AY 2007/08, Seul, PC3274, Test2

Write answers on this side of the paper only.

Do not write on either margin

Slevious worther up by Sim Young Ming, Thoon Han Quan and Poon Wai Kit

1

The two 2 × 2 matrices

$$S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ R = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix},$$

are elements of a matrix group with just a few group elements. By considering S^{-1} , R^{-1} , S^2 , SR, RS, R^2 , . . . , find the other group elements. Is the group abelian? If it isn't, identify the abelian subgroups.

Solution:

$$S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

$$R = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix},$$

$$S^{-1} = -1 \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

$$S^{-1} = S,$$

$$S^{2} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= I,$$

where I is the identity matrix,

$$R^{-1} = 2 \cdot \frac{1}{(-1)(-1) - (-\sqrt{3})(\sqrt{3})} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$$
$$= 2 \cdot \frac{1}{4} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix},$$

Do not write on either margin

$$R^{2} = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \cdot \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$$

$$= \frac{1}{4} \begin{pmatrix} 1 - 3 & \sqrt{3} + \sqrt{3} \\ -\sqrt{3} - \sqrt{3} & -3 + 1 \end{pmatrix}$$

$$= \frac{1}{4} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix},$$

$$R^{2} = R^{-1},$$

notice that

$$RR^{-1} = I$$
$$= R^3,$$

Implying

$$(R^{-1})^2 = R.$$

$$SR = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix},$$

$$RS = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix},$$

$$R^{-1}S = \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix},$$

$$R^{-1}S = SR,$$

Do not write on either margin

Write answers on this side of the paper only.

notice that, by multiplying the above with S on both side, we get

$$SR^{-1}SS = SSRS$$

$$SR^{-1}I = IRS$$

$$SR^{-1} = RS$$
.

	R	R^2	S	RS	SR	I
R	R^2	I	RS	SR	S	R
R^2	I	R	SR	S	RS	R^2
S	SR	RS	I	R^2	R	S
RS	S	SR	R	I	R^2	RS
SR	RS	S	R^2	R	I	SR
I	R	R^2	S	RS	SR	I

From the table, we can deduce that R, R^{-1} , S, RS, SR, I are the group elements. The group is not abelian.

Subgroups which are abelian are $\{R, R^2, I\}$, $\{S, I\}$, $\{RS, I\}$, $\{SR, I\}$, and $\{I\}$.

The set G consists of all complex 2 × 2 matrices $M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}$ whose matrix elements are restricted by the relations

$$|M_{11}|^2 = |M_{22}|^2 = 1 + |M_{21}|^2 = 1 + |M_{12}|^2,$$
 $M_{21}^* M_{11} = M_{12} M_{22}^*,$

Demonstrate that $M_{11}^*M_{12}=M_{22}M_{21}^*$, and then show that G is a group with matrix multiplication as the group composition law.

Solution:

Given

$$M_{21}^* M_{11} = M_{12} M_{22}^*,$$

$$M_{21}M_{11}^* = M_{12}^*M_{22},$$

so,

$$M_{21}^* M_{12} M_{21} M_{11}^* = M_{21}^* M_{12} M_{12}^* M_{22}^*$$

 $\left| M_{21} \right|^2 M_{12} M_{11}^* = \left| M_{12} \right|^2 M_{22} M_{21}^*$

Do not write on either margin

$$\therefore M_{12}M_{11}^* = M_{22}M_{21}^*.$$

(i) To prove <u>closure</u>, there are two methods, as follows:

Method 1

$$|M_{11}|^2 = 1 + |M_{21}|^2$$

$$M_{11}^* M_{12} = \frac{M_{12}}{M_{11}} + \frac{M_{12}}{M_{11}} |M_{21}|^2,$$

$$\begin{split} |M_{22}|^2 &= 1 + |M_{21}|^2 \\ M_{22}M_{21}^* &= \frac{M_{21}^*}{M_{22}^*} + \frac{M_{21}^*}{M_{22}^*} |M_{21}|^2, \end{split}$$

$$A = \begin{pmatrix} M_{11}^* & -M_{21}^* \\ -M_{12}^* & M_{22}^* \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} M^+ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

$$\begin{split} AM &= \binom{M_{11}^*}{-M_{12}^*} & -M_{21}^* \\ -M_{12}^* & M_{22}^* \end{pmatrix} \binom{M_{11}}{M_{21}} & M_{12} \\ &= \binom{M_{11}^*M_{11} - M_{21}^*M_{21}}{-M_{12}^*M_{11} + M_{22}^*M_{21}} & -M_{11}^*M_{12} - M_{21}^*M_{22} \\ &= \binom{1}{-M_{12}^*M_{11} + M_{22}^*M_{21}} & -M_{12}^*M_{12} + M_{22}^*M_{22} \end{pmatrix} \\ &= \binom{1}{0} & 1 \\ &= I. \end{split}$$

Hence, A is the unique inverse of M.

$$\therefore M^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} M^{+} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Let $N \in G$,

$$(MN)^{-1} = N^{-1}M^{-1}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} N^{+} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} M^{+} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Question . 5/9

Write answers on this side of the paper only.

Do not write on either margin

$$= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} N^+ M^+ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} (MN)^+ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Hence, elements of Group ${\it G}$ are closed under composition.

Method 2

Let

$$M' = \begin{pmatrix} M'_{11} & M'_{12} \\ M'_{21} & M'_{22} \end{pmatrix} \in G,$$

and

$$N = MM' = \begin{pmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{pmatrix}.$$

$$N_{11} = M_{11}M_{11}' + M_{12}M_{21}',$$

$$N_{12} = M_{11}M_{12}' + M_{12}M_{22}',$$

$$N_{21} = M_{21}M_{11}' + M_{22}M_{21}',$$

$$N_{22} = M_{21}M_{12}' + M_{22}M_{22}'.$$

$$\begin{split} |N_{11}|^2 &= |M_{11}|^2 |M_{11}'|^2 + |M_{12}|^2 |M_{21}'|^2 + M_{11} M_{11}' M_{12}^* M_{21}'^* + M_{12} M_{21}' M_{11}^* M_{11}'^*, \\ |N_{22}|^2 &= |M_{21}|^2 |M_{12}'|^2 + |M_{22}|^2 |M_{22}'|^2 + M_{21} M_{12}' M_{22}^* M_{22}'^* + M_{22} M_{22}' M_{21}^* M_{12}'^*, \\ |N_{12}|^2 &= |M_{11}|^2 |M_{12}'|^2 + |M_{12}|^2 |M_{22}'|^2 + M_{11} M_{12}' M_{12}^* M_{22}'^* + M_{12} M_{22}' M_{11}^* M_{12}'^*, \\ |N_{21}|^2 &= |M_{21}|^2 |M_{11}'|^2 + |M_{22}|^2 |M_{21}'|^2 + M_{21} M_{11}' M_{22}^* M_{21}'^* + M_{22} M_{21}' M_{21}^* M_{11}'^*, \end{split}$$

$$\begin{split} |N_{11}|^2 - |N_{22}|^2 &= (|M_{11}|^2 |M_{11}'|^2 - |M_{22}|^2 |M_{22}'|^2) + (|M_{12}|^2 |M_{21}'|^2 - |M_{21}|^2 |M_{12}'|^2) \\ &\quad + (M_{11} M_{11}' M_{12}^* M_{21}'^* - M_{21} M_{12}' M_{22}^* M_{22}'^*) \\ &\quad + (M_{12} M_{21}' M_{11}^* M_{11}'^* - M_{22} M_{22}' M_{21}^* M_{12}'^*) \\ &= 0. \end{split}$$

Hence
$$|N_{11}|^2 = |N_{22}|^2$$
.

$$\begin{split} |N_{12}|^2 - |N_{21}|^2 &= (|M_{11}|^2 |M_{12}'|^2 - |M_{21}|^2 |M_{11}'|^2) + (|M_{12}|^2 |M_{22}'|^2 - |M_{22}|^2 |M_{21}'|^2) \\ &+ (M_{11} M_{12}' M_{12}^* M_{22}'^* - M_{21} M_{11}' M_{22}^* M_{21}'^*) \\ &+ (M_{12} M_{22}' M_{11}^* M_{12}'^* - M_{22} M_{21}' M_{21}^* M_{11}'^*) \\ &= 0. \end{split}$$

Hence $|N_{12}|^2 = |N_{21}|^2$.

$$\begin{split} |N_{11}|^2 - |N_{12}|^2 &= |M_{11}|^2 (|M'_{11}|^2 - |M'_{12}|^2) + |M_{12}|^2 (|M'_{21}|^2 - |M'_{22}|^2) \\ &+ M_{11} M_{12}^* (M'_{11} M'_{21}^* - M'_{12} M'_{22}^*) + M_{12} M_{11}^* (M'_{21} M'_{11}^* - M'_{22} M'_{12}^*) \\ &= |M_{11}|^2 - |M_{12}|^2 \\ &= 1. \end{split}$$

Hence $|N_{11}|^2 = 1 + |N_{12}|^2$.

$$\begin{split} N_{21}^*N_{11} - N_{12}N_{22}^* &= (M_{21}^*M_{11}^{\prime*} + M_{22}^*M_{21}^{\prime*}) \big(M_{11}M_{11}^{\prime} + M_{12}M_{21}^{\prime} \big) \\ &- \big(M_{11}M_{12}^{\prime} + M_{12}M_{22}^{\prime} \big) \big(M_{21}^*M_{12}^{\prime*} + M_{22}^*M_{22}^{\prime*} \big) \\ &= M_{11}M_{21}^* \big(|M_{11}^{\prime}|^2 - |M_{12}^{\prime}|^2 \big) + M_{11}M_{22}^* \big(M_{11}^{\prime}M_{21}^{\prime*} + M_{12}^{\prime}M_{22}^{\prime*} \big) \\ &+ M_{21}^*M_{12} \big(M_{11}^{\prime*}M_{21}^{\prime} + M_{12}^{\prime*}M_{22}^{\prime} \big) + M_{22}M_{12}^* \big(|M_{21}^{\prime}|^2 - |M_{22}^{\prime}|^2 \big) \\ &= M_{11}M_{21}^* - M_{22}M_{12}^* \\ &= 0. \end{split}$$

Hence $N_{21}^* N_{11} = N_{12} N_{22}^*$.

- The closure condition is satisfied.

(ii) Neutral element

The neutral element of the group is the identity matrix,

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Do not write on either margin

It can be easily shown that I satisfies the properties of an element of G.

- ... The neutral element is an element of G.
- (iii) Associativity law

Since the group composition law is matrix multiplication, it is associative.

Hence, set G is a group.

Function f(t) obeys the differential equation

$$\left(\frac{d^2}{dt^2} - 3\frac{d}{dt} + 2\right)f(t) = 2$$

and has the t=0 values f(0)=1 and $\frac{d}{dt}f(0)=2$. First find the Laplace transform F(s) of f(t), and then f(t) itself.

Solution:

$$\left(\frac{d^2}{dt^2} - 3\frac{d}{dt} + 2\right)f(t) = 2,$$

$$\frac{d^2}{dt^2}f(t) - 3\frac{d}{dt}f(t) + 2f(t) = 2,$$

$$s^2F(s) - sf(0) - \frac{d}{dt}f(0) - 3(sF(s) - f(0)) + 2F(s) = \frac{2}{s'},$$

$$F(s)(s^2 - 3s + 2) + (-s + 3)f(0) - \frac{d}{dt}f(0) = \frac{2}{s'},$$

but

$$\frac{d}{dt}f(0) = 2,$$

$$f(0) = 1,$$

$$F(s)(s^{2} - 3s + 2) - s + 1 = \frac{2}{s'},$$

$$F(s)(s - 2)(s - 1) = \frac{2}{s} + s - 1,$$

$$F(s) = \frac{1}{(s - 1)(s - 2)} \left(\frac{2}{s} + (s - 1)\right)$$

Do not write on either margin

$$= \frac{2}{s(s-1)(s-2)} + \frac{1}{s-2}$$

$$= \frac{2}{s-2} - \frac{2}{s-1} + \frac{1}{s}$$

$$= 2H(s) - 2K(s) + G(s),$$

$$G(s) = \frac{1}{s} \rightarrow g(t) = 1,$$

$$H(s) = \frac{1}{s-2} \rightarrow h(t) = e^{2t},$$

$$K(s) = \frac{1}{s-1} \rightarrow k(t) = e^{t},$$

$$f(t) = 2h(t) - 2k(t) + g(t)$$

$$\therefore f(t) = 2e^{2t} - 2e^{t} + 1.$$

[4]

Consider the family of functions $f_1(t)$, $f_2(t)$, . . . that are defined by

$$f_n(t) = \frac{1}{n!} \frac{n}{T} \left(\frac{nt}{T}\right)^n e^{-nt/T}$$
 with $T > 0$.

In order to determine the $n\to\infty$ limit of $f_n(t)$, first find the Laplace transform $F_n(s)$ of $f_n(t)$, then evaluate $F_\infty(s)=\lim_{n\to\infty}F_n(s)$, and finally establish $f_\infty(t)=\lim_{n\to\infty}f_n(t)$.

Solution:

$$f_n(t) = \frac{1}{n!} \frac{n}{T} \left(\frac{nt}{T}\right)^n e^{-nt/T}$$
$$= \frac{1}{n!} t^n e^{-nt/T} \left(\frac{n}{T}\right)^{n+1},$$

$$f_n(t) \to F_n(s),$$

$$F_n(s) = \left(\frac{n}{T}\right)^{n+1} \int_0^\infty dt \left(e^{-st} \frac{1}{n!} t^n e^{-nt/T}\right)$$

$$= \left(\frac{1}{s+n/T}\right)^{n+1} \left(\frac{n}{T}\right)^{n+1}$$

$$= \left(\frac{n}{sT+n}\right)^{n+1}$$

Question . . 9./9 . . .

Write answers on this side of the paper only.

Do not write on either margin

$$= \left(\frac{sT}{n} + 1\right)^{-n} \left(\frac{1}{\frac{sT}{n} + 1}\right).$$

$$\lim_{n\to\infty}\left(\frac{sT}{n}+1\right)^{-n}=e^{-sT},$$

$$\lim_{n\to\infty} \left(\frac{1}{\frac{sT}{n}+1}\right) = 1.$$

$$\therefore \lim_{n \to \infty} F_n(s) = \left(\lim_{n \to \infty} \left(\frac{sT}{n} + 1\right)^{-n}\right) \left(\lim_{n \to \infty} \left(\frac{sT}{n} + 1\right)^{-1}\right)$$

$$F_{\infty}=e^{-sT}$$
.

$$\therefore f_{\infty} = \delta(t - T).$$