Berthold-Georg Englert

Scientific Curriculum (March 2023) and List of Publications (March 2023)

Scientific Curriculum
(updated in March 2023)

My research activities span more than four decades and diverse topics in theoretical quantum physics. The following remarks on selected papers of mine focus on work in the areas specified by these key words:

1 – Semiclassical theory of many-fermion systems;
2 – Quantum optics;
3 – Classical-quantum boundary;
4 – Complementarity, wave-particle duality, and all that;
5 – Quantum information;
6 – Other work.

1 – Semiclassical theory of many-fermion systems

Papers [4–12], summarized and extended in the book [13], deal with refinements of the semiclassical Thomas–Fermi model of atoms to the point where it becomes possible to treat atomic shell structure quantitatively (see [10], in particular). These investigations identify the link between the systematics of the Periodic Table and the properties of the Thomas–Fermi potential, whereby a simple rule is established for the order in which the orbital states become available [8]. A further extension focuses on the ‘last’ electron [11, 12] and derives the semiclassical prediction for the ionization energy. — The developments up to 1985 are recalled in [201]; see also [207].

1b – Ultracold trapped atoms (2001 and later)

Later, these methods (supplemented by the momentum-space considerations in [19, 28, 29, 39, 42]) found an application to cold trapped Fermi gases [96], which deserve further study. When the gas is trapped in a two-dimensional geometry, matters are markedly different from the three-dimensional situation [155]. A systematic study of Airy-averaged gradient corrections for two-dimensional fermion gases — a revival, to some extent, of the three-dimensional investigations in [6] — is conducted in [194], with results that strongly encourage the application to the self-consistent equations for interacting systems.

There is also the little paper [70] on two atoms in a harmonic trap with a contact interaction between them. Judging by the large number of citations, this work is of some importance for experiments with neutral atoms in optical potentials.

Paper [144] concerns cold fermionic atoms trapped in a two-dimensional honeycomb potential and demonstrates the feasibility of implementations with imperfect optical potentials; some of the predictions have been verified in experiments (Esslinger).

1c – General developments

In [199] we solve a twenty-five year old mystery about inhomogeneity corrections to the Thomas–Fermi approximation for the kinetic energy of two-dimensional gases of fermions. Contrary to folklore, we show that these corrections are definitely nonzero and evaluate the leading correction in perturbation theory.

Paper [198] introduces a novel method for approximating the single-particle density as a functional of the effective single-particle potential energy, and thus also other functionals,
without a gradient expansion. Instead, the density is expressed in terms of unitary evolution operator which is approximated by a factorization of the Suzuki–Trotter kind; see also [277]. A spin-off is the use of this factorization in the fourth-order leapfrog algorithm that is reported in [214].

Most recently, a novel approach that treats all single-particle contributions to the energy by an exactly known density functional is introduced in [220]; ongoing research will eventually tell if this is a viable alternative.

2 – Quantum Optics

Paper [36] introduces the damping-basis method, a powerful tool for investigating and solving master equations as they appear in studies of open, driven quantum systems, in particular those of interest in quantum optics. The method enabled us to give a complete analytical solution of the Jaynes–Cummings model with dissipation (a problem that had frustrated many). This is crucial for extending the theoretical treatment of the micromaser to including photon dissipation during the passage of an atom [44]. The damping-basis method is equally useful when dealing with the time-averaged behavior of a periodically pumped micromaser [57] [59] [84], or when studying correlations among emerging atoms [77]. The latter requires calculating the statistics of detector clicks, for which the general formalism is described in paper [43]. The lecture notes [107] are a tutorial introduction into these matters, and [106] [120] deal with further developments.

The review [130] summarizes the literature on cavity quantum electrodynamics both from the experimental and the theoretical viewpoint.

2b – Raman transitions (2012–2013)

In the context of our work on a scheme for the robust storage of quantum information (see [156]), we needed to refine the existing methods for treating multi-photon Raman-type transitions that make use of nonresonant intermediate levels. This led us to a systematic improvement over the usual adiabatic-elimination procedure [174] as well as to an alternative approach [175] that does not rely on adiabatic elimination of the intermediate levels.

2c – Other matter

Paper [176] deals with quantum correlations as they manifest themselves in the data recorded by lossy detectors that can distinguish between one, two, or more photons. See also [192].

The 1989 paper [16] deals with my unified approach to phase-space functions of various kinds (Wigner, Kirkwood, Glauber). Insights gained then were later useful when giving a rather precise meaning to the classical limit of a quantum-mechanical observable; see papers [25] and [71] in particular.

In [25], general criteria for what can be considered a reasonable phase operator are first established and then applied to a number of plausible candidates. A spin-off is [56] where these ideas helped to analyze a real-world physical experiment.

A puzzling observation is reported in [71]: Unitarily equivalent Hamilton operators can have utterly different classical limits, so that their classical analogs describe quite different physical systems, such as harmonic oscillators with different frequencies. This has an obvious bearing on the question of how to quantize a given classical dynamics.

4 – Complementarity, wave-particle duality, and all that (1988–2015)

4a – Stern-Gerlach interferometers and Humpty Dumpty

The fully quantum-mechanical treatment of Stern-Gerlach interferometers in papers [14] [15] [18] is a very early study of an atom interferometer, in which we find that it is virtually impossible to recover the original spin coherence when a beam of spin \(\frac{1}{2} \) is split in two and then reunited. This ‘Humpty-Dumpty effect’ was later demonstrated experimentally (Baudon).
Paper [216] reports a highly accurate treatment of the Stern–Gerlach interferometer, with a proper magnetic field and a three-dimensional wave function (an application of the fourth-order leapfrog [214]). The study confirms the Humpty-Dumpty effect conclusively.

4b – Bohr’s complementarity and Einstein’s wave-particle duality
Lessons learned then were crucial for paper [24] on Bohr’s complementarity principle and its link to Heisenberg’s uncertainty relation. The more qualitative arguments of [24] received a fully quantitative basis by the work on the quantitative aspects of Einstein’s wave-particle duality in paper [67], extended in [68,73,76,81] and summarized in [87]. The crucial step is the derivation of the duality relation in [67] which states the limits on the compromises between the wave character (visibility of interference fringes) of a quantum object and its particle character (path knowledge). Particularly important is the observation that the duality relation is logically independent of Heisenberg’s uncertainty relation and its generalizations. Experimental tests of the duality relation have been performed with atoms (Rempe) and photons [76,80] and proposed for neutrons [78]. An application of these concepts to the situation of coherent double scattering is given in [137].

All these studies deal with two-path interferometers. The generalization to multipath configurations is partly accomplished in [138], where the basic conceptual questions are answered, but further studies are necessary before the picture is complete.

A conjecture in [138] was eventually shown to be wrong, and this triggered renewed interest in entropic measures for path distinguishability and interference strength. Some results are reported in [188] without, however, closing the subject as important problems remain unsolved.

4c – Mutually unbiased bases
The concept of mutually unbiased bases is central to these matters — two observables are complementary if their eigenstate bases are unbiased. The review article [151] summarizes what is currently known about such bases and introduces a new problem: How many such bases are there for a periodic continuous degree of freedom? The answer to this question is given in [170]. In full analogy with the other continuous degrees of freedom, there is a continuous set of pairwise unbiased bases for a periodic degree of freedom, too.

There remains the open problem of how many such bases one can have in a six-dimensional Hilbert space, the smallest space in which the standard constructions for maximal sets of unbiased bases does not work. The numerical search that is reported in [159] adds analytical insight in support of the conjecture that there are no more than three pairwise unbiased bases, by establishing the four most distant bases and demonstrating that they are not mutually unbiased.

For mutually unbiased bases in the context of quantum state tomography, see [189].

5 – Quantum information (1997 and later)
5a – Structure of two-qubit states
Papers [91,94] and the extensive book chapter [100] report work that began in 1997 and is still not completed in full. It concerns the classification of general two-qubit states — the ‘hydrogen molecule’ of quantum information theory. These states are specified by fifteen parameters, and the corresponding state space has a very rich structure that is not fully understood even today. Our approach puts much emphasis on geometrical features. In particular, we use two three-component vectors and a 3×3-component dyadic to specify the two-qubit states. The vectors and the dyadic behave in a transparent manner under unitary transformations, and this facilitates detailed studies enormously.

We are particularly interested in the so-called Lewenstein–Sanpera decompositions which are crucial for determining to which extent the correlations between the two qubits can be mimicked by classical statistics and to which extent they are of a purely quantum nature. We succeeded in finding the optimal decompositions for some important classes of states, but a procedure for general two-qubit states was missing for many years. Finally, owing to the observation that the search for the optimal decomposition can be formulated as a semidefinite program [147], a relatively simple numerical procedure is now at hand that
can determine the optimal decomposition for any two-qubit state. It also gives analytical solutions for cases not accessible earlier.

5b – The Mean King’s problem and quantum cryptography

A different line of research involves an optical realization of Aharonov’s ‘Mean King’s Problem’. It is proposed in paper [93], and [110] reports the experimental realization. These studies suggested a new method for quantum cryptography and, in particular, for direct secure communication [98][104]. The latter is fascinating because it enables one to send a confidential message without first establishing a shared key for encryption. This opens up a whole new line of research in quantum information theory. The book chapter [103] summarizes the state of affairs in 2002.

After joining the National University of Singapore, first as a Visiting Professor, then as a permanent faculty member, I got interested in schemes for Tomographic Quantum Cryptography — a very promising field, both for theoretical studies and for proposing experimental implementations of new schemes for quantum key distribution. Paper [117] introduces the general ideas, defines terminology and notation, and explains the strategy for analyzing eavesdropping attacks. In [116], [118], and [121] we describe various results, which also have a bearing on other protocols that are used routinely.

A central problem in these investigations is to find the optimal measurement that fully extracts the accessible information, for which an iterative procedure is described in [124], and an open-source code is made available in [141]; an extension thereof, for the purpose of computing channel capacities, is the open-source code of [162]. The 2007 status of this field is summarized in the book chapter [135], and the optimal measurements for quantum pyramids are given in [142].

A tomographic protocol of particular interest became known as the ‘Singapore Protocol’, introduced in [126]. It makes use of the minimal qubit tomography of [122] and [125], is more efficient than competing tomographic protocols, and more robust than all other protocols described in the literature. The Singapore protocol has been analyzed in full, but the analysis is not published as yet. The experimental study in [199] covers the Singapore protocol along with others.

Studies of quantum key distribution protocols with partial tomography resulted in paper [136]. A novel protocol with trine states, characterized by a key extraction scheme that is substantially more efficient than the usual scheme, is reported in [148].

5c – Quantum state tomography; quantum state estimation

State tomography, in particular of two-qubit states distributed by some source, are the subject matter of papers [143] and [145]. Partly, they extend the single-qubit results of paper [122], but there are also truly novel concepts, such as the tomography with entanglement witnesses and the tomography that exploits witness basis measurements, both introduced in paper [144]. An experiment that demonstrates tomography with witness bases has been performed; see [179] and [181]. Paper [154] is an exhaustive study of highly symmetric generalized measurements for qubit pairs, and paper [161] compares tomography schemes that use product measurements with schemes that are most symmetric.

These “most symmetric” schemes are examples of symmetric informationally complete probability-operator measurements (SIC POMs), much studied in a plethora of theoretical and mathematical publications. Papers [165] and [168] deal with proposals for the actual laboratory implementation of SIC POMs for higher-dimensional quantum degrees of freedom (the qubit case is the subject matter of [122]).

The interpretation of the data acquired by schemes for state tomography or process tomography requires systematic statistical inference. For that purpose, maximum-likelihood estimation is a popular procedure. Paper [157] shows how to supplement it with Jaynes’s maximum-entropy principle if the data are incomplete; a comprehensive study of these matter is [156]. The application of these ideas to adaptive process tomography is presented in [164], and [173] deals with related matters, such as the problem of confirming entanglement on the basis of incomplete data. Paper [215] deals with aspects of gate set tomography.
Maximum-likelihood estimation has a tendency to produce implausible estimators, so that alternatives are worth exploring, among them minimax estimation, which yields conservative estimators. In [167] the research is motivated, a program introduced, and a simple, yet accurate, minimax estimator presented; a somewhat different approach is explored in [172].

All these estimation strategies aim at specifying a best guess for the statistical operator (see also [189] for a particular scenario of incomplete tomographic information). In addition, one needs to attach meaningful error bars. Our answer to this question is in terms of estimator regions, in particular the smallest credible regions; we introduce this research program in [178] and report very encouraging first results. In [191], we show how this strategy is applied to the problem of estimating one or a few properties of the quantum state directly, that is: without estimating the state first. It turns out that the direct estimation is, in fact, preferable as it is more reliable and results in shorter error intervals. The important extension to self-calibrating quantum tomography, where the quantum state and parameters of the apparatus or the transmission line are jointly estimated from the same data, is the topic of [205].

In our approach, the estimators for the quantum state are necessarily quantum states themselves. In [182] we comment on an arXiv posting (later published in Physical Review Letters) that advertises the use of estimators that are not assuredly inside the quantum state space.

5d – Sampling from the quantum state space
The methods of [178] and [191] are Bayesian and require the computation of high-dimensional integrals which can only be done with Monte Carlo integration. For this purpose, one needs to sample the quantum state space in accordance with various distributions. Papers [184], [185], and [218] deal with algorithms for generating good samples of this kind. Arguably the most powerful, and flexible, algorithm is described in [219]. Paper [195] makes an open-source online repository of tested codes for sampling, and also a selection of large ready-to-use samples, available to the community.

The one-to-one mapping between quantum channels and bi-partite quantum states — the Choi–Jamiołkowski isomorphism — can be exploited for a random sampling of quantum channels by a suitable adaptation of the state-sampling algorithm. This is the subject matter of [206]. In [212] we address the problem of estimating the minimum fidelity of a quantum gate (a basic quantum channel, so to say) directly without full channel tomography.

5e – Consistency checks
In the Bayesian reasoning, one encodes pre-measurement knowledge about the situation in the prior density on the state space, and one relies on proper modeling of the situation. The question whether the observed data are typical for the prior can be answered by checks for prior-data conflict, and the model needs to be checked against the data as well. We propose strategies for that in [193], [200], and [204].

Model checking plays a crucial role in [202] which deals with the data from four experiments that probe variants of Bell’s inequality. We find that two experiments did not report the correct value for the conversion probability of a short-wavelength photon into two long-wavelength photons, and the correct values could be extracted from the data by careful model checking.

5f – Other topics
A possible experimental realization of the trine scheme could make use of the reference-free (RFF) qubits, composed of three spin-$\frac{1}{2}$ particles, that we recently introduced in [139]. RFF qubits can also be used for quantum storage purposes, with each qubit encoded in rotationally invariant states of three ultracold spin-$\frac{1}{2}$ atoms in a two-dimensional lattice. The practical feasibility of this idea is the subject of exciting ongoing theoretical studies; a very long life time is predicted for such qubits [156].

In [186] we describe how a controlled-phase gate can be realized between two neutral atoms of the same kind in a rather simple manner. The scheme owes its simplicity to the use
of a single laser pulse that drives the relevant transitions off resonance with the detunings adjusted such that the gate is realized with high fidelity.

The systematic and robust encoding of many qubits in a single continuous quantum degree of freedom is the subject matter of paper [149]. The scheme exploits the observation that the state space of a quantum rotor is equal to the product of the spaces of a genuine qubit and another rotor. This is an invitation to an iteration, which we gladly accept. Coaxial photons that carry orbital angular momentum could be used for laboratory implementation, but no such experiments have been realized as yet.

Another line of research aims at combining the advantages of quantum computation by unitary evolution with those of quantum computation by measurement into a hybrid scheme. This can be done and is potentially useful, indeed; see [153]. During these studies, a lesson was learned about quantum search algorithms, which is the subject matter of [158].

Paper [208] contributes to the discussion about overcoming the resolution limits of classical optics with the aid of quantum aspects of light. We conclude that some claims do not survive scrutiny.

6 – Other work
6a – Research
The 1998 paper [74] is a parody on the hype about quantum computation in those days. It is probably my most-read paper.

Paper [146] deals with an old subject that is still not completely settled: the transmission of waves through a linear random stack of partially transmitting mirrors. We established a recurrence relation that enabled us to improve on earlier treatments and derive strict upper and lower bounds (both exponential in the number of slabs) on the average transmission probability. The finishing touch is put on in [177], where that recurrence relation is solved explicitly in terms of Legendre functions and a number of analytical results are derived.

Owing to fortunate circumstances, I was involved in experimental studies of the spin Hall effect in platinum, carried out at IMRE [140, 150]. While being off my usual track, this activity was eventually rather rewarding after solid data demonstrated a giant spin Hall conductivity [150], about a factor of 100 larger than any conductivities measured earlier by others.

There is also the colloquium on quantum theory [180], in which I assure the reader that quantum theory is a well-defined local theory with no unsolved foundational problems. The alleged great mysteries result from one misunderstanding or another.

Paper [35] explains why the trajectories of Bohmian mechanics cannot be regarded as stating the historical past of a quantum particle. Another, and very different, attempts at ascribing a past to a quantum particle is criticized in [196]; see also [203]. Both cases have in common that, when one monitors the particle’s path through and interferometer, the observed past is at variance with what these proposals say. The experiment reported in [197] was triggered by the theoretical study in [196].

An appendix in [151] showed a connection between the Hilbert-space formalism of quantum theory and number theory and put on record a curious multiplicative function, found by serendipity. As shown in [211] it is a particular representative of two large families of unusual multiplicative functions.

6b – Books
The book [13] records the sequence of lectures I gave in 1985 on papers [4, 10] and contains other material as well.

I put Julian Schwinger’s notes on quantum mechanics [95] into print. This book is much more a posthumous publication by him than a text by me.

The three companion books [131, 133] are the lecture notes for my quantum-mechanics courses at NUS; my notes on classical electrodynamics are book [183], the notes on classical mechanics are book [187], and the notes on statistical mechanics are book [214]. Three more volumes in the “Lectures on …” series will appear in due course; they will
treat advanced topics (variational principles, complementarity and wave-particle duality; variational principles).

Together with others, I co-edited the four books [154, 152, 160, 221]. Three of them grew out of workshops held in Singapore. The editing of book [210] did not involve others; the book includes [209] which is of historical interest.

Revised, corrected and enlarged, second editions of [95] and [131–133] are being prepared.

List of Publications
(updated in March 2023)

1. BGE, J. Karkowski, and J. M. Rayski, Jr.
 Conditions on Classical Sources for a Quantum Scalar Field with Higher Order Derivatives

2. Quantization of the Radiation-Damped Harmonic Oscillator

3. W. Dittrich and BGE
 One-Loop Thermal Corrections in the Gross-Neveu Model

4. BGE and J. Schwinger
 Thomas-Fermi revisited: The outer regions of the atom

5. BGE and J. Schwinger
 Statistical atom: Handling the strongly bound electrons

6. BGE and J. Schwinger
 Statistical atom: Some quantum improvements

7. BGE and J. Schwinger
 New statistical atom: A numerical study

8. BGE and J. Schwinger
 Semiclassical atom

9. BGE and J. Schwinger
 Linear degeneracy in the semiclassical atom

10. BGE and J. Schwinger
 Atomic-binding-energy oscillations

11. J. Schwinger and BGE
 The statistical atom

12. Weakly ionized Thomas-Fermi atoms

*Papers [35(a), 46, 59, 70, 74, 78, 99, 102, 105, 113, 115, 118(b), 122, 135, 143, 144, 151, 157, 168, 175, 178, 180] and 83 are fully or partly reprinted in Quantum Paths, edited by Rui Han and Hui Khoon Ng (World Scientific Publishing Company Co., Singapore 2015).

†This paper was an invited contribution to Physikalische Blätter, but the editor did not like the article and did not put it into print. It got eventually published in the proceedings of the Schwinger Centennial Conference; see 201 and 210.
13. Semiclassical Theory of Atoms
 Lecture Notes in Physics, Vol. 300
 (Springer-Verlag, Berlin and Heidelberg, 1988)

14. BGE, J. Schwinger, and M. O. Scully
 Is Spin Coherence like Humpty-Dumpty? I. Simplified Treatment
 (invited contribution to a Festschrift for David Bohm).

15. J. Schwinger, M. O. Scully, and BGE
 Is spin coherence like Humpty-Dumpty? II. General theory
 Zeitschrift für Physik D10, 135–144 (1988);
 reprinted in the Proceedings of the Eleventh International Conference on Atomic Physics
 pp. 37–62.

16. On the operator bases underlying Wigner’s, Kirkwood’s and Glauber’s phase space functions

17. BGE and J. Schwinger
 Thomas-Fermi Quantization, Classical Orbits, and the Systematics of the Periodic Table
 Proceedings of the International Conference on Classical Dynamics in Atomic and Molecular
 Physics (CDAMP ’88), Brioni 1988 (World Scientific, Singapore 1989, edited by

18. M. O. Scully, BGE, and J. Schwinger
 Spin coherence and Humpty-Dumpty. III. The effects of observation

19. K. Buchwald and BGE
 Thomas-Fermi-Scott model: Momentum-space density

20. BGE and M. O. Scully
 Good and Bad Welcher Weg Detectors
 Proceedings of the NATO Conference on New Frontiers in Quantum Electrodynamics and

21. BGE, J. Schwinger, and M. O. Scully
 Center-of-Mass Motion of Masing Atoms
 Proceedings of the NATO Conference on New Frontiers in Quantum Electrodynamics and

22. Spin Coherence in Stern-Gerlach Interferometers
 Proceedings of the NATO Conference on New Frontiers in Quantum Electrodynamics and

23. BGE, J. Schwinger, A. O. Barut, and M. O. Scully
 Reflecting Slow Atoms from a Micromaser Field

24. M. O. Scully, BGE, and H. Walther
 Quantum optical tests of complementarity

25. J. Bergou and BGE
 Operators of the Phase. Fundamentals

26. H.-J. Briegel, BGE, M. Michaelis, and G. Süssmann
 Über die Wurzel aus der Klein-Gordon-Gleichung als Schrödingergleichung eines
 relativistischen Spin-0-Teilchens

27. H.-J. Briegel, BGE, and G. Süssmann
 Canonical Quantization of the Classical Hamiltonian for a Relativistic Spin-0 Particle
28. Energy functionals and the Thomas-Fermi model in momentum space

29. M. Cinal and BGE
 Thomas-Fermi-Scott model in momentum space

30. BGE, H. Fearn, M. O. Scully, and H. Walther
 An atomic-beam quantum-eraser gedanken experiment

31. BGE, H. Walther, and M. O. Scully
 Quantum Optical Ramsey Fringes and Complementarity

32. Complementarity

33. BGE und H. Walther
 Komplementarität in der Quantenmechanik

34. Time Reversal Symmetry and Humpty-Dumpty

35. BGE, G. Süssmann, M. O. Scully, and H. Walther
 (a) Surrealistic Bohm Trajectories
 (b) Reply to Comment on ‘Surrealistic Bohm Trajectories’

36. H.-J. Briegel and BGE
 Quantum optical master equations: The use of damping bases
 — Sonolumineszenz – Casimir-Licht aus einer Wasserblase?

37. C. Ginzel, H.-J. Briegel, U. Martini, BGE, and A. Schenzle
 Quantum optical master equations: The one-atom laser

38. BGE, N. Sterpi, and H. Walther
 Parity states in the one-atom maser

39. M. Cinal and BGE
 Energy functionals in momentum space: Exchange energy, quantum corrections, and the Kohn-Sham scheme

40. BGE, N. Sterpi, and H. Walther
 One-atom maser: Parity states

41. BGE, H. Fearn, M. O. Scully, and H. Walther
 The micromaser welcher-weg detector revisited
 — BGE, M. O. Scully, and H. Walther
 One-atom maser: Recoilfree photon emission
— M. Cinal and BGE
Komplementarność
Delta, November 1993, pp. 1–4.

42. B. Rohwedder and BGE
Semiclassical quantization in momentum space

43. H.-J. Briegel, BGE, N. Sterpi, and H. Walther
One-atom maser: Statistics of detector clicks

44. H.-J. Briegel, BGE, C. Ginzel, and A. Schenzle
One-atom maser with a periodic and noisy pump. An application of damping bases

45. BGE, M. Naraschewski, and A. Schenzle
Quantum-optical master equations: An interaction picture

46. E. Wehner, R. Seno, N. Sterpi, BGE, and H. Walther
Atom pairs in the micromaser
Optics Communications 110, 655–669 (1994).

47. M. Battocletti and BGE
Reflecting slow atoms from a damped resonator

48. BGE, C. Miniatura, and J. Baudon
Least-bias description of atomic beams
Journal de Physique II 4, 2043–2059 (1994).

49. BGE, M. O. Scully and H. Walther
The Duality in Matter and Light
(US edition).

50. Elements of micromaser physics
Written for the Proceedings of the 19th International Nathiagali Summer College on Physics
and Contemporary Needs, Nathiagali 1994 (edited by S. A. Ahmad and S. M. Farooqi for Pak
Book Cooperation), which never appeared in print.

51. K. Wódkiewicz and BGE
Quantum trigonometry and phase-space propensity
in: Quantization, Coherent States, and Complex Structures (Proceedings of the XIIIth

52. BGE and K. Wódkiewicz
Intrinsic and operational observables in quantum mechanics

53. Driven Systems with One Bound State
Letters in Mathematical Physics 34, 239–248 (1995)
(invited contribution to the memorial issue for Julian Schwinger).

54. BGE, M. O. Scully, and H. Walther
Complementarity and uncertainty

— BGE, M. O. Scully, and H. Walther
Is the principle of complementarity deeper than the uncertainty relation? Certainly!

55. BGE, Ts. Gantsog, A. Schenzle, and C. Wagner
Successive clicks of the same kind in one-atom-maser experiments

56. BGE, K. Wódkiewicz, and P. Riegler
Intrinsic phase operator of the Noh-Fougères-Mandel experiments
57. H.-J. Briegel and BGE
"Macroscopic dynamics of a maser with non-Poissonian injection statistics"

58. BGE, Ts. Gantsog, A. Schenzle, and C. Wagner
"Analytical calculation of the atom counting statistics for the one-atom maser"

59. M. Thoss and BGE
"A Quantum Action Principle for Open Systems"
Letters in Mathematical Physics 37, 293–308 (1996).

60. H.-J. Briegel, G. M. Meyer, and BGE
"Correlated atomic excitation in multi-level lasers"
— J. P. Dowling, BGE, A. Schenzle, J. E. Alcock, and R. Hyman
"Comment on 'Theoretical Model of a Purported Empirical Violation of the Predictions of Quantum Theory'"

61. H.-J. Briegel, G. M. Meyer, and BGE
"Dynamic noise reduction in multi-level lasers: Nonlinear theory and the pump-operator approach"

62. H.-J. Briegel, BGE, M. O. Scully, and H. Walther
"Atom Interferometry and the Quantum Theory of Measurement"

63. BGE, Ts. Gantsog, A. Schenzle, C. Wagner, and H. Walther
"One-atom maser: Phase-sensitive measurements"

64. H.-J. Briegel, BGE, and M. Wilkens
"Testing a Bell-type inequality with a micromaser"

65. H. Walther, A. Zucchetti, P. Masiak, and K. Rzążewski
"Time-averaged inversion in the one-atom maser"

66. M. Löffler, BGE, and H. Walther
"Fringe Visibility and Which-Way Information: An Inequality"

67. H.-J. Briegel, BGE, and M. O. Scully
"Spectral properties of a micromaser: Atomic-beam statistics and the field correlation function"

68. T. Busch, BGE, K. Rzążewski, and M. Wilkens
"Two Cold Atoms in a Harmonic Trap"
(memorial issue for Asim O. Barut).
Comment on ‘Quantum action-angle variables for the harmonic oscillator’ unpublished (1997).

71. Classical Analogs of Unitarily Equivalent Hamilton Operators
(memorial issue for Asim O. Barut).

72. BGE, M. O. Scully, and H. Walther
Quantum erasure in double-slit interferometers with which-way detectors

73. Wave-particle duality quantified

74. J. A. Bergou and BGE
Heisenberg’s dog and quantum computing

75. Remarks on Some Basic Issues in Quantum Mechanics
Zeitschrift für Naturforschung 54a, 11–32 (1999).

76. P. D. D. Schwindt, P. G. Kwiat, and BGE
Quantitative wave-particle duality and non-erasing quantum erasure

77. BGE, M. Löffler, O. Benson, B. Varcoe, M. Weidinger, and H. Walther
Entangled atoms in micromaser physics

78. G. Badurek, R. J. Buchelt, BGE, and H. Rauch
Wave-particle duality and quantum erasure in polarized-neutron interferometry

79. M. O. Scully, Y. Aharonov, and BGE
On the Locality and Reality of Einstein-Podolsky-Rosen Correlations

80. P. G. Kwiat, P. D. D. Schwindt, and BGE
What Does a Quantum Eraser Really Erase?

81. Quantitative wave-particle duality
Proceedings of the International Symposium
‘From Duality to Unity: 75 Years of Wave-Particle Duality,’ Delhi 1998
(Plenum, in print, edited by R. Nair).

82. Yu. M. Golubev, BGE, H. Lee, M. O. Scully, and H. Walther
Generation of sub-Poissonian light by a four-level microlaser with a high-Q cavity
Journal of Experimental and Theoretical Physics 89, 258–266 (1999)
[JETP 116, 485 (1999)].

83. Y. Aharonov, BGE, and M. O. Scully
Protective measurements and Bohm trajectories
84. B. T. H. Varcoe, S. Brattke, BGE, and H. Walther
(a) *From trapping states to Fock states in the micromaser*
(b) *The Generation of Fock-States in the One-Atom Maser*
(c) *Fock State Rabi Oscillations: A Building Block for the Observation of New Phenomena in Quantum Optics*

85. BGE, M. O. Scully, and H. Walther
Comment on ‘Complementarity Enforced by Random Classical Phase Kicks’

86. M. O. Scully, BGE, and C. J. Bednar
Two-photon scheme for detecting the Bell basis using atomic coherence

87. BGE and J. A. Bergou
Quantitative quantum erasure

88. BGE and H. Walther
Preparing a GHZ state, or an EPR state, with the one-atom maser

89. J. A. Bergou, BGE, M. Lax, M. O. Scully, H. Walther, and M. S. Zubairy
Quantum Theory of the Laser

90. BGE, M. O. Scully, and H. Walther
On mechanism that enforce complementarity

91. BGE and N. Metwally
Separability of entangled q-bit pairs

92. S. Brattke, BGE, B. T. H. Varcoe, and H. Walther
Fock states in a cyclically pumped one-atom maser

93. BGE, C. Kurtsiefer, and H. Weinfurter
Universal unitary gate for single-photon 2-qubit states

94. BGE and N. Metwally
Remarks on 2–q-bit states

95. J. Schwinger
Quantum Mechanics – Symbolism of Atomic Measurements

96. K. Góral, BGE, and K. Rzążewski
Semiclassical theory of trapped fermionic dipoles
eprint arXiv:cond-mat/0010193
Physical Review A 63, art. 033606 (2001) [8 pages].

97. Y. Aharonov and BGE
The mean king’s problem: Spin 1
98. A. Beige, BGE, C. Kurtsiefer, and H. Weinfurter
Secure communication with single-photon two-qubit states

99. BGE and Y. Aharonov
The mean king’s problem: Prime degrees of freedom

100. BGE and N. Metwally
Kinematics of qubit pairs
Chapter 2 in: Mathematics of Quantum Computation, edited by G. Chen and R. K. Brylinski
— Book review of H. Dühr, Bohmsche Mechanik als Grundlage der Quantenmechanik (Springer Verlag, Berlin 2001)
Physikalische Blätter 57(11), 82–83 (2001).

101. BGE and K. Wódkiewicz
Separability of Two-Party Gaussian States

102. G. Morigi, E. Solano, BGE, and H. Walther
Measuring irreversible dynamics of a quantum harmonic oscillator

103. A. Beige, BGE, C. Kurtsiefer, and H. Weinfurter
Communicating with qubit pairs
Chapter 14 in: Mathematics of Quantum Computation, edited by G. Chen and R. K. Brylinski

104. A. Beige, BGE, C. Kurtsiefer, and H. Weinfurter
Secure communication with a publicly known key

105. BGE, S. A. Fulling, and M. D. Pilloff
Statistics of dressed modes in a thermal state
Optics Communications 208, 139–144 (2002).

106. G. Morigi, E. Solano, BGE, and H. Walther
Reversing the Jaynes-Cummings dynamics to measure decoherence

107. BGE and G. Morigi
Five lectures on dissipative master equations
Chapter 2 in: Coherent Evolution in Noisy Environments, edited by A. Buchleitner and K. Hornberger,
Lecture Notes in Physics, Vol. 611

108. S. A. Fulling, BGE, and M. D. Pilloff
Interacting bosons at finite temperature: How Bogolubov visited a black hole and came home again
eprint arXiv:gr-qc/0207032
(special issue in honor of Jacob Bekenstein).

109. BGE and P. G. Kwiat
Comment on ‘Comprehensive experimental test of quantum erasure’
submitted to European Physics Journal D.
110. O. Schulz, R. Steinhübl, M. Weber, BGE, C. Kurtsiefer, and H. Weinfurter
Ascertaining the Values of σ_x, σ_y, and σ_z of a Polarization Qubit

111. BGE, P. Lougovski, E. Solano, and H. Walther
One-atom maser: Non-separable atom pairs
(memorial issue for Aleksandr M. Prokhorov).

112. G. Chen, BGE, and J. Zhou
Convergence Analysis of an Optimal Scaling Algorithm for Semilinear Elliptic Boundary
Value Problems
in: Variational Methods: Open Problems, Recent Progress, and Numerical Algorithms,

113. P. G. Kwiat and BGE
Quantum erasing the nature of reality or, perhaps, the reality of Nature?
Chapter 15 in: Science and Ultimate Reality — Quantum Theory, Cosmology and
Complexity, edited by J. D. Barrow, P. C. W. Davies, and C. L. Harper, Jr. (Cambridge

114. G. Chen, D. A. Church, BGE, and M. S. Zubairy
Mathematical modeling of contemporary quantum computing devices
in Quantum Control: Mathematical and Numerical Challenges, edited by A. Bandrauk,
M. C. Delfour, and C. Le Bris, Centre de Recherche Mathématique, CRM Proceedings and

115. D. Kaszlikowski, L. C. Kwek, M. Żukowski, and BGE
Information-theoretic approach to single-particle and two-particle interference in multi-path
interferometers

Tomographic Quantum Cryptography: Equivalence of Quantum and Classical Key
Distillation

117. Y. C. Liang, D. Kaszlikowski, BGE, L. C. Kwek, and C. H. Oh
Tomographic Quantum Cryptography

118. D. Kaszlikowski, A. Gopinathan, Y. C. Liang, L. C. Kwek, and BGE
(a) How well can you know the edge of a quantum pyramid?
(b) Quantum Cryptography: Security Criteria Reexamined

119. BGE and K. Wódkiewicz
Tutorial Notes on One-Party and Two-Party Gaussian States

120. (a) P. Lougovski, F. Casagrande, A. Lulli, BGE, E. Solano, and H. Walther
Solvable model of a strongly-driven micromaser
(b) F. Casagrande, BGE, P. Lougovski, A. Lulli, E. Solano, and H. Walther
A solvable open quantum system: The strongly driven micromaser
121. D. Kaszlikowski, J. Y. Lim, L. C. Kwek, and BGE
 (a) Quantum and classical advantage distillation are not equivalent
 (b) Coherent Eavesdropping Attacks in Tomographic Quantum Cryptography:
 Nonequivalence of Quantum and Classical Key Distillation
 Physical Review A 72, art. 042315 (2005) [5 pages].

122. J. Řeháček, BGE, and D. Kaszlikowski
 Minimal qubit tomography

123. L. Praxmeyer, BGE, and K. Wódkiewicz
 Violation of Bell’s inequality for continuous variables

124. J. Řeháček, BGE, and D. Kaszlikowski
 Iterative procedure for computing accessible information in quantum communication
 Physical Review A 71, art. 054303 (2005) [4 pages].

125. BGE, K. M. Tin, C. G. Goh, and H. K. Ng
 Single-loop interferometer for minimal ellipsometry
 eprint arXiv:physics/0409015

126. BGE, D. Kaszlikowski, H. K. Ng, W. K. Chua, J. Řeháček, and J. Anders
 Efficient and robust quantum key distribution with minimal state tomography

127. BGE, F.-W. Fu, H. Niederreiter, and C. Xing
 Codes for Key Generation in Quantum Cryptography

128. J. Anders, H. K. Ng, BGE, and S. Y. Looi
 Singapore Protocol: Incoherent Eavesdropping Attacks

129. BGE, K. L. Lee, A. Mann, and M. Revzen
 Periodic and discrete Zak bases

130. H. Walther, B. T. H. Varcoe, BGE, and T. Becker
 Cavity Quantum Electrodynamics

131. Lectures on Quantum Mechanics — Basic Matters
 (World Scientific Publishing Co., Singapore 2006)

132. Lectures on Quantum Mechanics — Simple Systems
 (World Scientific Publishing Co., Singapore 2006)

133. Lectures on Quantum Mechanics — Perturbed Evolution
 (World Scientific Publishing Co., Singapore 2006)

134. G. Chen, D. A. Church, BGE, C. Henkel, B. Rohwedder, M. O. Scully, and M. S. Zubairy
 Quantum Computing Devices: Principles, Designs and Analysis
 (Chapman & Hall/CRC, Boca Raton 2006)
135. J. Suzuki, S. M. Assad, and BGE
Accessible information about quantum states: An open optimization problem
Chapter 11 in *Mathematics of Quantum Computation and Quantum Technology*, edited by
G. Chen, S. J. Lomonaco, and L. Kauffman

136. S. M. Assad, J. Suzuki, and BGE
Raw-data attacks in quantum cryptography with partial tomography

137. C. Miniatura, C. A. Müller, Y. Lu, G. Wang, and BGE
Path distinguishability in double scattering of light by atoms
Physical Review A 76, art. 022101 (2007) [4 pages].

Wave-particle duality in multi-path interferometers: General concepts and three-path interferometers

139. J. Suzuki, G. N. M. Tabia, and BGE
Symmetric construction of reference-frame-free qudits
eprint arXiv:0802.1609 [quant-ph]
Physical Review A 78, art. 052328 (2008) [5 pages].

140. Koong C. W., N. Chandrasekhar, C. Miniatura, and BGE
Spin orbit interaction induced spin-separation in platinum nanostructures
eprint arXiv:0804.0096 [cond-mat.mes-hall]
Chapter 5 in *Electron Transport in Nanosystems*, edited by Janez Bonča and Sergei Kruchinin
(Springer Verlag, 2008), pp. 49–58.

SOMIM: An open-source program code for the numerical Search for Optimal Measurements
by an Iterative Method
URL: http://www.quantumlah.org/publications/software/SOMIM/

142. BGE and J. Reháček
How well can you know the edge of a quantum pyramid?

143. H. Zhu, Y. S. Teo, and BGE
Minimal tomography with entanglement witnesses
Physical Review A 81, art. 052339 (2010) [8 pages].

144. K. L. Lee, B. Grémaud, R. Han, BGE, and C. Miniatura
Ultracold fermions in a graphene-type optical lattice
Physical Review A 80, art. 043411 (2009) [18 pages].

145. Y. S. Teo, H. Zhu, and BGE
Product measurements and fully symmetric measurements in qubit-pair tomography:
A numerical study
Optics Communications 283, 724–729 (2010).

146. Y. Lu, C. Miniatura, and BGE
Average transmission probability of a random stack
eprint arXiv:0907.5557 [quant-ph]

147. G. C. Thiang, P. Raynal, and BGE
Optimal Lewenstein–Sanpera decomposition of two-qubit states using semidefinite programming
Physical Review A 80, art. 052313 (2009) [6 pages].
148. G. Tabia and BGE
 Efficient quantum key distribution with trines of reference-frame-free qubits

149. P. Raynal, A. Kalev, J. Suzuki, and BGE
 Encoding many qubits in a rotor
Physical Review A 81, art. 052327 (2010) [11 pages];

150. Koong C. W., BGE, C. Miniatura, and N. Chandrasekhar
 Giant spin Hall effect in platinum at room temperature
eprint arXiv:1004.1273 [cond-mat.mes-hall].

151. T. Durt, BGE, I. Bengtsson, and K. Życzkowski
 On mutually unbiased bases

152. H. Araki, BGE, L.-C. Kwek, and J. Suzuki, eds.,
 Mathematical Horizons for Quantum Physics
 Lecture Notes Series, Institute of Mathematical Sciences, National University of Singapore,
 vol. 20
 (World Scientific Publishing Co., Singapore 2010)

153. A. Sehrawat, D. Zemann, and BGE
 Hybrid quantum computation
 eprint arXiv:1008.1118 [quant-ph]
 Physical Review A 83, art. 022317 (2011) [14 pages].

154. H. Zhu, Y. S. Teo, and BGE
 Two-qubit symmetric informationally complete positive-operator-valued measures
eprint arXiv:1008.1138 [quant-ph]
Physical Review A 82, art. 042308 (2010) [9 pages].

155. B. Fang and BGE
 Density functional of a two-dimensional gas of dipolar atoms: Thomas-Fermi-Dirac treatment
eprint arXiv:1008.1163 [cond-mat.quant-gas]
Physical Review A 83, art. 052517 (2011) [11 pages].

156. R. Han, N. Lörck, J. Suzuki, and BGE
 Long-lived qubit from three spin-1/2 atoms
eprint arXiv:1008.1523 [quant-ph]
Physical Review A 84, art. 012322 (2011) [14 pages].

157. Y. S. Teo, H. Zhu, BGE, J. Řeháček, and Z. Hradil
 Quantum-State Reconstruction by Maximizing Likelihood and Entropy
eprint arXiv:1102.2662 [quant-ph]
Physical Review Letters 107, art. 020404 (2011) [4 pages].

158. A. Sehrawat, L. H. Nguyen, and BGE
 Test-state approach to the quantum search problem
eprint arXiv:1102.3628 [quant-ph]
Physical Review A 83, art. 052311 (2011) [10 pages].

159. P. Raynal, X. Lü, and BGE
 Mutually unbiased bases in dimension six: The four most distant bases
Physical Review A 83, art. 062303 (2011) [9 pages].

 Les Houches 2009—Session XCI: Ultracold Gases and Quantum Information
 (Oxford University Press, Oxford 2011)
161. H. Zhu and BGE
Quantum state tomography with fully symmetric measurements and product measurements
Physical Review A 84, art. 022327 (2011) [13 pages].

162. J. Shang, K. L. Lee, and BGE
SeCQC: An open-source program code for the numerical Search for the classical Capacity of Quantum Channels
URL: http://www.quantumlah.org/publications/software/SeCQC/

163. Comment on ‘Minimum Uncertainty and Entanglement’

164. Y. S. Teo, BGE, J. Reháček, and Z. Hradil
Adaptive schemes for incomplete quantum process tomography
eprint arXiv:1110.1202 [quant-ph]
Physical Review A 84, art. 062125 (2011) [9 pages].

165. A. Kalev, J. Shang, and BGE
Experiment proposal for symmetric minimal two-qubit state tomography
Physical Review A 85, art. 052115 (2012) [4 pages].

166. Y. S. Teo, B. Stoklasa, BGE, J. Reháček, and Z. Hradil
Incomplete quantum state estimation: A comprehensive study
Physical Review A 85, art. 042317 (2012) [9 pages].

167. H. K. Ng and BGE
A simple minimax estimator for quantum states

168. A. Kalev, J. Shang, and BGE
Symmetric minimal quantum tomography by successive measurements
Physical Review A 85, art. 052116 (2012) [7 pages].

169. L. H. Nguyen, A. Kalev, M. Barrett, and BGE
Micromotion in the trapped atom-ion system
Physical Review A 85, art. 052718 (2012) [22 pages].

170. X. Liu, P. Raynal, and BGE
Mutually unbiased bases for the rotor degree of freedom
eprint arXiv:1203.5201 [quant-ph]
Physical Review A 85, art. 052316 (2012) [8 pages].

171. J. Suzuki and BGE
Symmetric coupling of four spin-1/2 systems

172. H. K. Ng, K. T. B. Phuah, and BGE
Minimax mean estimator for the trine
New Journal of Physics 14, art. 085007 (2012) [17 pages].

173. Y. S. Teo, BGE, J. Reháček, Z. Hradil, and D. Mogilevtsev
Verification of state and entanglement with incomplete tomography
New Journal of Physics 14, art. 105020 (2012) [14 pages].

174. V. Paulisch, R. Han, H. K. Ng, and BGE
Beyond adiabatic elimination: A hierarchy of approximations for multi-photon processes
eprint arXiv:1209.6568 [quant-ph]
175. R. Han, H. K. Ng, and BGE

Raman transitions without adiabatic elimination: A simple and accurate treatment
eprint arXiv:1209.6569 [quant-ph]

176. S.-H. Tan, L. A. Krivitsky, and BGE

Measuring quantum correlations using lossy photon-number-resolving detectors with saturation

177. H. K. Ng and BGE

One-dimensional transport revisited: A simple and exact solution for phase disorder

178. J. Shang, H. K. Ng, A. Sehrawat, X. Li, and BGE

Optimal error regions for quantum state estimation

179. J. Dai, Y. L. Len, Y. S. Teo, L. A. Krivitsky, and BGE

Controllable generation of mixed two-photon states
eprint arXiv:1304.2101 [quant-ph]

180. *On Quantum Theory*
The European Physical Journal D **67**, art. 238 (2013) [16 pages].

181. J. Shang, Y.-L. Seah, H. K. Ng, D. J. Nott, and BGE

Monte Carlo sampling from the quantum state space. I

182. J. Shang, Y.-L. Seah, H. K. Ng, D. J. Nott, and BGE

Monte Carlo sampling from the quantum state space. II

183. *Lectures on Classical Electrodynamics*
(World Scientific Publishing Co., Singapore 2014)

184. J. Shang, Y.-L. Seah, H. K. Ng, D. J. Nott, and BGE

Monte Carlo sampling from the quantum state space. I

185. Y.-L. Seah, J. Shang, H. K. Ng, D. J. Nott, and BGE

Monte Carlo sampling from the quantum state space. II

186. R. Han, H. K. Ng, and BGE

Implementing a neutral-atom controlled-phase gate with a single Rydberg pulse
Europhysics Letters **113**, art. 40001 (2016) [6 pages].

187. *Lectures on Classical Mechanics*
(World Scientific Publishing Co., Singapore 2015)

188. K. Abdelkhalek, R. Schwonnek, H. Maassen, F. Furrer, J. Duhme, P. Raynal, BGE, and R. F. Werner

Optimality of entropic uncertainty relations
189. J. Řeháček, Z. Hradil, Y. S. Teo, L. L. Sánchez Soto, H. K. Ng, J. H. Chai, and BGE
 Least-bias state estimation with incomplete unbiased measurements

190. M.-I. Trappe, Y. L. Len, H. K. Ng, C. A. Müller, and BGE
 Leading gradient correction to the kinetic energy for two-dimensional fermion gases
Physical Review A 93, art. 042510 (2016) [6 pages].

191. X. Li, J. Shang, H. K. Ng, and BGE
 Optimal error intervals for properties of the quantum state
Physical Review A 94, art. 062112 (2016) [21 pages].

192. S.-H. Tan, L. A. Krivitsky, and BGE
 Checking for prior-data conflict using prior-to-posterior divergences
eprint arXiv:1611.00113 [stat.ME]

193. M.-I. Trappe, Y. L. Len, H. K. Ng, and BGE
 Airy-averaged gradient corrections for two-dimensional Fermi gases
eprint arXiv:1612.04048 [cond-mat.quant-gas]

194. J. Shang, Y.-L. Seah, B. Wang, H. K. Ng, D. J. Nott, and BGE
 Past of a quantum particle revisited
Physical Review A 96, art. 022126 (2017) [18 pages].

 Unambiguous path discrimination in a two-path interferometer
Physical Review A 98, art. 022110 (2018) [7 pages].

196. T. T. Chau, J. H. Hue, M.-I. Trappe, and BGE
 Systematic corrections to the Thomas–Fermi approximation without a gradient expansion
New Journal of Physics 20, art. 073003 (2018) [16 pages].

 E. Karimi
 Experimental investigation of quantum key distribution protocols with twisted photons
Quantum 2, art. 111 (2018) [13 pages].

198. BGE, M. Evans, G. H. Jang, H. K. Ng, D. Nott, and Y.-L. Seah
 Checking for Model Failure and for Prior-Data Conflict with the Constrained Multinomial Model

199. J. Schwinger and BGE
 The statistical atom
pp. 237–260 in the proceedings of the Julian Schwinger Centennial Conference, 7–12 February 2018, Singapore; see [210].
202. Y. Gu, W. Li, M. Evans, and BGE

Very strong evidence in favor of quantum mechanics and against local hidden variables from a Bayesian analysis

Physical Review A 99, art. 022112 (2019) [17 pages].

203. BGE, K. Horia, J. Dai, Y. L. Len, and H. K. Ng

Reply to “Comment on ‘Past of a quantum particle revisited’

204. D. J. Nott, M. Seahi, L. Al-Labadi, M. Evans, H. K. Ng, and BGE

Using prior expansions for prior-data conflict checking

205. J. Y. Sim, J. Shang, H. K. Ng, and BGE

Proper error bars for self-calibrating quantum tomography

Physical Review A 100, art. 022333 (2019) [10 pages].

206. J. Y. Sim, J. Suzuki, BGE, and H. K. Ng

User-specified random sampling of quantum channels and its applications

Physical Review A 101, art. 022307 (2020) [17 pages].

207. Julian Schwinger and the semiclassical atom

208. Z. Hradil, J. Reháček, L. Sánchez-Soto, and BGE

Quantum Fisher information with coherence

Optica 6, 1437–1440 (2019).

209. BGE and K. A. Milton

Speeches by V. F. Weisskopf, J. H. Van Vleck, I. I. Rabi, M. Hamermesh, B. T. Feld, R. P. Feynman, and D. Saxon, given in honor of Julian Schwinger at his 60th birthday

210. Proceedings of the Julian Schwinger Centennial Conference

211. H. H. Chan and BGE

Multiplicative functions arising from the study of mutually unbiased bases

212. Y. Lu, J. Y. Sim, J. Suzuki, BGE, and H. K. Ng

Direct estimation of minimum gate fidelity

Physical Review A 102, art. 022410 (2020) [11 pages].

213. Lectures on Statistical Mechanics

(World Scientific Publishing Co., Singapore 2020)

Fourth-order leapfrog algorithms for numerical time evolution of classical and quantum systems

215. Y. Gu, R. Mishra, BGE, H. K. Ng

Randomized linear gate set tomography

PRX Quantum 2, art. 030328 (2021) [16 pages].
216. M. M. Paraniak and BGE
Quantum dynamical simulation of a transversal Stern–Gerlach interferometer
Symmetry 13, art. 1660 (2021) [13 pages].

217. M.-I. Trappe, J. H. Hue, and BGE
Density-potential functional theory for fermions in one dimension
Chapter 8, pp. 251–268, in 221.

218. R. Han, W. Li, S. Bagchi, H. K. Ng, and BGE
Uncorrelated problem-specific samples of quantum states from zero-mean Wishart
distributions

219. W. Li, R. Han, J. Shang, H. K. Ng, and BGE
Sequentially constrained Monte Carlo sampler for quantum states

220. BGE, J. H. Hue, Z. C. Huang, M. M. Paraniak, and M.-I. Trappe
Energy functional of single-particle densities: A unified view
Chapter 10, pp. 287–308, in 221.

221. BGE, H. Siedentop, and M.-I. Trappe, eds.
Density Functionals for Many-Particle Systems: Mathematical Theory and Physical
Applications of Effective Equations
Lecture Notes Series, IMS, NUS 41
(World Scientific Publishing Company, Singapore 2023)

222. J. Cioslowski, BGE, M.-I. Trappe, and J. H. Hue
Contactium: A strongly correlated model system

<table>
<thead>
<tr>
<th>Publication categories</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articles in international refereed journals</td>
<td>166</td>
</tr>
<tr>
<td>Authored books</td>
<td>7</td>
</tr>
<tr>
<td>Edited books</td>
<td>6</td>
</tr>
<tr>
<td>Chapters in books</td>
<td>30</td>
</tr>
<tr>
<td>Others publications</td>
<td>15</td>
</tr>
</tbody>
</table>

Bibliometry

On 1 March 2023, the Web of Science (Publons) counted 181 articles with 7,428 citations (some recent papers are not included), and found an h-index of 41. The following table shows the citation data for the ten most-cited papers:

<table>
<thead>
<tr>
<th>Paper</th>
<th>citations</th>
<th>since</th>
<th>Paper</th>
<th>citations</th>
<th>since</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>641 (1,170)</td>
<td>May 1991</td>
<td>104</td>
<td>559 (559)</td>
<td>March 2002</td>
</tr>
<tr>
<td>130</td>
<td>583 (1,070)</td>
<td>May 2006</td>
<td>56</td>
<td>205 (300)</td>
<td>April 1993</td>
</tr>
<tr>
<td>67</td>
<td>577 (959)</td>
<td>September 1996</td>
<td>122</td>
<td>158 (271)</td>
<td>November 2004</td>
</tr>
<tr>
<td>70</td>
<td>523 (857)</td>
<td>April 1998</td>
<td>23</td>
<td>146 (191)</td>
<td>January 1991</td>
</tr>
<tr>
<td>151</td>
<td>419 (671)</td>
<td>June 2010</td>
<td>76</td>
<td>120 (199)</td>
<td>December 1999</td>
</tr>
</tbody>
</table>

The citation counts in parentheses are those of Google Scholar, with $h = 53$. 23
List of co-authors

<table>
<thead>
<tr>
<th>Kais</th>
<th>AbdelKaled</th>
<th>188</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yakir</td>
<td>Aharonov</td>
<td>97</td>
</tr>
<tr>
<td>Luai</td>
<td>Al-Labadi</td>
<td>204</td>
</tr>
<tr>
<td>Janet</td>
<td>Anders</td>
<td>120</td>
</tr>
<tr>
<td>Huzhir</td>
<td>Arab</td>
<td>152</td>
</tr>
<tr>
<td>Syed</td>
<td>M. Assad</td>
<td>125</td>
</tr>
<tr>
<td>Gerald</td>
<td>Badurek</td>
<td>78</td>
</tr>
<tr>
<td>Shrobana</td>
<td>Bagchi</td>
<td>218</td>
</tr>
<tr>
<td>Murray</td>
<td>Barrett</td>
<td>169</td>
</tr>
<tr>
<td>Asim</td>
<td>O. Barut</td>
<td>23</td>
</tr>
<tr>
<td>Marco</td>
<td>Battocletti</td>
<td>42</td>
</tr>
<tr>
<td>Jacques</td>
<td>Baudouin</td>
<td>48</td>
</tr>
<tr>
<td>Thomas</td>
<td>Becker</td>
<td>130</td>
</tr>
<tr>
<td>Chris</td>
<td>J. Bednar</td>
<td>86</td>
</tr>
<tr>
<td>Almut</td>
<td>Beige</td>
<td>103</td>
</tr>
<tr>
<td>Ingemar</td>
<td>Bengtsson</td>
<td>77</td>
</tr>
<tr>
<td>Oliver</td>
<td>Benson</td>
<td>77</td>
</tr>
<tr>
<td>János</td>
<td>Bergou</td>
<td>28</td>
</tr>
<tr>
<td>Frédéric</td>
<td>Bouchard</td>
<td>19</td>
</tr>
<tr>
<td>Robert</td>
<td>W. Boyd</td>
<td>199</td>
</tr>
<tr>
<td>Hans</td>
<td>J. Briegel</td>
<td>26</td>
</tr>
<tr>
<td>Simon</td>
<td>Bratke</td>
<td>84</td>
</tr>
<tr>
<td>Dagmar</td>
<td>Bruss</td>
<td>116</td>
</tr>
<tr>
<td>Roland</td>
<td>J. Buchet</td>
<td>78</td>
</tr>
<tr>
<td>Klaus</td>
<td>Buchwald</td>
<td>110</td>
</tr>
<tr>
<td>Thomas</td>
<td>Busch</td>
<td>79</td>
</tr>
<tr>
<td>Federico</td>
<td>Casagrande</td>
<td>120</td>
</tr>
<tr>
<td>Jing</td>
<td>Hao</td>
<td>189</td>
</tr>
<tr>
<td>Heng</td>
<td>Hue</td>
<td>211</td>
</tr>
<tr>
<td>N.</td>
<td>Chandrasekhar</td>
<td>130</td>
</tr>
<tr>
<td>Leo</td>
<td>Chang</td>
<td>214</td>
</tr>
<tr>
<td>Thanh</td>
<td>Tri</td>
<td>209</td>
</tr>
<tr>
<td>Wei</td>
<td>Hui</td>
<td>138</td>
</tr>
<tr>
<td>Goong</td>
<td>Chen</td>
<td>112</td>
</tr>
<tr>
<td>Shao</td>
<td>Hen Chiew</td>
<td>219</td>
</tr>
<tr>
<td>Matthias</td>
<td>Christandl</td>
<td>136</td>
</tr>
<tr>
<td>Wee</td>
<td>Kang Chu</td>
<td>120</td>
</tr>
<tr>
<td>David</td>
<td>A. Church</td>
<td>119</td>
</tr>
<tr>
<td>Marek</td>
<td>Cinal</td>
<td>29</td>
</tr>
<tr>
<td>Jerzy</td>
<td>Cioslowski</td>
<td>222</td>
</tr>
<tr>
<td>L.</td>
<td>F. Cugliandolo</td>
<td>160</td>
</tr>
<tr>
<td>Jibo</td>
<td>Dai</td>
<td>203</td>
</tr>
<tr>
<td>Walter</td>
<td>Dittrich</td>
<td>2</td>
</tr>
<tr>
<td>Martial</td>
<td>Ducloy</td>
<td>160</td>
</tr>
<tr>
<td>Jörg</td>
<td>Duhr</td>
<td>188</td>
</tr>
<tr>
<td>Tom</td>
<td>Durt</td>
<td>151</td>
</tr>
<tr>
<td>Artur</td>
<td>K. Eckert</td>
<td>116</td>
</tr>
<tr>
<td>Duncan</td>
<td>Enland</td>
<td>199</td>
</tr>
<tr>
<td>Ege</td>
<td>Eren</td>
<td>214</td>
</tr>
<tr>
<td>Michael</td>
<td>Evans</td>
<td>202</td>
</tr>
<tr>
<td>Bess</td>
<td>Fang</td>
<td>155</td>
</tr>
<tr>
<td>Heidi</td>
<td>Fearn</td>
<td>119</td>
</tr>
<tr>
<td>Robert</td>
<td>Fickler</td>
<td>139</td>
</tr>
<tr>
<td>Fang-Wei</td>
<td>Fu</td>
<td>12</td>
</tr>
<tr>
<td>Stephen</td>
<td>A. Fulling</td>
<td>105</td>
</tr>
<tr>
<td>Fabian</td>
<td>Furrer</td>
<td>188</td>
</tr>
<tr>
<td>Tserensodnom</td>
<td>Gantsog</td>
<td>55</td>
</tr>
<tr>
<td>Christian</td>
<td>Ginzelt</td>
<td>37</td>
</tr>
<tr>
<td>Choon</td>
<td>Guan Goh</td>
<td>125</td>
</tr>
<tr>
<td>Yuri</td>
<td>M. Golubev</td>
<td>82</td>
</tr>
<tr>
<td>Ajay</td>
<td>Gopinathan</td>
<td>118</td>
</tr>
<tr>
<td>Krzysztof</td>
<td>Góral</td>
<td>96</td>
</tr>
<tr>
<td>Benoît Grémaud</td>
<td>144</td>
<td>160</td>
</tr>
<tr>
<td>Yanwu</td>
<td>Gu</td>
<td>202</td>
</tr>
<tr>
<td>Rui</td>
<td>Han</td>
<td>144</td>
</tr>
<tr>
<td>Carsten</td>
<td>Henkel</td>
<td>134</td>
</tr>
<tr>
<td>Kabat</td>
<td>Heshami</td>
<td>195</td>
</tr>
<tr>
<td>Kelvin</td>
<td>Horia</td>
<td>196</td>
</tr>
<tr>
<td>Zdeněk</td>
<td>Hradil</td>
<td>157</td>
</tr>
<tr>
<td>Zi</td>
<td>Chao Huang</td>
<td>220</td>
</tr>
<tr>
<td>Jun</td>
<td>Hao Hue</td>
<td>198</td>
</tr>
<tr>
<td>Gun</td>
<td>Ho</td>
<td>200</td>
</tr>
<tr>
<td>Amir</td>
<td>Kave</td>
<td>149</td>
</tr>
<tr>
<td>Ebrahim</td>
<td>Karimi</td>
<td>199</td>
</tr>
<tr>
<td>Janusz</td>
<td>Karwowski</td>
<td>1</td>
</tr>
<tr>
<td>Dagomir</td>
<td>Kaszlowski</td>
<td>115</td>
</tr>
<tr>
<td>Chee</td>
<td>Weng Koong</td>
<td>140</td>
</tr>
<tr>
<td>Leonid</td>
<td>A. Krivitsky</td>
<td>179</td>
</tr>
<tr>
<td>Christian</td>
<td>Kurtsiefer</td>
<td>93</td>
</tr>
<tr>
<td>98</td>
<td>103</td>
<td>104</td>
</tr>
<tr>
<td>Leong</td>
<td>Chuan Kwek</td>
<td>115</td>
</tr>
<tr>
<td>117</td>
<td>118</td>
<td>b</td>
</tr>
<tr>
<td>Paul</td>
<td>G. Kwiat</td>
<td>113</td>
</tr>
<tr>
<td>Jonathan</td>
<td>Wei Zhong</td>
<td>214</td>
</tr>
<tr>
<td>Melvin</td>
<td>Lax</td>
<td>89</td>
</tr>
<tr>
<td>Hwang</td>
<td>Lee</td>
<td>82</td>
</tr>
<tr>
<td>Kean</td>
<td>Loon</td>
<td>129</td>
</tr>
<tr>
<td>Yin</td>
<td>Loon</td>
<td>117</td>
</tr>
<tr>
<td>Yink</td>
<td>Loon</td>
<td>179</td>
</tr>
<tr>
<td>Weijun</td>
<td>Li</td>
<td>202</td>
</tr>
<tr>
<td>Xikun</td>
<td>Li</td>
<td>178</td>
</tr>
<tr>
<td>Yeong</td>
<td>Cheong Liang</td>
<td>177</td>
</tr>
<tr>
<td>Jenn</td>
<td>Yang Lim</td>
<td>121</td>
</tr>
<tr>
<td>Markus</td>
<td>Löffler</td>
<td>66</td>
</tr>
<tr>
<td>Shiang</td>
<td>Yong</td>
<td>128</td>
</tr>
<tr>
<td>Niels</td>
<td>Lörch</td>
<td>156</td>
</tr>
<tr>
<td>Pavel</td>
<td>Lougovskiy</td>
<td>111</td>
</tr>
<tr>
<td>Yin</td>
<td>Lu</td>
<td>137</td>
</tr>
<tr>
<td>Yiping</td>
<td>(Tod)</td>
<td>Lu</td>
</tr>
<tr>
<td>Xin</td>
<td>Lu</td>
<td>159</td>
</tr>
<tr>
<td>A.</td>
<td>Lulli</td>
<td>120</td>
</tr>
<tr>
<td>Hans</td>
<td>Maassen</td>
<td>188</td>
</tr>
<tr>
<td>Chiara</td>
<td>Macchiavello</td>
<td>116</td>
</tr>
<tr>
<td>Ady</td>
<td>Mann</td>
<td>129</td>
</tr>
<tr>
<td>Ulrich</td>
<td>Martini</td>
<td>37</td>
</tr>
<tr>
<td>Piotr</td>
<td>Masiak</td>
<td>65</td>
</tr>
<tr>
<td>Nasser</td>
<td>M. Metwally</td>
<td>91</td>
</tr>
<tr>
<td>94</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Georg</td>
<td>M. Meyer</td>
<td>60</td>
</tr>
<tr>
<td>Markus</td>
<td>Michaelis</td>
<td>26</td>
</tr>
<tr>
<td>Kimball</td>
<td>A. Milton</td>
<td>209</td>
</tr>
<tr>
<td>Christian</td>
<td>Miniatura</td>
<td>48</td>
</tr>
<tr>
<td>Rajesh</td>
<td>Mishra</td>
<td>215</td>
</tr>
<tr>
<td>Dmitry</td>
<td>Mogilevtsev</td>
<td>173</td>
</tr>
<tr>
<td>Giovanna</td>
<td>Morigi</td>
<td>102</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cord</td>
<td>A. Müller</td>
<td>137</td>
</tr>
<tr>
<td>Martin</td>
<td>Naraschewski</td>
<td>45</td>
</tr>
<tr>
<td>Hui</td>
<td>Khoon Ng</td>
<td>125</td>
</tr>
<tr>
<td>128</td>
<td>167</td>
<td>172</td>
</tr>
<tr>
<td>179</td>
<td>178</td>
<td>188</td>
</tr>
<tr>
<td>186</td>
<td>189</td>
<td>190</td>
</tr>
<tr>
<td>195</td>
<td>196</td>
<td>200</td>
</tr>
<tr>
<td>205</td>
<td>206</td>
<td>212</td>
</tr>
<tr>
<td>Le</td>
<td>Huy Nguyen</td>
<td>158</td>
</tr>
<tr>
<td>Harald</td>
<td>Niederreiter</td>
<td>127</td>
</tr>
<tr>
<td>David</td>
<td>John Nott</td>
<td>184</td>
</tr>
<tr>
<td>195</td>
<td>193</td>
<td>200</td>
</tr>
<tr>
<td>Choo</td>
<td>Haip Oh</td>
<td>117</td>
</tr>
<tr>
<td>Mikolaj</td>
<td>M. Paraniak</td>
<td>216</td>
</tr>
<tr>
<td>Vanessa</td>
<td>Paulisch</td>
<td>174</td>
</tr>
<tr>
<td>K.</td>
<td>K. Phua</td>
<td>160</td>
</tr>
<tr>
<td>K. T.</td>
<td>Benjamin Phua</td>
<td>172</td>
</tr>
<tr>
<td>Mark</td>
<td>D. Piloff</td>
<td>105</td>
</tr>
<tr>
<td>Ludmilla</td>
<td>Praxmeyer</td>
<td>123</td>
</tr>
<tr>
<td>Helmut</td>
<td>Rauch</td>
<td>78</td>
</tr>
<tr>
<td>Philippe</td>
<td>Raynal</td>
<td>147</td>
</tr>
<tr>
<td>159</td>
<td>170</td>
<td>188</td>
</tr>
<tr>
<td>Jacek</td>
<td>M. Rayski, Jr.</td>
<td>1</td>
</tr>
<tr>
<td>Author Name</td>
<td>Page Numbers</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Jaroslav Řeháček</td>
<td>122, 124</td>
<td></td>
</tr>
<tr>
<td>Michael Revzen</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>Bernd Rohwedder</td>
<td>42, 134</td>
<td></td>
</tr>
<tr>
<td>Kazimierz Rzązewski</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Luis Lorenzo Sánchez Soto</td>
<td>189, 199, 208</td>
<td></td>
</tr>
<tr>
<td>Axel Schenzle</td>
<td>37, 44, 45</td>
<td></td>
</tr>
<tr>
<td>Oliver Schulz</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Peter D. D. Schwindt</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Julian Schwenger</td>
<td>41, 45</td>
<td></td>
</tr>
<tr>
<td>René Schonneke</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>Marlan O. Scully</td>
<td>191, 193</td>
<td></td>
</tr>
<tr>
<td>Yi-Lin (Max) Seah</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>Arun Sehrawat</td>
<td>153, 158</td>
<td></td>
</tr>
<tr>
<td>Rafaela Seno</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Jiangwei Shang</td>
<td>141, 142</td>
<td></td>
</tr>
<tr>
<td>Heinz Siedentop</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>Jun Yan Sim</td>
<td>205, 206</td>
<td></td>
</tr>
<tr>
<td>Enrique Solano</td>
<td>102, 106</td>
<td></td>
</tr>
<tr>
<td>Nicetia Sterpi</td>
<td>38, 40, 43</td>
<td></td>
</tr>
<tr>
<td>Goro Süssmann</td>
<td>26, 27</td>
<td></td>
</tr>
<tr>
<td>Jun Suzuki</td>
<td>135, 136, 139</td>
<td></td>
</tr>
<tr>
<td>Gelo N. M. Tabia</td>
<td>139, 148</td>
<td></td>
</tr>
<tr>
<td>Si-Hui Tan</td>
<td>176, 179</td>
<td></td>
</tr>
<tr>
<td>Yong Siah Teo</td>
<td>141, 145</td>
<td></td>
</tr>
<tr>
<td>Guo Chuan Thiang</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>Michael Thoss</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Kah Ming Tin</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Martin-Ishjörn Trappe</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>Benjamin T. H. Varcoe</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Christian Wagner</td>
<td>55, 55</td>
<td></td>
</tr>
<tr>
<td>Herbert Walther</td>
<td>24, 25</td>
<td></td>
</tr>
<tr>
<td>Guangquan Wang</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>Xueou Wang</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>Markus Weber</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Edda Wehner</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Matthias Weidinger</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Harald Weinfurter</td>
<td>93, 98</td>
<td></td>
</tr>
<tr>
<td>Reinhard F. Werner</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>Martin Wilkins</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Krzysztof Wódkiewicz</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Daniel Zemann</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Jianxin Zhou</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>Huangjun Zhiu</td>
<td>143, 145</td>
<td></td>
</tr>
<tr>
<td>M. Suhaib Zubairy</td>
<td>89, 114</td>
<td></td>
</tr>
<tr>
<td>Andrea Zucchetti</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Marek Zúkowski</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Karol Życzkowski</td>
<td>131</td>
<td></td>
</tr>
</tbody>
</table>

(179 co-authors)