp (i2~klE) 
= 4 R e ~ - -  (-I) 

i~j { 
j=1 k =-~ i 2 ~ j ~  

+ ~exp [i2rc (kT+j VE (7)) ] ~iEdl exp [-izj v~ (I-~) 2] } 
o 

The remaining integral is of Fresnel type. Its standard form is 

(5-2O5) 

16 

Z 

E(Z) = f dt exp(-i2t2) = C(z)-iS(z) , 
o 

(5-206) 

where the letters E, C, and S refer to the exponential, the cosine, and 

the sine functions that are integrated. C(z) and S(z) are, of course, 

real functions. 

In (205) we introduce E(z) through the identity 

exp[-i~jv~(l-7) 2] = (2j v~)~-I/2 d I/2 d-7 ~,((2j~'~l (~-7)] , (5-2071 

with the result 

INqu (E)]j~0 

co oo 

= 4Re~-- 7 (-I! k+jr { 

j=1 k=-~ 

exp (i2~jv E (0)) -exp (i2~kl E) 

i 2~jv~ 

(5-208) 

+ 7(2Jv")-1/2E exp[i2~(kT+JVE(7) l] 

× [E((2jg'~) I/2 (IE_-~)) + E((2jv~) 1/27)] } 
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In o rde r  to revea l  the s i g n i f i c a n c e  of the i n d i v i d u a l  te rms here,  we 

need  to know some of  the  p r o p e r t i e s  o f  E(z).  Its o s c i l l a t o r y  na tu re  is 

made  e x p l i c i t  by wr i t i ng ,  for  z~0, 

1 , ~ .  2 
E(z) = ~( I - i )  + i h ( z ) e x p ( - l ~ z  ) (5-209) 

The s l ow l y  v a r y i n g  f unc t i on  h(z) obeys  the d i f f e r e n t i a l  equa t i on  

h' (z) = =d-~_ h(z) = i~zh(z)  - i  

and is sub jec t  to 

(5-210) 

I 
h(o) = ~( I+ i )  (5-211) 

In te rms of  the rea l  and the i m a g i n a r y  par ts  of  h(z) t hese  two equa t i ons  

are e x p r e s s e d  by 

h(z) = f(z) + ig(z) , 
(5-212) 

f' (z) = -zzg(z)  , g' (z) = ~zf(z)  - I , 

I 
f(0) = g(0) = 

The a s y m p t o t i c  expans ions  of f(z) and g(z) can  be o b t a i n e d  e i the r  by re- 

pea ted  p a r t i a l  i n t e g r a t i o n s  in (206) or, equ i va len t l y ,  by i t e r a t i n g  

(210), w h i c h  for th is  p u r p o s e  has to be so l ved  for  h(z) .  The o u t c o m e  is 

I 3 
f(z) ~ - -  - ~ + ... for  z >> I 

~z 

1 15 
g(z) ~ ~ - ~  ~4z7 + .... for  z >> I 

(5-213) 

The l e a d i n g  a s y m p t o t i c  forms rep resen t  h i gh l y  a c c u r a t e  a p p r o x i m a t i o n s  

a l r e a d y  for  r e l a t i v e l y  smal l  z. This  is d e m o n s t r a t e d  in F ig .16,  w h i c h  

a lso i l l u s t r a t e s  our  s t a t e m e n t  tha t  h(z) [that is: f(z) and g(z)] is a 
17 s l ow l y  v a r y i n g  f unc t i on  c o m p a r e d  to the e x p o n e n t i a l  in Eq. (209). 

As d e f i n e d  in (206), E(z) is an odd f unc t i on  of  z. The re fo re ,  

we take  h(z) to be an odd func t ion ,  

h(z<0) = -h(-z)  , (5-214) 

w h i c h  is c o n s i s t e n t  w i t h  (210) (for z~0). The e x t e n s i o n  of (209) to in-  

c lude  n e g a t i v e  va lues  of z t hen  reads 

.~ 2 
E(z) = + (I-i) + i h ( z ) e x p ( - ± ~ z  ) , (5-215) 
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Fig.5-16.  Fresnel i n t egra l s  C(z) and S(z); aux i l i a ry  funct ions 

g(z) toge ther  with t h e i r  leading asymptotic  forms. 

f(z) and 

where the lower sign applies for z<0. Note that h(z) is discontinuous 

at z=0, where (210) does not apply. Of course, E(z) itself is perfectly 

continuous. 

The insertion of (215) into (208) now shows that N (E) con- qu 
sists of three distinct parts which are characterized by their oscil la- 

tory behavior, that is by the argument of the exponential. First, we 

have from the osci l latory part of the first E(...) 

exp [i2~ IkT+j VE (7)I - lj v~ (I E-~) 2] 

= exp (2~iklE) , 

(5-216) 

where Eq. (202) for I=I E is used. The periodicity of these terms is given 

by the maximum value of I; we call them I oscillations. Second, analo- 

gously the second E(...) in (208) provides terms proportional to 

exp[i2~Ik~+JVE(7 ) -½jv~72~] 

= exp [i2~JVE (0) ] 

(5-217) 

[Eq. (202) for I=0 this time] which involve solely the maximum value of 
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rE; these are v osci l la t ions.  Third, there are the constants of (215) 

in the E(. . . ) 's  of (208); because of the two signs in (215) these con- 

stants add up to a nul l  result,  unless the arguments of the two E(. . . ) 's  

agree in sign. This is the s i tua t ion  if 0 S ~  ~ IE, wh ich  is the requi re-  

ment that  ~ lies w i th in  the range covered by the i in tegrat ion.  Not sur- 

pr is ingly,  we red iscover  here the mixed l,v osc i l la t ions d iscussed in 

the last sect ion. Indeed, the sum of the E(. . . ) 's  is s imply  I-i = 

/2 exp(- i~/4) here, so that we are led immedia te ly  to (188). 

Please note how the in t roduct ion  of h(z) has enabled us to se- 

parate the rap id ly  osc i l la t ing  c i rcu lar  funct ions from the s lowly vary-  

ing ampl i tudes. Wi th  this ach ievement  we can again in tegra te  over E (re- 

peatedly) by parts to produce the var ious cont r ibut ions to E . The 
osc 

asymptot ic  forms of f(z) and g(z) determine the order  of the respect ive 

cont r ibu t ion  (since z % Z I/6, see below), and the ex t rapo la t ion  down to 

the smal l -Z range of in terest  is done by the ful l  z dependence of these 

aux i l ia ry  funct ions. 

I osc i l la t ions.  To obta in  the I osc i l la t ions of Nqu(E), we have to add 

the ITF osc i l la t ions (172) to those terms of (208) wh ich  exhib i t  the ex- 

ponent ia l  (216). Thus 

(Nosc (E) ] I = (Nosc (~)) ~,T ~ 
(5-218)  

~ ~  (_1)k+j i2~klE 
+ 2Re (zj)2v~ e [ I + ~ / 2 j ~  h(ZE)] , 

j=1 k~0 

where ZE has the s ign i f icance 

ZE - ~ (IE-~) = ~ /2 / ( j v~ )  (jv~-k) , (5-219) 

the last equa l i ty  uses (194). The k=0 terms are omi t ted because they are 

nonosc i l la to ry  and of no interest  to us in the present  context.  As a 

consequence of the jump of h(z) at z=0, the r ight -hand side of Eq. (218) 

is d iscont inuous for those values of E for wh ich  1 E equals one of the ~. 

Since the whole  Nqu(E) is cer ta in ly  cont inuous, this d iscont inu i ty  is 

not a phys ica l  effect, but rather  a product  of the mathemat ica l  separa-  

t ion into the three types of osc i l la t ions.  Indeed, there is also a dis-  

cont inu i ty  in the I,~ osc i l la t ions  (188), wh ich  exact ly  compensates for 

the one in (218); see Problem 10. Therefore,  we need not wor ry  about 

the d iscon t inu i t y  in (218), and shal l  pretend that all arguments of h(z) 

(and its der ivat ives)  are nonzero for E ~ 0. 
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The identity 

and (212) are employed in establsihing 

1 + ~ / - f ] ~  h(z E) 

= flzEl + glzEl-( zEf(zEl-1) 

= ~ I E / ~  [ f(z[) + i~7/~--~E g(zE)-g' (zE) 

We use this decomposit ion for the evaluation of the real part in (218), 

with the outcome 

(5-220) 

(5-221) 

Z ~  
-- (-I) k+j 

+ 2XE T~j 
j=1 k~O 

f(zE)c°s (2zkl E) 

- 2 ~ ~ (-1)k+j 
zj ~ ~  g(zE)sin(2~kl E) 

j=1 k~O (5-222) 

j=1 k~O ~ ] T Z  (ZE)C°S (2ZklE) 

These three double sums have differing large-Z behavior. The 

asymptotic forms of f(z) and g(z), given in (213), combined with the Z 

dependences 

X, X E ~ Z I/3 , 
-I/3 V~ % Z , 

Z E % Z I/6 , 

(5-223) 

imply that these three terms describe X oscil lations with amplitudes pro- 

portional to Z I/3, Z °, and Z -I/3, respectively. These simple Z dependen- 

ces, however, hold only for very large Z; more precisely: they hold when 

the asymptotic forms of f(z) and g(z) can be used for all j and k to be 

summed over. For the rather small values of Z we are interested in, there 

are j,k pairs (mainly the ones with k=2j) for which ZE is not in the 

asymptotic domain. In other words, while the asymptotics of f(z) and g(z) 
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identify the double sums of (222) to belong to the leading I oscillation, 

the next-to- leading one, ... , the extrapolat ion to the small-Z I/3 range 

is not done correctly if one sticks to these asymptotic forms. Instead, 

as we stated already at the end of the preceding section, this extrapo- 

lation is supplied by the use of the full f(zE) and g(zE). 

An important observat ion is that the ITF terms in (222) com- 

bine natural ly wi th the contribution from the asymptotic forms of f(z E) 

and g(zE). We i l lustrate this unif ication for the leading I oscillation. 

The relevant terms are here 

- 2~~- ( - 1 ) k  (~k) ~ cos (2~klE) 

k=1 

(-I) k+ j  I 
+ 2tE  _ c°s(2 kxEl 

j=1 k~0 

E >  (2nklE){ v~.(~) = - I (-1)kcos 
2 

k~0 

~ (-I) j 2 

j=l 

(5-224) 

i= 
k~O j ~0 

where the invariance of the summands under j ÷- j ,  k ÷ - k  has been used 

for rewrit ing the expressions. Now we can employ the identity 

> / - (- I ) j x l j  x 

j~0 j .... (5-225) 

I I 
sinx x 

twice and equate (224) to 

1 E > (-1)k cos(2zkl E) 

k~0 ~k sin (~k/v~) 

= _ 21 E ~ (-1)k cos (2~klE) 
~k sin (~k/~)  

k=1 

(5-226) 

The leading I osci l lat ion in (222) is therefore given by 
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(Nosc([))I = - 2 1 [ Z  (-1)k cos(2zkl[) 
zk sin (zklv ") 

k=1 E 

(5-227) 

+ 21[ ~ (-1)k+Jzk 

k#0 j=1 

{ (z [) cos (2zk 15) 

+ - - -  t 

where the el l ipsis represents the nonleading i osci l lat ions,  and f(z) 

equals f(z) wi thout  its leading asymptot ic  term 

I ~(z) - g(z) I (5-228) f(z) - f(z) - ~-~ , ~2z3 , 

l ikewise for g(z) and g(z). In passing, we remark that in the s i tuat ion 

- ~(zE ) of l inear degeneracy [ v~+0 ,  z E ~ v  ~ I/2 ÷~,  ~ - z~ 3] the second 

term in (227) vanishes, wh ich ident i f ies the f irst one as the leading 

I osc i l la t ion for l inear degeneracy. This can, of course, also be demon- 

strated direct ly. For detai l  consul t  Ref.12. 

A first part ia l  [ in tegrat ion of (227) suppl ies the leading 

I osc i l la t ion of Eos c. It is given by 

(-Eosc/Z4/3)l : Z ~ k  sin(2~klo) + . . . .  (5-229) 

k=1 

wi th the Z dependent  coef f ic ients s k given by 

(~o IzI13 ~[ (-I) k I 

~k = \ io lZ-313)L - T ~ - ~ -  s i n ( z k l ~ )  
(5-230) 

1-11k I11J I 
j=1 

] ]  

' = I 93..., very large values of j and k are Please note that, because ~o " 

required to obta in a vanish ing argument of f. These terms do not contr i -  

bute s igni f icant ly  to the Four ier  sum of Eq. (229). Therefore, our dis-  

regarding of the consequences of the d iscont inu i ty  of h(z) at z = 0 is, 

for all pract ical  purposes, harmless (not to ment ion the possib i l i ty  

that v' is i rrat ional);  see also Problem 11. 
o 

For very large Z, the sum over j does not contr ibute to s k in 

(230), so that wi th the numbers from (138) and (139) 
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Sk _ (-I)k+I 0 .02515  
k2 sin(1 .621k) 

for  Z >> I (5-231) 

! 
The f i r s t  few of  t he  S k s are thus  

s I = 0 .02518  , s 2 = 0 .06232  , 

s 3 = - 0 . 0 0 2 8 3  , s 4 : - 0 . 0 0 7 8 3  , 

S 5 = 0 .00104  , s 6 = 0 .00234  , 

s 7 = - 0 . 0 0 0 5 5  , s 8 = -0 .00100  

(5-232 ) 

These  l a rge -Z  va l ues  canno t  be used  for  the  sma l l -Z  r a n g e  o f  p h y s i c a l  

i n te res t .  The  n u m b e r s  l i s t ed  in Tab le  2 show  tha t  the  s k w i t h  even  k do 

not  c h a n g e  m u c h  w i t h  Z I/3, w h e r e a s  t h o s e  w i t h  odd k chance  m a r k e d l y  and 

d i f fe r ,  fo r  Z I / 3= I . . . 5 ,  s u b s t a n t i a l l y  f rom t h e i r  a s y m p t o t i c  v a l u e s  (232). 

A n o t h e r  r e a s o n  w h y  (232) canno t  be used  in the  sma l l -Z  r a n g e  is the  sub-  

jec t  o f  P r o b l e m  12. 

Th is  e s s e n t i a l  d i f f e r e n c e  b e t w e e n  Sl,S3,S5,... and s2,s4,s6,... 
is u n d e r s t o o d  upon  r e c a l l i n g  tha t  { (z) ,  the  d i f f e r e n c e  b e t w e e n  f(z) and 

i ts  a s y m p t o t i c  form, is la rge  o n l y  for  sma l l  a r g u m e n t s  z. In Eq. (230) 
! 

th is  r e q u i r e s  jv~ ~ k. Now, v O ~ 2 - 1/16, so t ha t  the  t e r m  w i t h  2j = k is 

p i c k e d  out,  w h i c h  happens  o n l y  for  even  k, o f  course .  Le t  us use th is  

i n s i g h t  to f ind  an a p p r o x i m a t i o n  fo r  S k. If k is odd,  (231) w i l l  do. I f  

k is even,  we  add  the  j=k /2  t e r m  of  t he  sum in (230), w h e r e  we e v a l u a t e  

the  r e l e v a n t  f(z) a c c o r d i n g  to 

Tab le  5-2. C o e f f i c i e n t s  Sl,S2,S3, and s 4 for  ZI /3 = I, 1.5, ..., 5. 

Z I/3 S S S S 
I 2 3 4 

I 0 .02467  0 .00683  - 0 . 0 0 2 4 8  -0 .00132  

1.5 0 .02490  0 .00876  -0 .00261 -0 .00166  

2 0 .02500  0 .01035  - 0 . 0 0 2 6 8  -0 .00193  

2.5 0 .02506  0 .01174  -0 .00272  -0 .00216  

3 0 .02509  0 .01297  -0 .00275  -0 .00236  

3.5 0.02511 0 .01409  -0 .00277  -0 .00255  

4 0 .02513  0 .01512  -0 .00279  -0 .00271 

4.5 0 .02514  0 .01607  - 0 . 0 0 2 7 9  -0 .00287  

5 0 .02515  0 .01696  - 0 . 0 0 2 7 9  -0 .00301 
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1 1 1 
- ~ + ~ o/~Tk (5-233) 2-v' 

o 

In addi t ion to the def in i t ion of f(z) in (228), we made use of 

I + 0 (Z 2) ~ I f(z<0) = - ~ - ~  , (5-234) 

which is an immediate consequence of Eqs. (212) and (214). The correct ion 

to (231) for even k is, therefore, given by 

( lo lZ113h(-1)k (-I) k12 T I I ~/~- 

{Io/ZI/3 ~ (_1)k/2 (5-235) 

= \~o/Z_3/3/  2 (~k) z [ -  I + I 2 ] 
° 

We insert the numbers given in (138), (139), and (192), and summarize 

in stat ing 

0.02515 : I/sin (I .621k) for k e v e n  , 

Sk ~ ~y---× ~_1/s in(1.621k)+(_1)k/2(20._~ 30 1-990ZI/6) 

(5-236) 

for k odd. 

For most appl icat ions this approx imat ion suff ices. One must be aware of 

its l imitat ions, however. Evidently,  the arguments that led us from (230) 

to (236) are such that (236) is rel iable only if nei ther  k nor Z I/6 is 

large. [The fa i lure for large Z is also demonstrated by the fact that 

the exact s k become Z independent for Z ~I ,  whereas the even-k ones do 

not in (236).] Fortunately,  the Z values of interest are not large (Z I16 ~ 

ranges from I to about 2.2), and the sum over k in (229) converges rapid- 

ly, so that S k is needed only for the f irst few k's. When keeping this 

in mind, there is l i t t le danger in using (236) instead of (230). 

The f irst par t ia l  E in tegrat ion of (227) produced the leading 

I osc i l la t ion  of Eosc, given by Eqs. (229) and (230). A second part ia l  E 

in tegrat ion suppl ies a cont r ibut ion to the next - to- lead ing I osci l lat ion.  

Another cont r ibut ion comes from the next - to- lead ing term in INosc(E)ll 

which supplements (227). These two contr ibut ions combined lead to a re- 

f inement of (229), 

(- osc  ° 
Z-~-/~/I Sksin(2~kl  o) + Z - I / 3 >  CkCOS(2~klo) 

k=1 k=1 

+..° 

(5-237) 
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Table 5-3. Coef f ic ients  ci, c 2, c3, and c 4 for Z I/3 

Z1/3 

= I, 1 . 5 , . . . , 5 ;  >>I 

c I c 2 c 3 c 4 

1 -0.04584 0.00134 0.00098 -0.00059 

1.5 -0.04843, 0.00792 0.00121 -0.00176 

2 -0.04973 0.01601 0.00138 -0.00311 

2.5 -0.05047 0.02518 0.00151 -0.00459 

3 -0.05092 0.03519 0.00161 -0.00616 

3.5 -0.05122 0.04588 0.00168 -0.00780 

4 -0.05142 0.05712 0.00173 -0.00948 

4.5 -0.05157 0.06883 0.00178 -0.01120 

5 -0 .05168 0.08094 0.00181 -0.01294 

>> I -0 .05218 4.06250 0.00200 -0.25342 
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2 3 5 

F i g . 5 - 1 ? .  C o n t r i b u t i o n s  to  -Eosc/Z4/3 from I o s c i l l a t i o n s ,  as a f u n c t i o n  

of z l / 3 ;  (a) l e a d i n g  I o s c i l l a t i o n  w i th  exac t  s k from (230); (a '}  l i k e  

(a) ,  but  us ing  approx imate  s k from (236);  (b) n e x t - t o - l e a d i n g  I o s c i l l a -  

t i o n  w i th  exac t  Ck; (b ' )  l i k e  (b) w i th  approx imate  Ck; (c) sum of (a) 

and (b);  ( c ' )  sum of (a '}  and ( b ' ) .  In ( a ) , ( a ' ) , ( b ) ,  and (b ' )  s i x  terms 

are  summed. 
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The coef f ic ients  c k are given by an express ion analogous to (230) and 

can be approx imated in the fashion of (236). We shal l  not exhib i t  these 

detai ls, and refer the reader to the or ig ina l  publ icat ion.  18 Here we 

are content  w i th  the numbers l isted in Table 3. We observe that these 

c 's d i f fe r  from their  large-Z values as long as Z I/3 is not very large, 
k 

whereby the even-k ones are only a small  f ract ion of their  asymptot ic  
! value. Further, we note that the Sk'S and c k s are of roughly the same 

size. Consequent ly ,  the nex t - to - lead ing  I osc i l la t ion  is not dominated 

by the leading one in the phys ica l  range of Z. This is also conf i rmed 

by Fig.17, where, as in Tables 2 and 3, we not ice the growing impor tance 

~ 2 .  of the even-k terms for increas ing Z. This is a consequence of Vo 

For example, when Z becomes very  large, the rat io s2/s I is 2.48, so that 

then the dominant  per iod of the osc i l la t ions is halved. This ef fect is 

even more pronounced for the nex t - to - lead ing  I osc i l la t ion,  as is v is i -  

ble in Fig. 17 and is numer ica l ly  expressed by c2/c I = -77.9 for Z >>I. 
t I/3 However, be ing suppressed by a fac or of Z , it is never the less smal l  

compared to the leading I osc i l la t ion  for such enormous values of Z. 

v osci l la t ions.  The ~ osc i l la t ions of Nqu(E) are those terms in (208) 

wh ich  exhib i t  the exponent ia l  (217). Thus 

(Nos c (E)) i~j i2~jv~ + v i h  ( 
9=I k=-~ /2-j 

i2Ej VE (0) (5"238) 
x e 

The d iscont inu i ty  of h(z) at z=0 does not mat ter  here, because we en- 

counter the combinat ion  zh(z). Since accord ing to (194) ~=(k-j)/(jv'~), 

where we recal l  that 'rE=l, the ~=0 terms are given by k=j. For k~j, we 

can employ the d i f fe rent ia l  equat ion (210) that is obeyed by h(z) for 

z~0, and wr i te  

i2~j ~ (5-239) 

I h' ( 2 /~v 1~ h' I/2"-/-~") (k-j)) 
2r~j E 

At th is stage, we have 

(Nos c (E) ] 
• V 

2 ~ (-I) j i2~J~E (0) 

j=1 
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k#j 
which is further s impl i f ied upon set t ing m-k-j and using h' (-z)=h' (z): 

(Nos c ([)) 2 Z 1 ( 2 ~ j v [  (0)) = - ~ (zj)2 cos 

j=1 (5-241) 

i2~j ~E (0) 

4 < e i f  - v 7  R e  
j =I (~j) 2 m=1 

(-1)mh' (/2-7 (jv'~) m) 

In this form the first sum over j is immediate ly  ident i f ied as the lea- 

d ing osci l lat ion;  s ince h' (z) ~ z -2 for z >>I, the double sum is smal ler  

by a factor of v~ ~ Z -I/3 for large Z. 

This leading v osc i l la t ion is bui l t  l ike the leading ITF osci l -  

lat ion in (172). We can therefore quick ly  wr i te  down the leading v osci l -  

lat ion of the b ind ing energy: 

I 
~___ 1 sin(2~JVo (0)) + (5-242) 

('Eosc)v Vo o j=1 ,,~ (0) ~ . . . .  

This is, of course, of the shape of the leading ZTF osc i l la t ion in (174), 

p lot ted in Fig.14, w i th  the per iod shor tened by the f ract ion 

1 1 o o 2 1 
Vo (0} 1 ~' 1.2 . ~ ' + ' v  1 46884 ' (5-243 

o o - 2AOVO O O " 

where (189) and (190) are used, and the ampl i tude reduced by the factor 

1 1o 1 

~"{' (0) toVo 16.0256 
o o 

(5-244 

Here one needs 

~' ( 0 ) = o  ~ ( t [ v [  :-1"22A[v[J I''" 

E=O 

= ~ o %  ÷ ~ o ; o -  ~o io% 12.,, - ~Ao~ ° (5-245 

= ½ t % ~ o +  (~o+iI~o I = 32.9806 z -3/3 , 

which ut i l izes (198) and the numbers in (138) and (139). The ampl i tude 
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of the leading TF osc i l la t ion  is 0.015Z 4/3 see Fio. (14) and Eq. (200) r i 

so that the leading v osc i l la t ion  has an ampl i tude of 0.001 Z 4/3" . This 

is so small  that we need not cons ider  the nex t - to - lead ing  v osc i l la t ion.  

Semic lass ica l  p red ic t ion  for Eos c. The t ime has come to put things to- 

gether. We have ident i f ied var ious cont r ibut ions to the b ind ing-energy  

osci l la t ions,  

= + ) + (5-246) -Eos c (-Eosc)I, ~ (-Eos c I (-Eosc)v 

The separate ca lcu lat ions of the three types of osc i l la t ions resul ted in 

Eqs. (195) - (199) for the mixed l,v osc i l la t ions,  in Eq. (237) w i th  (230) 

for the i osc i l la t ions (which conta in  also the £TF terms), and in Eq. 

(242) for the ~ osci l la t ions.  Figure 17(c) tel ls us that the ampl i tude 

of the i osc i l la t ions is about 0.05 Z 4/3 whereas the other two terms in 

(246) both have an ampl i tude of about 0.001 Z 4/3. As far as the mixed 

l,v osc i l la t ions are concerned, this s tatement  is t rue for the smal l -Z 

range of phys ica l  interest. In contrast,  when Z ~I ,  this osc i l la t ion  is 

~0.001 Z 3/2 and the h-osc i l la t ion is ~ s2 Z4/3 ~ 0.06 Z 4/3, so that one 

needs at least Z I/6 10 60, or Z k 5×10 , for the mixed l,v osc i l la t ions to 

be dominant.  This is r id icu lous ly  far beyond the domain of physics. [In 

pass ing we remark that we have just de l ivered the jus t i f i ca t ion of the 

statements fo l lowing Eq. (150)]. 

Both the v and the l,v osc i l la t ions are very small, and we 

shal l  neglect  them completely.  Inasmuch as the subsequent  ~ osc i l la t ions 

in (237) are expected to be of larger ampl i tude, this is thourough ly  

just i f ied. We must also not forget that the approx imat ion  (189) w i th  ~ 

from (191) in t roduces an error, in v iew of wh ich  it is qui te  unnecessa-  

ry to pay at tent ion to the small  correct ions that the ~ and the l,v os- 

c i l la t ions represent. Consequent ly,  our semic lass ica l  p red ic t ion  for 

E0s c is given by the two terms on the r igh t -hand side of Eq. (237), the 

sum of the leading and the nex t - to - lead ing  I osc i l la t ion:  

/ -E°se~ = y S k s in(2~kl  o) + Z -I/3 ~ c k cos (2~klo). (5-247) k z4/3]sc k=1 k=1 

It is p lot ted in Fig.17(c).  We compare it w i th  the HF pred ic t ion  of Fig.2 

in Fig.18. 

Both curves agree in a number of  detai ls. First, they have the 

same phase and Period, wh ich  is g iven by l o, the max imum value of the 
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angular  quantum number in the TF limit. Then the i r  ampl i tudes are about 

the same. Further,  they both  show rather  sharp s t ruc ture less  minima,  and 

max ima w i th  an evo lv ing  doub le  structure.  The lat ter  phenomenon is some- 

what  more pronounced in the semic lass ica l  curve. But s ince we cannot 

rea l ly  compare w i th  exper imenta l  data, there is no way of judging wh ich  

one is  right. 

The main d i f fe rence  between the HF pred ic t ion  for Eos c and the 

semic lass ica l  one is that the second curve is shi f ted down in Ref.18. A 

smooth term of order  Z 4/3 is obv ious ly  m iss ing  in the b ind ing -energy  for- 

mula. Our ca lcu la t ion  of E concent ra ted  on the osc i l l a to ry  cont r ibu-  
osc 

t ions and cons is ten t l y  d is regarded  all smooth  cont r ibut ions,  so that this 

miss ing  term could not be found. As we have remarked around Eq. (4), there 

are ind icat ions that  the cor re la t ion  energy (4-248) must  be inc luded into 

F i g . 5 - 1 8 .  Comparison of our s e m i c l a s s i c a l  p r e d i c t i o n  (SC) f o r  t h e  b in-  

d i n g - e n e r g y  o s c i l l a t i o n s  w i th  t h e  HF p r e d i c t i o n .  Ten terms are added in  

each sum of (247).  

1 2 3 4. 5 

Z I/3 
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the descr ip t ion  in order  to be able to find the correct  smooth term of 

order  Z 4/3 . 

A l though the HF method produces the curve of Fig.2 [str ict ly 

speaking, not even that, s ince Estat of (I) is not a HF result ] ,  it pro- 

vides no insight  whatsoever  for the or ig in of these osci l la t ions.  In 

contrast,  the semic lass ica l  ca lcu la t ion suppl ies us w i th  an unders tan-  

d ing of the over-a l l  ampl i tude factor Z 4/3 [recall that this is a conse- 

quence of both the scal ing propert ies of the TF potent ia l  and the bent 

shape of the TF line of degeneracy  Vo(%)] and of the per iod (given by 

the largest angular  momentum in TF atoms); it also gives an exp lanat ion 

for the in t r igu ing double s t ructure of the maxima. It is the beg inn ing  

of an e f fec t ive  ha lv ing of the period: the even-k coef f ic ients  in (247) 

change enormous ly  as Z I/3 increases; look again at Tables 2 and 3 as 

wel l  as at Eq. (236). To see how this effects the evo lv ing doub le -peak  

st ructure of the maxima, we decompose (247) into 

-4" 

N 

o 

1.1.1 
I 

0.06 

Q04 

Q02 

-0.02 

- 004 

-0.06 
1 2 3 4 5 

Zl/3 

F i g . 5 - 1 9 .  T h i c k  c u r v e :  HF; t h i n  c u r v e ;  S C,  odd; dashed  c u r v e ;  s c ,  even .  
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and 

-Eosc h 
Z-~7 ~] = k  (Sk sin(2~klo) + Z-I/3akC°S(2~kio)) 

SC, odd k=1,3,5... 
(5-248) 

(-Eosch = /3akCOS(2Zklo) ) Z 4-~7~) > (~k sin (2~kXo) + Z-I " 

SC, even k=2,4,6,... 
(5-249) 

These are plotted, along with the HF oscil lations, in Fig.19. We ob- 

serve that the relative phase of (248) and (249) is such that the extre- 

ma of the first coincide with the minima of the second. The sum has, 

therefore, sharp structureless minima and broad doubly peaked maxima. 

And the increase in amplitude of (249) is responsible for the growing 

dip between the pairs of maxima. 

Other manifestat ions of shell structure. In this section we shall brief- 

ly discuss other quantit ies than the binding energy which show shell ef- 

fects. 

In Chapter Three we found that the density of electrons at the 

site of the nucleus is given by 

( 2 Z )  ~ 
n o / - 4 ~  = 1.2021 - 1.7937 Z -2/3 + 0(1/Z) (5-250) 

for a neutral atom; see Eq. (3-166). The estimate of (3-167), 

0(I/Z) ~ 1.82/Z - 0.82/Z 5/3 (5-251) 

is compared to the HF predict ion of 0(I/Z) in Fig.3-5, where we notice 

that n o contains on osci l latory part. Since the amplitude of the oscil- 

lations around the smooth curve in this plot decreases with Z whereby 

the period gets longer, the natural surmise is that we have to supple- 

ment (251) by a term periodic in Z I/3 with amplitude Z -4/3. We gain some 

insight by considering Bohr atoms, for which 

12z)  : 1.2021 I I N)-2/3 5 3 -4/3 _I no/ 4r~ - ~- + ~(~N) (<y>2 ~) 

+ 0 (N -5/3) , (5-252) 

as obtained by calculat ing the term of order N -4/3 in Problem I-5. Here 

y is the solution of Eq. (6). For neutral Bohr atoms, the leading oscil- 
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latory cont r ibut ion to n 
o 

/. /(2z)~h 
V'o" 4~ /osc = 

is, therefore, 

1 46 Z-4/3 Z (-1)k • T ~ E  cos(2Ekx1.145 Z I/3) , 

k=1 (5-253 

wh ich  has the expected structure. For real atoms, the osc i l la t ions in 

n o are st i l l  wa i t ing  to be calculated. 

In Chapter  Four we found the ion izat ion energ [ as predic ted 

by the s tat is t ica l  model• The resul t  is reported in Eq. (4-294) and c o m -  

pared to exper imenta l  data in Fig.4-8. Obviously,  there are very pro- 

nounced shel l  effects, wh ich we isolate by wr i t ing  

Iosc(Z) = I(Z) - Istat(Z) (5-254 

One natura l ly  presumes that I (Z) equals Z -I/3 t imes a f luc tuat ing 
O S C  

funct ion of Z I/3 This is conf i rmed by the exper imenta l  data presented 

in Fig.20. A semic lass ica l  pred ic t ion for Ios c has not been ca lcu la ted 

as yet. For the evaluat ion of 

Iosc(Z ) = Eosc(Z,N=Z-I)  -Eosc(Z,N=Z ) (5-255 
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one needs E0s c for w e a k l y  i on i zed  atoms. Th is  requ i res  a s tudy  of the  

TF l ines of  d e g e n e r a c y  for  such  ions,  w h i c h  d i f f e r  s u b s t a n t i a l l y  f rom 

those  of  neu t ra l  TF a toms because  of  the l o n g - r a n g e  Cou lomb  par t  in the  

e f f e c t i v e  p o t e n t i a l  o f  an ion. 

A lso  in Chap te r  Four  we obse rved ,  in Tab le  4-I, that  the  s ta-  

t i s t i c a l  m o d e l  p r e d i c t i o n  for  the  e x p e c t a t i o n  va lue  of  i/r, for  neu t ra l  

a toms,  
I <-> = 1 .79374 Z 4/3 Z 2/3 r s ta t  - Z + 0 .44983 (5-256) 

agrees we l l  w i t h  the  c o r r e s p o n d i n g  HF p red i c t i on .  The numbers  of  Tab le  

4-I i nd i ca te  tha t  the d i f f e r e n c e  is Z 2/3 t imes  an o s c i l l a t o r y  f unc t i on  

of Z I/3. For th is  f u n c t i o n  we w r i t e  

I 
<-> = <~> _ <!> (5-257) r osc  r r s ta t  

In Fig.21 the HF p r e d i c t i o n s  for  <I / r> are p lo t ted .  S ince,  see Eq. 
O S C  
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F i g . 5 - 2 1 .  HF p r e d i c t i o n  f o r  <I> /~2/3 
r osc -~ as a f u n c t i o n  of Z I/3 
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and 

we f ind 
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<1> _ 

r 
_ _ ~-~ E(Z,N) I' 

L 

N=Z 

_ d 
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Inserting the semiclassical prediction for Eosc, Eq. (247), supplies the 

leading terms 

(<!> + C)Iz 2/3 
r osc 

2~ Io < 
-~ 3 Z I/3 k SkCOS (2~kl o) (5-261) 

k=1 

I ~ 4 2~ lo 
ZI/3 L__(~Sk 3 Z17]k  %)s in (2~kX o) 

+ 

k=1 

(<l>osc)HF_ in Fig.5-22. The agreement is as good as This is compared to 

one could expect, but not better. Certainly, an improvement upon the 

semiclassical prediction for <I/r> is asked for. Possibly the subse- 
osc 

quent terms in (247) are significant, and presumably some knowledge of 

(Z,Z) is required. Nothing has been done along these lines so far. 

Problems 

5-I. Show that, more precisely than Eq. (9), Eq. (6) is solved by 

y = (~N)3 I/3 + ]-21 (~N)3 - I / 3  _~1'1t~)'3(~N)3 -5/3 + ]I" 1t]_~j, 4(~N)-7/3+... 

observe, in particular, that there is no term proport ional to N -3/3. 

5-2. Show that a potential V(r), which approaches -Z/r for r ÷  0, must 

be of the form "Z 4/3 times a function of zl/3r", if Eq. (17) holds (with 

independent of Z, of course). 

5-3. The Hamilton operator of a particle moving along the x-axis is 

1 2 
nip = ~Px + / ~  IxL 

Show that the eigenvalues of HID are related to the zeros of F_1(y) , 

given in (4-158). Find approximations to these eigenvalues both by em- 

ploying the TF quantizat ion (37) and by uti l izing (4-170). What do you 

notice? (Incidentally, this produced Fig.7.) 

5-4. Show that, for r 2 > r I > 0, 

r2 dr  :~1+r2 rlV-C~q2 ) , 
f --r- /(r-r I) (r2-r) = ~k 
r I 
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r 2 
f ~ / / ( r - r  I) (r2-r) = ~/~r l r  2 
r I 

r1+r 2 
" J r2 dr r/~(r-r l) (r2-r) = ~ 2 

r I 

Use these integrals to conf i rm Eqs. (56), (115), and (122). 

5-5. Use (84) in (97), in conjunct ion wi th  the known result  for the 

Coulomb potent ial ,  to der ive (90). 

5-6. Show that for the Tietz potent ia l  (4-222) one has, for E=0, 

= ½ ¢ Z - / - E  ' = ' v  = 2 ,  v "  = 0. r ° = R, 1 ° ~ ' ~o = ' Vo o o 

Can you conf i rm the suspic ion that Vo(1) is the stra ight  l ine Vo(1) = 

2(ko-~) ? 

5-7. Evaluate (92) for the neut ra l -a tom TF potent ia l  and conf i rm (140). 

5-8. The Bernoul l i  polynomials Bm(X) are generated by 

t e xt ~ t TM 

et_l - >  B re(x) ~.t 
m=0 

Show that Eq. (171) is equivalent  to 

~ ( _ 1 )  m+1 
[_Nos c(E))+£TF = 4 ( re+ l ) !  

m=l 

m(IvE(l)) 
Bm+1 (½+ < IE> ) (~ )  I 

t = t  E 

(Footnote 4 to Chapter  Three may prove useful.) 

5-9. Find a cor responding express ion for (-Eosc)iT F. 

5-10. Suppose E is such that for some j the number jv~ is an integer. 

Then the r ight-hand side of (188) is d iscont inuous for this E. By which 

amount? As a consequence of the d iscont inu i ty  of h(z) at z=0, there is 

also, for this E, a d iscont inu i ty  of the r ight-hand side of (218). Show 

that it exact ly cancels the one of (188). 

5-11. If jv~ - k  = E, 161 <<I, then the sine funct ion in (230) is par t icu-  

larly small  and the first f(z) is very large. Conclude that, for such a 
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k, lolZ I13 k j 

Sk ~ (ko/Z_3/31 (-1)n.k (-1)n,j [ l~k._+ ~ 1  ] 

where the sign agrees with that of E. Insert numbers and compute a31 

and s 62" 

5-12. Use (232) to infer that, for Z >>I, 

I (_i)k/2 20 k~- for k even 

Sk/S I 
(_i) (k-I)/2 1 k-- / for k odd 

Insert this into (229) and arrive at 

~ t 1 1 1<1o l > l ]  
( - S o s c ) z  i ~ ( ~ -  - 4 , o 

o 5~3 <21o><<21o >2 -~11 

o 

Find the amplitude of these oscillations, and their period. 

5-13. For the exact Vo(1) , Eqs. (71) and (72) imply 

1 o 
4 ~ dl I Vo(1) = Z 

o 

Show that the approximate Vo(1) of (189) does not obey this equation. 

Why does this not discredit the approximation? 



Chapter Six 

MISCELLANEA 

In this f inal Chapter  we shal l  br ie f ly  d iscuss a few topics 

wi thout  p resent ing  thorough t reatments.  Keeping w i th  the general  theme 

of these lectures, we shal l  st ick to ground state proper t ies of atoms. 

There are, of course, lots of  o ther  appl icat ions of semic lass ica l  me-  

thods. Maybe one should draw the reader 's a t tent ion to two conference 

proceedings,  I where  many aspects of semic lass ica l  approx imat ions are 

dealt  with. 

We shal l  also not concern ourse lves wi th  appl icat ions of the 

models deve loped in the preced ing Chapters. Instead, we shal l  focus on 

addi t ional  re f inements and point  to poss ib le  future developments.  

Re la t iv is t ic  correct ions.  In F ig.5-3 we observed that in larger atoms 

re la t iv is t ic  effects cont r ibute  more to the tota l  b ind ing energy than 

the shel l  ef fects of Chapter  Five. An extens ion of the theory to in- 

c lude re la t iv is t ic  correct ions is, therefore,  cal led for. Now, if we 
1 2 .  

s imply  replace the k inet ic  energy ~p in the independent -par t i c le  Hamil-  

ton opera tor  (2-I) by the re la t iv is t ic  expression,  so that (~ = 1/137.036 

is the f ine s t ructure constant) 

H = ~l - - - -£( / l+a2pT- 1) + V ( ~ )  , (6-I) 

then we f ind in the TF l imit the re lat ions 

I ?2 Z 
4 ~  (V + ~ )  = n 

(6-2) 

3/2 1 3/2 ~2 
= 3~2[-2(V+~)] (I +-~-[-2(V+~)]) 

In part icular ,  at smal l  d is tances when V ~ -Z/r, the dens i ty  is 

I /Z~  3 
n ~ 3--~'--r' for r ÷ 0 (6-3) 

This dens i ty  does not in tegrate to a f in i te number of electrons. We 

have arr ived at complete nonsense. 
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Equat ion (2) was f i rst  obta ined by Va l la r ta  and Rosen in 

1932, and by Jensen in 1933.2 Ever s ince people have argued that the 

d ivergent  behav ior  (3) is overcome by recogniz ing that  the e lect rosta-  

t ic energy w i th  the nucleus is d i f fe rent  from -Z/r for r ÷  0, because 

of the f in i te s ize of the nuc lear  charge d is t r ibut ion.  We know bet ter  

than that: the breakdown of the semic lass ica l  approx imat ion  at smal l  r 

(small on the atomic scale, but st i l l  enormous on the nuc lear  scale) 

requi res a specia l  t reatment  of the s t rong ly  bound electrons. In other  

words: re la t iv is t i c  ef fects can only be inc luded into the descr ip t ion  

if they are accompanied by the Scott  correct ion. 

To i l lus t ra te  this remark we compute the leading re la t iv is t ic  

cor rec t ion  to the b ind ing energy of a neutra l  atom. That is: to order 

(Z~) 2. The re levant  add i t iona l  terms in the Hami l ton operator  are 

I 2 4 1 2 V2 
Are I H = - ~  p + ~ V , ( 6 - 4 )  

2 
of  wh ich  the f i rst  one is the cor rec t ion  in (1) to order  ~ and the se- 

cond one is the we l l - known Darwin  term. As a mat te r  of fact there is al- 

so the term represen t ing  sp in-orb i t  coupl ing, but this resul ts in a le- 

vel  sp l i t t ing  w i th  no ef fect  on the tota l  energy• so that we need not 

take it into account. 

A f te r  sp l i t t ing  El(~) as in Eq. (3-I) we can look at the va- 

r ious cont r ibu t ions  separately.  We begin w i th  the ef fect  of the p4 term 

on Es, the energy of the s t rongly  bound electrons. Since the expecta-  
4 

t ion value of p in the m- th  Bohr shel l  is, averaged over the angular  

quantum number, (see Prob lem I ) 

<p4> = 5(Z/m) 4 (6-5) 
m • 

the energy of a ful l  Bohr shel l  is changed accord ing to 3 

2m 2 ( - 2m~ z ) = - Z 2 

_ Z z 2 5 ]  
+ 2m 2 ( 2m-~-f) (I+ (Z~) 4-~, (6-6) 

Z 2 (1+ 2 5 
= -  (z~) 47) 

Consequently, when n s Bohr s h e l l  a re  f i l l e d ,  we have 

2 s  E s Z 2 ns- 
= -  (l+(Za) 4--~--T) = 

m = l  



372 

5 co oo 

= - Z2ns - Z2 (Z~)2 ~ I ~  ~ - I  ~ m 1 _ _ f )  

m=1 m=n +1 s 

, (6-7) 

or 

- - -  5i Es Z2ns 4 L 6 - 

m=n + I 
s 

The connect ion between n s and the separat ing b inding energy ~s is 

Z2(1 + 2 5 Z 2 (1+(Z~)2 5 
(Z~) 4n--~-) > (s  > 2 ' +1) z ~ ( n s + t ) ~  ] , (6-9)  2n~ s (ns 

which is the analog of Eq. (3-6). Thus ns=[V s] wi th 

2v 2Z2[1+(zc024-~ ) = ~s 
s s (6-10)  

_ Z ( I+ (Z~)2  5 2~s~ 
Vs /2 ~--~ 8 --~) 

where we consis tent ly  d iscard terms of order 

nonosci l la tory  terms in Es, 

Es {~s - ~ + (z~l - ( - - -  } 

Z I 2 [52_ ~ 5 /2~s 

(Z~) 4. Now we exhibi t  the 

(6-11) 

which ident i f ies the re lat iv is t ic  correct ion to E 
s 

but ion from the Darwin term) as 

A(1) Es =_  Z 2 2f~2 5 /~s] 
rel ( Z ~ )  8 Z , 

(without the contr i -  

(6-12) 

The corresponding correct ion to E ~  s is 

7/2 7/2 
A(1) = ~2 5(d~) { [_2 (V+~) ] _ [-2 (V+~s) ] 

rel E ~  s - 56~ -----/ 

- 7(~s-~) [-2(V+~s)] 5/2} , 

(6-13) 

where one should not fail to not ice the typical  strong cancel lat ions 
for small  r. We insert  the neutra l -a tom TF potent ia l  along wi th  ~=0, 
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whereby V ~  -Z/r suff ices in the terms referr ing to the st rongly bound 

electrons, and arr ive at 

A (I) E = 3 zS/3(Z~)2 j dx 7/2 )7/2 
rel 66s 14-a 2 x3-~7~2 { [F (x) ] - (I -x/x s 

7 x (1_X/Xs)5/2} (6-14) 
2 x s 

wi th  x 
s 

= Z4/3/(a~s). A part ia l  in tegrat ion turns this into 

co  

A(1) = 3 Z5/3 x-I/2 5/2 F 
rel E ~  s 2a  2 (Zc~) 2 fdx{  [F(x)] ' (x) 

o 

5 x I/2 ) 3/2 } 
+ y ~ (I -x /x  s 

s 

, ( 6 - 1 5 )  

where the two contr ibut ions can be integrated separately. The indiv idual  

results are 

co x I/2 3/2 ]m - I / 2  = ZI/3 a 2 { 2 ~ s  
f dx - 7 - ( 1 - x / x  s) = I--6 Xs 6 Z ' (6-16) 

o s 

and after using the d i f ferent ia l  equat ion obeyed by F(x) fol lowed by an- 

other par t ia l  integrat ion, 

c o  

~ d x  x-1/2 [F (x) ] 5/2 F' (x) = 
o 

co  

I 2 = - y ( B  - ;dx[-F'(x)1 3] 
o 

oo  

f d x  F(x)F' (x)F"(x) 
O 

(6-17) 

I x 2.16864 2 

the re levant numbers can be found in Eq. (2-203) and Problem 2-3. Thus, 

2 5 A(1) = - Z 2(z~) {~ Z 
tel E ~  s 

(6-18) 

_ Z - I / 3  3 2  2(B - fdx[-F'Ixlj3)} , 
o 

which combines wi th  (12) to the ~s independent result  

co  

4(1)rel E = -  Z2(Z~)21~42 - Z-1/34a-f~m3 [~2_ f dx[_F, (x)]31 } . (6-I 9) 
o 



374 

Next  we cons ide r  the  c o n t r i b u t i o n  f rom the Darw in  term. S ince  

72V = _ V 2 Z V 2 Z) 
+ (V + r 

= 4 ~  Z 6 ( ~ )  - 4 ~  n ( ~ )  , 

(6-20) 

the i nduced  energy  change is 

(X 2 
A (2) E = { 4 ~ Z n ( ~ = 0 )  - 4~](d~) [n(~)] 2} 

re l  T ( 6 - 2 1 )  

Here we need n 
o 

= n(~=0) w h i c h  we have  ava i l ab le  in Eq . (3 -166) ,  

_ ( 2 Z ) 3 6 7  1 3 B Z-2/3] (6-22) 
no 4~ ( ) - a 

m=1 

The ma in  c o n t r i b u t i o n  to the i n teg ra l  of  the squared  d e n s i t y  is supp l i ed  

by the s t r ong l y  bound  e lec t rons .  In th is  sma l l - r  reg ime,  the dens i t y  is 

of the fo rm "Z 3 t imes a func t i on  of  Zr."  Consequen t l y ,  the i n teg ra l  in 

(21) is (to l ead ing  order)  p r o p o r t i o n a l  to Z 3, so that  i ts c o n t r i b u t i o n  

to the energy  is of  r e l a t i ve  o rde r  Z -3/3 as compared  to the n term. At 
o 

the p resen t  leve l  of  accu racy  th is  is to be neg lec ted .  Thus 

A(2)rel E = Z2(Za) 2 { ~ ' - - ( ~ ) 3  _ Ba Z - 2 / 3 }  ' ( 6 - 2 3 )  

m=1 

w h i c h  we add to (19) to ob ta in  the r e l a t i v i s t i c  b i n d i n g - e n e r g y  co r rec -  
2 

t ion  to o rde r  (Za) : 

-A re  I E = Z 2(Zc~)2 ( _ (I) 3) 

m:q 

- I / 3  3 
- Z  4a 2 

+ Z-2/3 B} 

co 

(B 2- J'dx[F (x)]3) 
o (6-24) 

The numer i ca l  v e r s i o n  hereo f  is 

-Are l  E 

I 2 ~ z  (za) 2 
- 6 .833 - 16.600 Z - I /3 + 14.350 Z -2/3 (6-25) 

AS the na tu ra l  un i t  of th is  r e l a t i v i s t i c  ene rgy  c o r r e c t i o n  we chose its 

amount  for the o n e - e l e c t r o n  ion, 
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_ I Z 2 
1 ( I_ / i_1z~)2)-2"  

o~ 2 

= ! z 2(zo.) 2 [ 2 )2 
8 ~ \1+ /1 -  (ZoO 2 

(6-26) 

= I Z 2 ( Z o , ) 2 1 1 + O ( ( Z o 0 2 ] ]  
8 " ' 

which is qui te analogous to measur ing  the nonre la t iv is t ic  b inding ener- 
1 2  

gy in mul t ip les of ~Z . 

The leading and the nex t - to - lead ing  terms in (24), or (25), 

were f irst der ived by Schwinger  in 1980. 4 The third term, of re lat ive 

order Z-2/~-- was found by Dmi t r ieva and Pl indov in 1982.5 We compare the 

semic lass ica l  p red ic t ion  (25) w i th  the cor responding HF numbers 6 in Fig. 

I. Except for very smal l  values of Z, the agreement is marvelous.  The 

re lat ive dev ia t ion  is less than 10; 1.0; 0.25% for Z ~ 13; 40; 54, re- 

spect ively.  The larger d isc repancy  for Z ~ 10 is not unexpected; it is 

i I ~ ,  - I I 

I "  

C / L,  . 

/ 

: / /  

~3F-  . 

N - -  - 

--1~,2 
m 

<fl III / , , i " 
01 

0 25 50 75 100 125 

Z 

F i g . 6 - 1 .  Comparison be tween Eq. (26] and c o r r e s p o n d i n g  HF data  ( c r o s s e s ) .  

Curve (a): l e a d i n g  p lus  n e x t - t o - l e a d i n g  t erm;  curve  (b):  a l l  t h r e e  terms .  

The dashed c u r v e  (c) i s  S c o t t ' s  e s t i m a t e  (27) .  

also noth ing to wor ry  about because for these smal l  atoms the re lat iv-  

ist ic energy cor rec t ion is p rac t ica l l y  negl ig ib le  in the f irst place. 
7 In Fig. 1 we have add i t iona l ly  d isp layed Scott 's est imate of 1952, 

-ArelE 
~ 0.6 Z I/2 (6-27) 

~Z 2 (Z~) 2 
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which  is surpr is ing ly  good for Z g20.  Unfor tunate ly,  Scott  does not re- 

port how he arr ived at (27). 

The correct ions of order (Z~) 4 are much harder to come by 

and have not been calculated as yet. One of the d i f f icu l t ies  lies in 

the i terated effect of  the (Z~) 2 correct ions,  inasmuch as the (Z~) 2 cor- 
4 

rect ions to the ef fect ive potent ia l  and the dens i ty  produce (Z~)  cor- 

rect ions to the energy when the expec ta t ion  value of (4) is evaluated. 

In spi te of these pr inc ipa l  obstac les it is possib le to est imate the 
4 

(Z~) correct ions to the b ind ing energy by u t i l i z ing the phys ica l  in- 

sight that  the l ion's share is suppl ied by the s t rongly  bound electrons, 

and their  cont r ibu t ion  does not d i f fer  much from the cor respond ing  amount 

that one finds for non in terac t ing  electrons. This way Dmi t r ieva and 

Pl indov 5 obta ined 8 

-Arel E 2 ~2 (3Z)_2/3] ~ [Eq. (25)] + (Z~) [2.248 --~- 
I z 2 ~Z (Z~) 

= [Eq. (25)] + 1.197xi0 -4 Z 2 - 1.337xi0 -4 Z 4/3 (6-28) 

I I I I ' j 

/ 

5 

~ 4 
N 

N 

• --I ~ 3 

2 
I 
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I I 1 
0 25 50 

F i g . 6 - 2 .  Comparison of t h e  e s t i m a t e  

( c r o s s e s ) .  The dashed curve  r e p r e s e n t s  

(b) of Fig.  I. 

I 

75 100 125 

Z 

(28) w i t h  c o r r e s p o n d i n g  HF data 

(25) ,  i t  i s  i d e n t i c a l  w i t h  curve  

For the compar ison wi th  HF pred ic t ions we need HF data that  inc lude 

h igher order  correct ions.  It can be found in Ref.8 of Chapter  Two. We 
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see in  F ig .2  tha t  the es t ima te  (28) is qu i te  good for  255 Z ~I00. For  
2 

la rger  Z va lues  the r e l a t i v i s t i c  (Z~) expans ion  does not  w o r k  and for  

sma l l  Z va lues  the  s e m i c l a s s i c a l  Z - I /3 ser ies  conve rges  s lowly .  Fu r the r  

i m p r o v e m e n t  can, in  my  op in ion ,  on l y  be ach ieved  i f  no (Z~) 2 e x p a n s i o n  

is pe r f o rmed  at all. A poss ib l e  s t a r t i n g  po in t  is the r e l a t i v i s t i c  ana- 

log of  (5-55), w h i c h  - and th is  is essen t i a l  for  any  r e l a t i v i s t i c  t rea t -  

men t  - has the co r rec t  ene rg ies  of  the s t rong l y  bound  e lec t rons  bu i l t  

in  f rom the beg inn ing .  Th is  f ie ld  remains  to be t i l led .  

K o h n - S h a m  equa t ions .  

(2-434) 

E(V,n,~)  = E I (V+C)-f (d~ ' ) (V-Vext )n+Eee(n) -~N 

imp l ies  the  set  of  coup led  equa t ions  

6V: n(~') - 6 
6V (~') El (V+~) , 

The s t a t i o n a r y  p rope r t y  of  the  ene rgy  f unc t i ona l  

(6-29) 

(6-30a) 

6n: V(~') : Vex  t (~') + 6 ÷ Eee (n) , (6-30b) 
6n(r '  ) 

6~: N = ~ E I (V+~) 

o f  w h i c h  the f i rs t  and the th i rd  comb ine  to 

N = f (d~ ' )n (~ ' )  , (6-31) 

e x p r e s s i n g  the  n o r m a l i z a t i o n  of  the ac tua l  dens i ty .  The  s imp le  s t r uc tu re  

of  E I (V+~) , 

rl 2+ ~ I 2 
E I (V+~) = t r [ ~p  V+~J~(  - ~ p  -V-~) , (6-32) 

has the c o n s e q u e n c e  

n(~') = 2 <~ '  I~( - 1 2 ÷ ~p -V ( r ) -~ ) IF '>  , (6-33) 

w h i c h  we have seen  ear l y  in the game, in (2-20). Now one cou ld  t h ink  of  

e v a l u a t i n g  (33) as in  (2-21), tha t  is: so lve  the  e f f ec t i ve  S c h r ~ d i n g e r  

e q u a t i o n  
1 2 

(~-p +V (~ ) ) I k  , < > = Ik , K > E  k , (6-34) 

(6-30c) 
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where < stands for addi t ional  quantum numbers, and employ these eigen- 

states Ik,K> in wr i t ing  

n(~') = 2 >  <~' Ik,<>q(-Ek-C)<k,<l} '> 

k,K (6-35) 

= 2 ~  ]~k,K(~')12q(-Ek-~) , 

k,< 

w i th  the orb i ta l  wave funct ions 

~k,K (~') = <~' Ik'<> (6-36) 

In v iew of the normal iza t ion of these wave functions, Eq. (31) 

pears as 

N = 2 ~ ( - E k - ~ )  

k,K 

now ap- 

(6-37) 

This determines ~, once the E k are known. Please note that because of 

the d iscreteness of the energy eigenvalues, no unique value is assigned 

to the min imal  b inding energy ~. It is only determined wi th in  a (small) 

range, as we have stated already in the paragraph fo l lowing Eq. (4-306). 

The set of equat ions (30b), (34), (35), and (37) are the so- 
9 

cal led Kohn-Sham (KS)e~ua t i0ns .  In pr inciple,  they can be used to 

find both n(~') and V(~'), and ~. In pract ice, their  usefulness is li- 

mi ted by our  lack of knowledge about Eee(n). 

In deve lop ing the HF method one has learnt how to solve Schr~- 

d inger  equat ions like (34) numerical ly.  It is, therefore,  not d i f f i cu l t  

to find, wi th  a high numer ica l  precision, the densi ty  that corresponds 

via (33) to a given ef fect ive potent ial .  But what is the point  of this 

extreme accuracy, as long as the re lat ion (30b) can only be explored 

approx imate ly? In my opinion, the numer ica l  prec is ion achieved by the 

KS equat ions is both a luxury and a danger. For, it suggests an accura- 

cy of the resul ts obtained, which is only apparent because of the physi-  

cal approx imat ions that enter the Eee(n) funct ional  used in (30b). In 

other words: the eva luat ion of El(V+ ~) need not, should not, and (I 

think) must not be more accurate ly  than that of Eee(n). For example, if 

E (n) is approx imated by the e lect rosta t ic  energy only, the TFS vers ion 
ee 

of EI(V+~) suff ices; if the Di rac-Jensen express ion for the exchange 

energy is inc luded into Eee(n), the consistent  t reatment  of El(V+ ~) 

leads to the ES model. 

Nevertheless,  the KS equat ions are valuable,  since they con- 
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st i tu te an addi t ional  tool  for s tudying El (V+E). Future invest igat ions 

should, in my opinion, therefore  focus on the analy t ica l  content of the 

KS equat ions. Maybe one can learn someth ing about the un i f ica t ion of 

the quantum correct ions of Chapter  Four w i th  the s h e ~  e ~ e c t s  of Chap- 

ter  Five, a iming at a ref ined model  that contains both. Once obtained, 

this model  wi l l  enable one to study, for instance, shel l  effects as they 
10 

are mani fes ted in the e lect ron density. 

Wigner 's  phase-space functions. We have been main ly  in terested in the 

ef fect ive potent ia l  V(~) and the spat ia l  dens i ty  n(~'), wh ich we used, 

for example, to compute d iamagnet ic  suscept ib i l i t ies.  In other appl i -  

cat ions, however, knowledge of the spat ia l  dens i ty  does not suff ice. 

Nonlocal  quant i t ies like the one-par t ic le  dens i ty  mat r ix  (2-422) appear, 

whenever  the expecta t ion  value of a momentum dependent  operator  is asked 

for. The k inet ic  energy (2-42) is one example; another one is the Comp- 

ton prof i le  

N 
y ÷ + _Q)>  J(Q) = < 6(p i .e z 

9=I (6-38) 

f(d?') (d?")(a~') nil)(~,;~, ,)  e-i~'" (?'-~")~(pz_Qi 
(2~) 3 

which, in the s i tuat ion of spher ica l  symmetry, can be expressed equiva-  

lent ly by 

j(Q) = 5(d~')(d~")(dp')- n(1)(~,;~,,) e 
(2~) 3 

Simi lar ly,  the k inet ic  energy (2-421) equals 

N 
= ~ - - - I  2 

Eki n < ~ Pj > 

9=I 

-iP' " (~' -~") I 
2 p---' q (p ' -Q) " 

, - i~' .  (~' -}") 1 p, 2 ~(d~ )(d~")(dp')  n(1)(~,;~,,) e 
(2~) 3 

(6-39) 

(6-40) 

Quite obviously,  we meet in (39) and (40) the dens i ty  in momentum space 

- i~ l ,  (~I-~ '') 
n(~') = f(d~')  (d~") n(1) (~, ~,,) i ~ [  ; e , (6-41) 

which  we could have also obta ined by s tar t ing wi th  the momentum-space 

wave- funct ion.  

A change of in tegra t ion  var iables turns (41) into 
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n(p') - (2~) 3 f (d~') n 

whe re 
÷ !  n (I) (~ ' ,p )  --- ~ (d~)n I ÷ ÷ !  _ I  ÷ (I) (3' + ~ s ; r  ~s) 

' ÷ w , ~  

e -1p (6-43) 

is the so-cal led Wigner funct ion of the one-part ic le density. 11 The spa- 

t ial  densi ty  is obtained, in perfect analogy to (42), by 

1 ÷ !  
n(~') - (2r~)~- ~(dp')n(1)W (~ ' 'P )  (6-44) 

Given the Wigner function, one can evaluate the expectat ion value of 
÷ ÷ 

any (one-particle) operator  F(r,p) by means of 

÷ ÷ (d3)Id ) ÷ ÷ )  
<F (r,p) > = f (2~)~ FW(3' 'P ) (~''P (6-45) 

÷ ÷ ÷ 
where FW(~',p') is the Wigner  funct ion of F(r,p), 

FW(~, ÷, ÷ ÷ _ ÷,.~ ,p ) = f(d~)<~' +½~IF(r ,p) I~ '  ~s>el÷ -lp (6-46) 

÷ ÷ 
Equat ions (42) and (44) are special  real izat ions of (45) wi th  F(r,p) = 

÷ -~ ÷ ÷ ÷ ÷ 
6(p-p') in (42) and F(r,p) = 6(r-r') in (44). Some propert ies of Wigner  

functions are the subject of Problems 3 to 7. 

In Chapter Four, one of the central  quant i t ies was the t ime 

t ransformat ion funct ion 

-i ~lp2+V (r)~ t 
<3', t l~",0> = <~' le ~z • 13"> , (6-47) 

for wh ich  we wrote (3' ÷ ~' + ½~ , 3 " ÷ ~ '  -~s)l÷ 

<3'+½~,t13' I÷ / I h 3/2 -i~ 
- ~ s , O >  = \ ~ - ~ - ~ /  e (6-48) 

and found approximat ions for the phase ~ and the tyme T, both being 

funct ions of ~',s, and t. Let us now find the corresponding approxima- 

t ion to the Wigner funct ion of exp[-iI½p2+V(~))].- In the TF limit we 

have 
s 2 

T ~ t, ~ ~ V(3') t  - 2-~ ' (6-49) 

which result  in 

<e-i ( lp2+V (~)) t)w (~ 
• I , -~C~P 2÷vI~' )I t 

',~') --- e ; (6-50) 
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thus, the TF approximation simply replaces ~ and p by their eigenvalues. 

[To some extent, this was our starting point, see Eq° (I-43).] With the 

quantum corrections of Chapter Four we have, instead of (49), T and 

given by Eqs. (4-45) , (4-47), and (4-50) , which produce 

1 2 
(e-i(~ p +V(~) I t ) (~ , ,~ , )  

W 

---(I t2 ) )[det(~ +-t2 ]-I/2 + ]7 v'2v(~' ~ ~'~'v(~'))] 
(6-51) 

{ [}~ (+~ t2 + + )-I + 
× exp -i '- - ~  V'V'V(~') "p' 

+ t3 <~,V(~,))2]} 
+ V(r')t + ~-~ 

The machinery of Chapter Four (Airy averages, corrections for the strong- 

ly bound electrons . . . .  ) can now be employed to derive the quantum cor- 

rected version of the TF approximation to nw~1)(~'- ,p'), which is immedi- 

ately available from (50): 

n(1) (~ ' ,p)  ~ 2 q( - I , ~-p 2-V(~')-~] (6-52) 
W 

Chapter Two deals with the implications of this equation. In contrast, 

the consequences of (51) are unexplored territory. 

Problems 

6-I. The expectation value of I/r 2 in a Bohr orbit with principal quan- 

tum number m and angular quantum number i is 

I Z 2 
<}-~>m,~ = m 3 (~+I/2) 

Why? Use this, the Schr~dinger equat ion,  and the virial theorem to de- 

rive 
Z ~ 4m 

<p4>m,~ = ~ (~72 3) 

Average over £ and arrive at Eq. (5). - For an alternative derivat ion 

employ the momentum space analog of (3-53), which is 

F 12 8 (Z/m) 5 
J~mlav(P) : ~ [p2+(Z/m) 214 
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6-2. The relativistic (Z~) 2 expansion and the semiclassical Z -I/3 ex- 
2 

pansion compete with each other, inasmuch as one should have (Z~) ~ I 

and Z -I/3 <<I simultaneously. For which range of Z does one get a c o m -  

promise? Compare with Fig.2. 

6-3. Show that in one dimension, with posit ion q and momentum p, the 

Wigner function of F(q,p) is given by 

FW(q',p') = tr F(q,p)V(p-p';q-q') 

= tr F(q+q',p+p')V(p;q) , 

where V(p;q) is the ordered exponential 

V(p;q) = 2e 2ip;q = 2 ~ (2i) kk___q -- p qk k 

k-0 

What is the three dimensional analog? 

6-4. Show that V(p;q) is hermitian, and that [V(p;q)] 2 = 4, that is: 

V(p;q) is unitary. Find the Wigner function of V(p;q) and interpret 

the result. 

6-5. Show that V ( p ; q ) = V ( p  cos~ + q  sin~; q cos#-ps in~)  for arbitrary 

(real) 4. Is there a corresponding property of the Wigner functions? 

6-6. Show that for F(q) and G(p) one obtains Fw(q') =F(q') and Gw(P') = 

G(p'). Find a F(q,p) such that Fw(q',p') =q'p' 

6-7. Find the Wigner function of the one dimensional Hamilton operator 

(5-54). 



FOOTNOTES 

Chapter One. 

i The outstanding textbook on TF theory is stil l P. Gomb~s, Die sta- 

t ist ische Theorie des Atoms und ihre Anwendungen (Springer, Wien, 

1949). Then there is the review article N.H.March, Adv.Phys.6,1 

(1957). A more recent introductory text is N.H.March, Self-con- 

sistent Fields in Atoms (Pergamon, Oxford, 1975). 

L.H.Thomas, Proc.Cambridge Phil. Soc. 23, 542 (1926); E.Fermi, Rend. 

Lincei 6, 602 (1927); D.R.Hartree, Proc.Cambridge Phil. Soc. 24, 89 

(1928); V.Fock, Zschr.f.Phys. 61, 126 (1930). 

In the form of a textbook this mater ial  has been presented by W. 

Thirring, Lehrbuch der Mathemat ischen Physik, Vol.4: Quantenmecha- 

nik groBer S~steme (Springer, Wien-New York, 1980). A recent re-- 

view is E.H.Lieb, Rev.Mod. Phys.5~, 603 (1981). A treatment with 

emphasis on thermal propert ies is given by J.Messer, Temperatur e 

Dependent Thomas-Fermi Theory (Lecture Notes in Physics, Voi.147) 

(Springer, Ber l in-Heidelberg-New York, 1981). 

Models of screened Bohr atoms have been studied to some extent by 

R.Shakeshaft and L.Spruch, Phys. Rev. A 23, 2118 (1981). Their em- 

phasis is on the osci l latory terms, about which we shall have to 

say something in Chapter Five. 

This statement is frequently called the Hel lmann-Feynman theorem. 

Both Hel lmann (1933) and Feynman (1939), however, only rediscov- 

ered what had been known before. It is, indeed, dif f icult to ima- 

gine how quantum mechanics could have been developed without such 

a central tool. The theorem appears explicit ly in Pauli 's review 

of 1933, in Van Vleck's book of 1932, and in a paper by GOtt inger 

in 1931. The latter contains, to my knowledge, the explicit state- 

ment for the first time. The various references are: P.GOttinger, 

Zschr.f. Phys. 7_~3, 169(1931); J.H. Van Vleck, The Theory of Electric 

and Magnetic Susceptibi l i t ies (Oxford University Press, 1932); 
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W. Pauli, Handbuch der Physik, Vo l .24 ,Par t  I, p.83, edi ted by H. 

Geiger  and K.Scheel  (Springer, Berl in, 1933); H. Hel lmann, Zschr. 

f.Phys. 85, 180 (1933); R.P.Feynman, Phys.Rev. 56, 340 (1939). 

Chapter  Two. 

i This is wr i t ten  for the s i tuat ion of an isolated atom. For appl i -  

cat ions to molecu les  and solids, the term -Z/r  has to be rep laced 

by the respect ive externa l  e lec t ros ta t ic  potent ia l .  Or, if the 

atom is part  o f  a gas, an add i t iona l  term is needed to descr ibe 

the pressure exer ted by the other atoms. If the formal ism is be ing 

appl ied to iso lated se l f -b ind ing systems of fermions, l ike a nu- 

cleus w i th  its s t rong interact ions,  or a neutron star held toge- 

ther by gravity, the fe rmion- fermion in teract ion part  is the en- 

t i re ef fect ive potent ia l .  

The potent ia l  is not phys ica l ly  unique, because there is the free- 

dom of adding a numer ica l  constant. In wr i t ing  Eq. (I), we have op- 

ted for the usual  normal izat ion:  V ÷ o for r ÷ ~, wh ich  means that 

this constant  is set equal to zero. 

Since the potent ia l  is subject  to the usual normal iza t ion  V ( r ÷ ~ )  

=o, 8V has to vanish at inf ini ty. This does, however, not af fect  

the argument,  because it suf f ices to set 8V(~)=-8~ for those ~ for 

wh ich  the dens i ty  is nonzero. 

The vacuum is not essent ial ;  one could, wi th  l i t t le add i t iona l  

compl icat ions,  equal ly  wel l  consider  a d ie lec t r ic  surrounding.  

Many app l ica t ions of this and other, re la ted s ta t ionary  pr inc ip les  

can be found in J .Schwinger 's  (unfortunately st i l l  unpubl ished) 

lecture notes on E lec t romagnet ic  Theory  (Universi ty of Cal i fornia,  

Los Angeles, 1975 ... 1984). 

St r ic t ly  speaking, the f i rst  equal i ty  holds only for nonvan ish ing  

densi ty,  s ince n=o impl ies no more than V + ~ o  in Eq. (51). This 

subt le ty  does not af fect  the argument,  however. 

In rewr i t ing  E2, one has to make use of the ident i ty  (the spher i -  

cal symmetry  is essent ia l  here) 
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Z ]2 ~ r  Z 2 [~(v+~) = [ (v+~)] 

1?r Z 2 [ (r(V +?))1 
r 

I d Z 2] 
2 ~ [ r ( V + ~ )  

r 

The lat ter term equals 

Z 2] 
- ~. [~ (v + ~ )  

r 

it is a d ivergence that in tegrates to a nul l  result. Consequent ly ,  

oa 

1 f ( d ~ ) [ ~ ( v + Z ) ]  2 -21--fdr[(rV)] 2 
E 2 = - ~ = , 

o 

which then leads to the second integral  in (108). 

1 0  

J.P.Desclaux,  A t .Data  Nuc l .Data  Tables 12, 311 (1973). 

E.Baker,  Phys. Rev.36, 630 (1930). 

E. Hil le, J. d 'ana lyse Math. 2~, 147 (1970) showed r igourous ly  

that the series (164) converges for smal l  values of /xx, cer ta in ly  

for / x <  ( 1 0 8 / 3 1 2 5 ) I / 4 / ~  = 0.227, poss ib ly  for somewhat ]arcer 

values. 

i i  

1 2  

1 3  

A. Sommerfeld,  Zschr. f. Ehys. 7_~8, 283 (1932). 

Some people cal l  this the Cou lson-March expans ion [C.A.Coulson 

and N.H.March, Proc. Phys.Soc. London A 63, 367 (1950)]. 

Hi l le  (see Footnote 10) proved that the series (193) converces 

for su f f i c ien t ly  large values of x. 

Such a computer  program was real ized the f irst t ime by S.Kobayashi ,  

T.Matsukuma, S.Nagai, and K.Umeda, J .Phys .Soc.Japan 10, 759 (1955). 

They t runcated the expans ion (193) after the k=17 term. It is fun- 

ny to ovserve that thei r  coef f ic ients  c I ... ci0 are correct  where-  

as c11 ... c17 are wrong (with increas ing error). This did, how- 

ever, not affect their  results as far as the values of B and B, 

given in the Abstract ,  are concerned. Also the decimales in thei r  

table of the TF funct ion are correct. 
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The usefu lness of this change of var iab les was f i rst  not iced by 

G. I .P l indov and I .K.Dmitr ieva,  Dokl. Akad.Nauk BSSR 19, 788 (1975). 

A l i t t le bit more deta i l  is repor ted in B.-G. Englert ,  Phys.Rev. 

A 33, 2146 (1986). 

E.Fermi, Mem.Accad .d ' I ta l ia  i, 149 (1930). Fermi did not go beyond 

the f i rst  order. A systemat ic  study of  the expans ion (316) was 

f irst presented by G. I .P l indov and I .K.Dmitr ieva,  Dokl. Akad.Nauk 

BSSR 21, 209 (1977). 

18 G. I .P l indov and I .K.Dmitr ieva,  J.Phys. (Paris) 38, 1061 (1977). 

1 9  B.-G.Engler t ,  Zschr . f .Natur fo rschung 42a, 825 (1987). 

2o This (physical ly rather obvious) s tatement  has become known as the 

L ieb-Simon theorem after a formal proof was g iven by E.H.L ieb and 

B.Simon, Phys.Rev.Let t .31,  681 (1973). For more deta i l  see the re- 

v iew by L ieb ci ted in Footnote 3 of Chapter  One. 

21 Cited in Footnote 2 of Chapter  One. 

22 Cited in Footnote I of Chapter  One. 

23 P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964). 

2~ M. Levy and J.P. Perdew, Phys. Rev.A 32, 2010 (1985). 

25 Ci ted in Footnote 2 of Chapter  One. 

26 Actual ly,  (502), is a var iant  of Hart ree 's  equat ions, inasmuch as 

the self energy is inc luded and no averaging of V(~') over its an- 

gular  dependence is performed, wh ich  is a reasonable procedure in 

the s i tua t ion  of a spher ica l ly  symmetr ic  Vex t. 

27 E.H. Lieb, Rev.Mod. Phys. 48, 553 (1976). 

28 The cor respond ing  V(r) = - (Z / r )F(x)  is known as the Tietz potent ia l  

[T.Tietz, Acta Phys.Hung.9,  73 (1958)]. 
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Chapter  Three. 

I J.M.S. Scott,  Philos. Mag. 4_~3, 859(1952). 

z J. Schwinger,  Phys. Rev. A 22, 1827 (1980). 

The addi t ive constant  that should, in pr inciple,  be inc luded into 

the Coulomb potent ia l ,  V( r )~-Z/ r  + const.,  can be regarded as being 

part of ~s and ~, respect ively.  Noth ing is gained by d isp lay ing  

this constant  expl ic i t ly,  but the algebra is more t ransparent  if 

one is not forced to keep track of this term, which for the pre- 

sent d iscuss ion is i r re levant  anyhow. 

These (and all corresponding) po lynomia ls  in <y> are c losely  re- 

lated to the Bernoul l i  po lynomia ls  (JakobBernoul l i ,  1689). For example, 

B I (x + 1) = x 

B 2 (x + I) = x 2 I 
12 ' 

and 
I x 3 I B B ( X +  ~) = - ~ x  

I owe this remark to Prof. G. S~Bmann. 

s Ci ted in Footnote I of Chapter  One. 

In L ieb's rev iew of 1981 (cited in Footnote 3 of Chapter  One) there 

is the statement  that "the Scott  cor rect ion (...) is very plausible," 

but "has not yet been proved." This ar t ic le was a cont r ibut ion to 

a conference at Er ice in June, 1980, which is a couple of months 

before Schwinger 's  paper appeared in pr int  (November, 1980). 

B.-G. Engler t  and J. Schwinger,  Phys. Rev. A 2._.9_9, 2331 (1984). This 

paper has been the v ic t im of absent -minded proofreading.  Mispr in ts  

that I am aware of are: 

(I) in Eq. (24), V 2 should read: V 2 ; 

(2) the le f t -hand side of Eq. (40) should read: - ~ V 2 V  

(3) in the f irst paragraph of the sect ion "Scal ing" read "scal ing 

property"  instead of " rescal ing property;" 

(4) in the second sentence of the same paragraph read "do two things 

for us" instead of "do the two things for us;" 
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l l  

1 2  

3 8 8  

(5) Eq. (63) should read: B = 1.5880710...  ; 

(6) af ter  Eq. (73) read "as Z scales to 18-I Z" instead of "as r 

scales to 18-I r;" 

(7) in the sum over j in Eq. (87) replace ~i by ~j ; 

(8) in Eq. (88) replace "~ + Z 4/3'' by "~ Z4/3;" a a 

I Z-4/3; (9) the r ight -hand side of Eq. (102) should read: 

(10) the last number in the first l ine of Table I should read: 

(-0.04). 

In Ref.7, there is the (wrong) statement that this [i.e., here 

Eq. (89), there Eq. (I01)] is only approx imate ly  t r u e - - a  misunder-  

s tanding caused by confus ing the d i f ferent  meanings of Z in Eqs. 

(92) and (101). 

If a I and a 2 are, indeed, constants,  the closed express ion is 

a2 I z 2 I 
ETFS(Z,N) = E T F ( Z , N -  ~ )  + ~ - ~ alZ , 

which can be regarded as evidence in favor of the not ion a 2 ~ o. 

This result  has also been found, independent ly  and almost simul- 

taneously,  by Bander whose argument is reminiscent  of Scott 's  way 

of reasoning, and by Dmi t r ieva and Pl indov who make an educated 

guess. The references are M. Bander, Ann. Phys. (NY) 144, I (1982); 

I.K. Dmi t r ieva and G.I. Pl indov, J. Phys. (Paris) 4_~3, 1599 (1982). 

The HF predic t ions have been compi led on the basis of the orbi ta l  

parameters given by S. Fraga, J. Karwowski,  and K.M.S. Saxena, 

Handbook of Atomic Data (Elsevier, Amsterdam, 1976). 

This is the main obstacle. The second-order  TFS model  has not been 

formulated as yet. 

13 For more detai l ,  consult  Ref.7. 
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Chapter  Four. 

i Consult ,  for instance, R.F inkels te in ,  Nonre la t iv is t i c  Mechanics  

(Benjamin, Reading, Massachuset ts ,  1973), Chapter 3. 

2 Of course, some such "wrong answers" are st i l l  bet ter  than others. 

For example, tak ing into account all cont r ibut ions to ~ and T that 

are l inear in V, improves the approx imat ion  s ign i f i can t ly  over the 

TF result  of Eq. (19). In part icular ,  the dens i ty  at r=o turns out 

to be f in i te - but it does not have the correct  value. For deta i l  

see R.K.Bhadur i ,  M.Brack,  H.Gr~f, and P.Schuck, J .Phys.Let t .  (Pa- 

ris) 41, L 347 (1980). 

The der iva t ion  of (50) and (70) by R.K.Bhadur i ,  Phys.Rev.Let t .  39, 

329 (1977) is, indeed, an expansion in powers of t (in B=i t to be 

precise, but no matter) .  Bhadur i  does not consider  the s dependence 

of ~. 

M.Durand,  M.Brack, and P.Schuck, Zschr.f. Phys. A286, 381 (1978) ar- 

r ive at Eqs. (45), (47), and (50) by "expanding in powers of M" and 

in powers of s. 

5 E.Wigner,  Phys.Rev. 40, 749 (1932 ; J .G.Ki rkwood,  Phys.Rev. 44, 31 

(1933). 

A standard re ference is H.A.Antos iewicz,  in Handbook of Mathemat i -  

cal Funct ions,  edi ted by M.Abramowi tz  and I .Stegun (Dover, New York, 

1972). 

7 J .Schwinger ,  Phys.Rev. A 24, 2353 (1981). 

B . -G.Eng ler t  and J.Schwinger ,  Phys.Rev. A 29, 2339 (1984). 

9 C.F.von Weizs~cker ,  Zschr.f.  Phys. 96, 431 (1935). 

10 This s ta tement  is not ent i re ly  true, s ince a def ic iency of von Weiz-  

s~cker 's approach caused his resul t  to be too large by a factor of 

nine. This, unfor tunate ly ,  has induced people to cons ider  that nu- 

mer ica l  factor as an ad jus tab le  parameter.  (The "opt imal" coef f i -  

c ient  is then be l ieved to be about 1/40 instead of 1/72.) I do not 

see the s l ightest  jus t i f i ca t ion for such a point  of view. - To my 

knowledge the correct  numer ica l  mul t ip le  of (~n) 2/n was f irst found 
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by A.Kompaneets and E.Pavlovski i ,  Zh.Eksp.Teor.Fiz.  3!I , 427 (1956) 

[Soy.Phys. - JETP 4, 328 (1957)], whose method is very d i f ferent  

from the one used in the text. A procedure more c losely related to 

ours is the one employed by D.Kirzhni ts,  Zh. Eksp.Teor.Fiz.  3_22, 115 

(1957) [Sov. P h y s . -  JETP 5, 64 (1957)]. 

i i  G.I .P l indov and I .K.Dmitr ieva,  Phys.Lett.  64A , 348 (1978),obtain a 

f inite answer by in t roduc ing proper ly  chosen cut-of fs at small  and 

large distances. They succeed in der iv ing (103) at the pr ice of an 

e lect ron cloud remin iscent  of "an apr icot  wi thout  a stone," and of 

a wrong numer ica l  coef f ic ient  for the Scott  correct ion. Their  pro- 

cedure is therefore hardly convincing, a l though the correct  Z 5/3 
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1 2  Unfor tunately,  some (independent) ear l ier  attempts of deve lop ing a 
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pler  and more t ransparent  this way. 

~z Handbook of Chemis t ry  and Physics (Chemical Rubber Co., Cleveland, 

Ohio, 1979/80). 

~3 F. Hoare and G. Br indley, Prec. Roy. Soc. London 159A, 395 (1937). 



393 

4~ Sommerfe ld~ approx imat ion  to F(x), that is F(x) ~ [1+(12-2/3x) Y] -3/Y, 

gives 8.71 for this integral.  When inser ted after undoing the two- 

fo ld par t ia l  in tegrat ion,  it produces 8.67. Both numbers are in sa- 

t i s fac tory  agreement  w i th  the actual  value. 

4s From Ref.11 of Chapter  Three. 

46 In Ref.24 of Chapter  Two, Levy and Perdew try to put the blame for 

the d isc repancy  between exper iment  and the HF predic t ions ent i re ly  

onto the exper iments (or the exper imenta l is ts) .  This does not seem 

p laus ib le  to me. Also, re la t iv is t ic  correct ions cannot  account  for 

d i f ferences this large. 

47 B.-G. Engler t  and J. Schwinger,  Phys. Rev. A29, 2353 (1984). 

48 Another  app l ica t ion  is repor ted by A. Ma~anes and E. Santos, Phys. 

Rev. B 34, 5874 (1986). Unfor tunate ly,  these authors confuse the 

potent ia ls  U and Ues (our denotat ion) with, luckily, no consequences 

as far as the conclus ions of the paper  are concerned. The appendix, 

however, and all re lated remarks in the text are erroneous. 

4~ This mod i f ied  TF dens i ty  (or its one-d imens iona l  analog) has been 

der ived pr ior  to the pub l i ca t ion  of Ref.8 for the specia l  s i tuat ion 

of a l inear potent ia l ,  when (394) is the whole answer. I am aware 

of the fo l lowing three papers: W. Kohn and L.J. Sham, Phys. Rev.13___~7, 

A1697 (1965); S.F. Timashev, E lek t rokh imia  4_O0, 730 (1979); H. Gr~f, 

Nucl. Phys. A349, 349 (1980). Al l  these authors squared the wave 

funct ion in a l inear potent ia l  [this is essent ia l ly  an Airy function, 

see Eq. (143)] to arrive, finally, at (394) for that  special  poten-  

tial.Our der iva t ion  is more general  in not mak ing  such assumpt ions 

about V. 

5o The subscr ip t  is non-standard;  it is in t roduced only to exc lude 
P 

any confus ion  w i th  ~ =  1.04018...  of Eq. (2-313). 

sl See R a d z i g a n d  Smirnov, c i ted in Footnote  30. 

s2 The eva luat ion  of the in tegra l  (140) and its y -der iva t ive  for x=0 

is a s imple exerc ise in per forming complex contour  integrals.  At 

worst,  the resul ts can be looked up in Ref.6. 

53 The HF dens i ty  is compi led from D.R. Hartree, Proc.Roy. Soc. London, 



394 

Ser. A 151, 96 (1935). 

s4 L.L. DeRaad and J. Schwinger, Phys. Rev. A 25, 2399 (1982). 

Chapter  Five. 

i The first plot of th is kind is conta ined in the paper  by Dmi t r ieva 
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Poisson equation, 27,31,35,36, 

168,193,265,273,275,278 
Poisson's identity, 173,313 
polarization radius, 264 
potassium, 288f 
potential(s) 

atomic ~, 317f 
effective ~, 14,16,27f,31,104, 

108,122,149,280f,285f,306 
effective vector ~, 124 
electrostatic ~, 27,31,337 
electrostatic pseudo ~, 250, 

268ff 
exchange ~, 245,263,275ff, 

286,291f,337 
external ~, 104ff,116,149, 

153,265 
interaction ~, 31 
pseudo ~, 247 
pseudo exchange ~, 247,273 

potential functional(s), 104ff, 
196,337 
in electrostatics, 41 
of the ES energy, 253 
maximum property, 40 
of the TF energy, 34 
of the TFS energy, 145 

potential-density functional(s), 
110 
of the ES model, 248 
of the MES model, 272 
of the TF model, 110 

of the TFD model, 2.49 

~j,146,168ff,213ff,28137 

quantum corrections, 11,175ff,209, 
314,335 
to the count of states, 314 
to exchange, 275 
to the time transformation func- 

tion, 177ff 
to traces, 191f 

quantum number(s), 30,299,378 
angular %, 25,140,299,306,312, 

327ff,371,381 
maanetic ~, 140,306 
principal ~, 5,25,132,140,169, 

351 

rE,ro, 315ff,319ff,325ff 

radium, 328 
radius, mean-square ~, 256ff 
relativistic corrections, 25946,298, 

370ff 
rubidium, 288ff 
Rydberg energy, 3 

s, 181,183ff 
Sk, 57ff 

Sk, 354ff,369 

scale 
atomic ~, 3,371 
nuclear ~, 371 
TF ~, 131,153 

scaling properties 
of the external potential, 116 
of the interaction-energy density 

functional, 111ff 
of the kinetic-energy density 

functional, 111f 
of the E I potential functional, 

115ff 
of the TF potential functional, 

66ff 
of the TFS potential functional, 

155ff 
Schr~dinger equation, 105,112,122, 

181,306,308,377 
Scott correction, 131,136,139,143, 

145,153,155,158,162,163,172,186, 
209,22513,240,277,335f 

screening, inner-shell ~, 12,13 
self energy, 14ff,20,225 
shell(s) 

closed %, 299 
closed ~ of NIE, 7,305 
fi l l ing of ~, 7,299,302,329 
partly filled ~, 8,304 

shell effects, 4,7,135,167,238,258, 
295fff,379 

size, atomic ~, 21ff,26 
Slater determinant, 223,225 
SM see statistical model 
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spect rum 
semic lass ica l  ~, 189 
quantum corrected ~, 190f 

s ta t is t ica l  model, 228 
s ta t is t ica l  model  predict ions,  

287ff  
b ind ing energy, 230,234 
dens i ty  at the nucleus, 283 
exchange potent ial ,  291 
ion izat ion energy, 237 
mean square radius, 260 
radial  densi t ies,  288ff  
sh ie ld ing of nuc lear  magne- 

t ic moment, 244 
s t rongly  bound electrons, 124, 

130-172,186f ,194,196,278,  
292,299,311,316,326,335f ,  
371ff ,376f,381 

T(r ' ,s,t) see tyme 
TF, 1,2,7 
TF 

degeneracy,  323ff 
density, 35,102f f ,193 
equation~ 35,37 
funct ion see F(x) and f (x) 
model, 33f f ,99f f ,207f f  q 
quant izat ion,  308,311,322 
var iables,  46 

TF predic t ions 
b ind ing energy, 55,66,78,96f f  
mean square radius, 259 

TFD model, 175,249,251f ,255,292 
TFS, 130 
TFS 

density, 147 
model, 130ff 

TFS predic t ions 
b ind ing energy, 138 
dens i ty  at the nucleus, 165 

Thomas-Fermi  ~ see TF 
Thomas-Fermi -D i rac  ~ see TFD 
Thomas-Fermi -Scot t  ~ see TFS 
Thomas-Fermi -Scot t -Weizs~cker -  

Dirac model, 228 
Thomas-Fermi -yon  Weizs~cker  model, 

175 
Tietz potent ia l ,  12628,220,368 
t ime t rans format ion  function, 

177f f ,225,293,380 
traces 

and phase-space integrals,  10f 
quantum corrected ~, 191,198 
semic lass ica l  eva luat ion of ~, 

9,11,178 
var ia t ion  of ~, 29 

tyme, 180,183f f ,226,380 

units, atomic, 2,3,4,9,124 
uranium, 299 

V(~) See potent ia l (s) ,  e f fec t ive 
v i r ia l  theorem(s),  68,70,112,140, 

163 

wj, 144,168f f ,214f f  
von Weizs~cker  term, 194ff ,196 I° 
Wigner  functions, 379ff 
Wigner -K i rkwood expansion, 189 
WKB quant iza t ion  see TF quant iza t ion  

Xo (q) , 37,78,86,98 

Y' Ys' Yj' 199f f ,210f f ,282,284,292 
y (x) , 6 2 

Z, 2 
z,z s , 197ff 

~, 82 

B, 62,65 

y, 61 ,62 

~, 28,239ff, 378 
~j' ~S' 131,142,168f f ,210f f ,281,  

335f,372f 

q(X), 7,304 

A, 8Off, 127ff 
I, 1 E, 1 o, 303,312,314f f ,323,325f f ,  

329,340 
l(q), 74f,78,87 
I osci l lat ions,  35Off 
l,v osci l la t ions,  344,351 

V,VE(1),Vo(1) , 307,312f ,316,318f f ,  
322ff, 329,332,344 

' " 317,320,325f,  343, 

'v E, 'v O, 318f ,324,343,345 
v s, 133ff,372 
v osci l la t ions,  351,358ff  

Ps' 140,150,156,211 

o, 82 

~(t), 81f ,89,236 
¢(~',~,t) see phase 
~k(t) , 77,127,233 
~i (t) , 74f f ,232f  

~m(t), 90,236 

l~nl 2 142,148,150,156,214,381 
a v  ' 

cO E, e o, 316f ,319f ,325f f  

[y], <y>, 5 

<f(x)> °, 191,197ff  
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List of typographical errors
(updated February 1996)

1. On p. 3, the second line after Eq. (1–8), it should be
‘macroscopic’, rather than ‘macroscopics’.

2. In the text between Eqs. (1–17) and (1–18), p. 6, the ref-
erence should be to Eq. (16), not to Eq. (15).

3. The right–hand side of the second equation in Problem
1–3, p. 25, should read p+Ft, rather than p+xFt.

4. In Eq. (2–94), p. 44, replace ζ by
Z

r
.

5. Read β̃ (x2/x̃2)
γ
rather than β (x2/x̃2)

γ
in Eq. (2–202) on

p. 65.

6. The first line of Eq. (2–238), p. 70, should end with (− 7
3ETF−

ζN), not with (− 7
3ETF + ζN).

7. On p. 75, read t=1 instead of t>1 in the line preceding
Eq. (2–266).

8. The numerator in the integrand of Eq. (2–268), p. 75,

should be q′4/3, rather than q′7/3.

9. In the first line on p. 79 replace ‘(287)’ by ‘(286)’.
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10. In Eq. (2–349), p. 88, read [y(x)]k instead of [y(x)k].

11. On p. 93, the first line after Eq. (2–379), replace ‘statet’
by ‘stated’.

12. In the line preceding Eq. (2–436), p. 110, read ‘functional’
instead of ‘funcitonal’.

13. On p. 134, the last term in Eq. (3–15) should be (ζs −
ζ) tr η(−H − ζs) rather than
(ζs − ζ) tr (−H− ζs).

14. On p. 138, the second line in Section Scott’s original argument,
replace ‘as as’ by ‘as’.

15. On p. 145, the fourth line after Eq. (3–64) should begin
with ‘understood’, rather than ‘unterstood’.

16. The fourth line after Eq. (4–67), p. 186, should end with
‘of’, not with ‘or’.

17. The line after Eq. (4–91), p. 191, should begin with ‘Con-
sequently’, not with ‘Concequently’.

18. The second line after Eq. (4–99), p. 192, should begin with
‘Delta’, not with ‘delta’.

19. In Eq. (4–129), p. 198, an integral sign is missing in front

of
(d~r) (d~p)

(2π)3
on the right-hand side.

20. The second line after Eq. (4–157), p. 203, should end with
‘ for y → ∞ ’, rather than ‘ for z → ∞ ’.
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21. For ‘contruction’ in the first line before Eq. (4–236), p. 223,
read ‘construction’.

22. On p. 230, the third line in Section History, replace ‘re-
makred’ by ‘remarked’.

23. On p. 232, the sixth line from the top, it should be ‘per-
formed’, rather than ‘preformed’.

24. On p. 239, the fourth line before Eq. (4–299), insert ‘elec-
tron from the’ after ‘removal of one’.

25. In Eq. (4–320), p. 244, the power 5/3 should be replaced
by 5/2.

26. On p. 246, the integral in the second line of Eq. (4–332)
should also be performed over (d~r ′).

27. In the last line on p. 263 read ‘Clausius–Mossotti’ instead
of ‘Clausius–Mosotti’. The same applies to the corre-
sponding entries in the Index, pp. 397 and 398.

28. In Eq. (4–485), p. 276, replace [n(~r)]4/3 by [3π2n(~r)]4/3.

29. In the seventh line of Problem 4–10, p. 294, read F2
1(y)

instead of F2
n+1(y).

30. In Eq. (5–27), p. 305, replace
(

2
3Z

)1/3
and

(

2
3Z

)

−1/3
by

(

3
2Z

)1/3
and

(

3
2Z

)

−1/3
, respectively.

31. On p. 309, the fourth line after Eq. (5–41), replace ‘do’ by
‘to’.
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32. On p. 309, the third line before Eq. (5–42), replace r′(x′ →
∞) = 0 by r′(x′ → −∞) = 0.

33. Equation (5–45), on p. 309, should be numbered correctly.

34. In Eq. (5-47), p. 309, it should read 4 s3(x)
d2s(x)

dx2
in the

square brackets, rather than 4 s(x)
d2s(x)

dx2
.

35. In the line after Eq. (5–58), p. 312, replace ‘Eq. (209)’ by
‘Eq. (2–9)’.

36. For ‘centripal’ read ‘centripetal’ in the first line before
Eq. (5–111), p. 320.

37. The abscissa of Fig. 5–9, p. 323, should be labeled λ/Z1/3,
rather than λ/Z4/3.

38. Read (Z/Z1s)
1/3 instead of (Z/Z1s)

1)3 in the top line of
Eq. (5-145) on p. 330.

39. The second term on the right–hand side of Eq. (5–149),
p. 331, should be subtracted rather than added.

40. On p. 345, the first line after Eq. (5–191), replace ‘insteat’
by ‘instead’.

41. On p. 355, the second sentence after Eq. (5–232), exchange
the words ‘even’ and ‘odd’ with one another.
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42. In the first line of Eq. (5–236), p. 356, read ‘odd’ rather
than ‘even’; in the second line read ‘even’ rather than
‘odd’.

43. On p. 361, the sixth line from the bottom, read ‘Fig. 18’
instead of ‘Ref. 18’.

44. The abscissa of Fig. 5–22, p. 366, should be labeled Z1/3,
rather than Z.

45. The last line in Problem 5–1, p. 367, should begin with
‘Observe’, not with ‘observe’.

46. On p. 370, the second line before Eq. (6–1), replace ‘(2–1)’
by ‘(2–3)’.

47. On p. 378, the sixth line from the bottom, insert ‘done’
between ‘must not be’ and ‘more accurately’.

48. In the third line of Eq. (6–51), p. 381, replace 1
2 by t

2 .

49. On p. 385, the last equation in Footnote 7 should end with
[ ddr(rV)]

2, rather than [(rV)]2.

50. On p. 385, the fourth line of Footnote 14 read ‘observe’
rather than ‘ovserve’.

51. In the last sentence of Footnote 14, p. 385, read ‘decimals’
instead of ‘decimales’.

52. In Footnote 15, p. 395, the year of publication should be
1985, not 1986.
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