These sample solutions were prepared by Bess Fang.

Note: All comments within square brackets refer to the previous line.

Problem 1
We compute [1)(1], |2)(2], |3)(3]:

Substituting these into

results in the set of equations
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As expected, the weights have unit sum, w; + ws + w3 = 1.
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Problem 2
We compute
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Since the two integrals are of exactly the same form, we only need to evaluate
one of them:
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[replacing x’ by —x’, note the changed limits]
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Likewise, we have for the 2nd integral
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Problem 3
For the position wave function (z|\), the eigenket equation A|\) = |A)\ reads

(21A13) = (2AA = 1 (po + 07 (a4

or, after a simple rearrangement,
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This differential equation is solved by

(z|A) = C(A) e /mom V7,

where C'(\) is the multiplicative integration constant that could depend on A,
but not on z.

Now, we take care of the normalization by considering (A|\'):
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[the exponential factor becomes 1 when A = X,
and C'(X\') becomes C()\)]

Since we require (A|X') = (N — ), we have
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Taking C'(\) > 0,
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so that, finally,
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Problem 4
(a) We have the Heisenberg equations of motion
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which are solved by
P(t) = P(to) + FT, (1)
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(b) First we use Egs. (1) and (2) to express P(to) and P(t) in terms of X (o)
and X (t),
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Then we use these in
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Now we divide by (z,t|2’,ty) and arrive at
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Next, we need to express the Hamilton operator as a function of X (¢) and X (o)
with X (¢) to the left of X (¢y) in products,

H = LP(t)Q — FX(t)
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[we are using the commutator found in (a)]

which we now use in
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Thus, we have
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