PC1134 Lecture 1

Topic

Review of differentiation

Objectives

To become familiar with

- ordinary differentiation
- basic techniques of differentiation
- derivatives of common functions

Relevance

 These concepts and techniques are important for the study of partial differentiation.

Function

what is a function?

In mathematics, especially in its applications to physical science, we are often interested in the relations and connections between different numbers or sets of numbers. A *function* is a way of expressing such a connection.

$$y = f(x)$$

x is referred as independent variable, y is the dependent variable.

Examples of function

 Position of an moving object can be a function of time.

$$x(t) = x_0 + vt + \frac{1}{2}at^2$$

• Potential of a point charge is a function of r, distance from the point charge.

$$V(r) = \frac{1}{4\pi\varepsilon} \frac{Q}{r}$$

• The *temperature* of an ideal gas is a *function* of pressure for *constant* volume

$$PV = nRT$$

where n and R are referred as constants or parameters

Representing Function

A function can be represented by

• an analytic equation

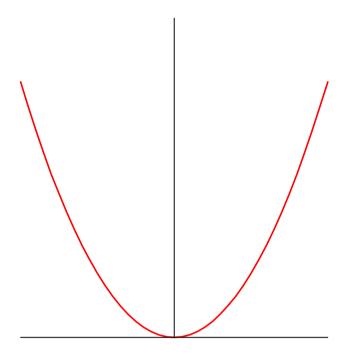
$$V = \frac{1}{2}kx^2$$

• a table (for discrete variable)

Time	Temperature (°C)
8:00	25.0
9:00	26.2
10:00	27.5
11:00	28.7
12:00	30.0
13:00	31.4
14:00	32.6
15:00	32.0
16:00	31.3
17:00	30.8

Representing Function (cont.)

• or a **graph**



Derivative

Given y = f(x), a change in x will cause a change in y.

$$x \longrightarrow x + \Delta x$$
$$y \longrightarrow y + \Delta y$$

How is Δy related to Δx ?

$$y = f(x)$$

$$y + \Delta y = f(x + \Delta x)$$

$$\Delta y = f(x + \Delta x) - f(x)$$

"Rate" of change

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

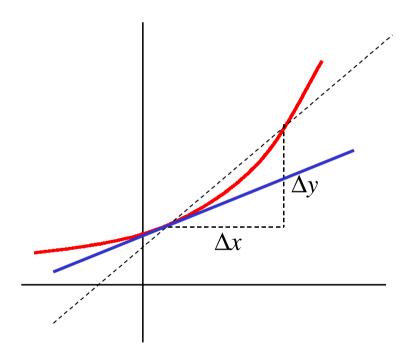
When $\Delta x \rightarrow 0$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{dy}{dx} = y'$$

Derivative

 $\frac{dy}{dx}$ is the rate of change of y with respect to x.

Graphically, the value of $\frac{dy}{dx}$ at any particular value of x is equal to the gradient of the tangent to the graph of y against x at that particular value of x.



Higher Derivatives

In general, $\frac{dy}{dx}$ is a function of x and can be written as y'(x), f'(x) or $\frac{dy}{dx}(x)$.

Let

$$z(x) = f'(x)$$

Since z(x) is a function of x, we can calculate its derivative

$$\frac{dz}{dx} = \lim_{\Delta x \to 0} \frac{f'(x + \Delta x) - f'(x)}{\Delta x}$$

This is called the second derivative of y with respect to x and is written as

$$\frac{d^2y}{dx^2}$$
, or y'' or $f''(x)$

Higher derivatives can be defined similarly.

PC1134

Rules

If

$$y = f(x) \pm g(x)$$

then

$$y' = f' \pm g'$$

If

$$y = f(x)g(x)$$

then

$$y' = fg' + f'g$$

If

$$y = \frac{f(x)}{g(x)}$$

then

$$y' = \frac{f'g - fg'}{g^2}$$

Chain Rule

Function of a function:

$$y = y(x)$$

$$x = x(t)$$

$$\frac{dy}{dt} = ?$$

$$\frac{\Delta y}{\Delta t} = \frac{\Delta y}{\Delta x} \frac{\Delta x}{\Delta t}$$

 \Longrightarrow

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt}$$

Inverse Function

$$y = f(x) \Longrightarrow x = g(y)$$

$$\frac{\Delta x}{\Delta y} = \frac{1}{\frac{\Delta y}{\Delta x}}$$

 \Longrightarrow

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$$

Implicit Differentiation

Consider the function defined by the equation

$$x^3 - 3xy + y^3 = 2$$

It cannot be resented explicitly in the form of

$$y = f(x)$$

We can differentiate term by term with respect to x

$$\frac{d}{dx}(x^3) - \frac{d}{dx}(3xy) + \frac{d}{dx}(y^3) = \frac{d}{dx}(2)$$

$$\implies 3x^2 - \left(3x\frac{dy}{dx} + 3y\right) + 3y^2\frac{dy}{dx} = 0$$

Rearranging terms gives

$$\frac{dy}{dx} = \frac{y - x^2}{y^2 - x}$$

Function Defined Parametrically

Given

$$y = y(t)$$

$$x = x(t)$$

What is
$$\frac{dy}{dx}$$
?

$$\Longrightarrow$$

$$\frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta t} \frac{\Delta t}{\Delta x}$$

$$\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$$

Derivatives of Elementary Functions

Algebraic function

$$y = x^r$$
 $\frac{dy}{dx} = rx^{r-1}$

Trigonometrical function

$$\frac{d}{dx}\sin x = \cos x \qquad \frac{d}{dx}\cos x = -\sin x$$

$$\frac{d}{dx}\tan x = \frac{1}{\cos^2 x} \quad \frac{d}{dx}\cot x = -\frac{1}{\sin^2 x}$$

Inverse trigonometrical function

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}} \quad \frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}$$
 $\frac{d}{dx}\cot^{-1}x = -\frac{1}{1+x^2}$

Derivatives of Elementary Functions

Exponential function

$$y = e^x \qquad \frac{dy}{dx} = e^x = y$$

Logarithmic function

$$\frac{d}{dx}\ln x = \frac{1}{x}$$
 $\frac{d}{dx}\log_a x = \frac{1}{x\ln a}$

Hyperbolic functions

$$\sinh x = \frac{1}{2} \left(e^x - e^{-x} \right) \qquad \frac{d}{dx} \sinh x = \cosh x$$

$$\cosh x = \frac{1}{2} \left(e^x + e^{-x} \right) \qquad \frac{d}{dx} \cosh x = \sinh x$$

$$\tanh x = \frac{\sinh x}{\cosh x} \qquad \frac{d}{dx} \tanh x = \frac{1}{\cosh^2 x}$$

$$\coth x = \frac{\cosh x}{\sinh x} \qquad \frac{d}{dx} \coth x = \frac{1}{\sinh^2 x}$$

Derivatives of Elementary Functions

Inverse hyperbolic functions

$$\frac{d}{dx}\sinh^{-1}x = \frac{1}{\sqrt{1+x^2}}$$

$$\frac{d}{dx} \cosh^{-1} x = \frac{1}{\sqrt{x^2 - 1}}$$
$$\frac{d}{dx} \tanh^{-1} x = \frac{1}{1 - x^2} = \frac{d}{dx} \coth^{-1} x$$

$$y = \sin^{-1}\left(2x\sqrt{1-x^2}\right)$$

Let

$$y = \sin^{-1} z$$
 and $z = 2x\sqrt{1-x^2}$

then

$$\frac{dy}{dx} = \frac{dy}{dz}\frac{dz}{dx}$$

$$\frac{dy}{dz} = \frac{d}{dz}\sin^{-1}z = \frac{1}{\sqrt{1-z^2}}$$

Treating $2x\sqrt{1-x^2}$ as the product of two function 2x and $\sqrt{1-x^2}$

$$\frac{dz}{dx} = \frac{d}{dx}(2x) \cdot \sqrt{1 - x^2} + 2x\frac{d}{dx}\sqrt{1 - x^2}$$

The derivative of $\sqrt{1-x^2}$ can be evaluated by apply the chain rule again. The result is

$$\frac{d}{dx}\sqrt{1-x^2} = -\frac{x}{\sqrt{1-x^2}}$$

Therefore,

$$\frac{dy}{dx} = \frac{1}{\sqrt{1-z^2}} 2\sqrt{1-x^2} + 2x \frac{-x}{\sqrt{1-x^2}}$$

$$= \frac{1}{\sqrt{1-4x^2(1-x^2)}} \frac{2(1-2x^2)}{\sqrt{1-x^2}}$$

$$= \pm \frac{2}{\sqrt{1-x^2}}$$

Where does the \pm come from?

If
$$y = x^5 + x$$
, find $\frac{d^2x}{dy^2}$.

$$\frac{dy}{dx} = 5x^4 + 1$$

$$\frac{dx}{dy} = \frac{1}{5x^4 + 1}$$

$$\frac{d^2x}{dy^2} = \frac{d}{dy} \left(\frac{1}{5x^4 + 1} \right)
= \frac{d}{dx} \left(\frac{1}{5x^4 + 1} \right) \frac{dx}{dy}
= -\frac{20x^3}{(5x^4 + 1)^2} \cdot \frac{1}{5x^4 + 1}
= -\frac{20x^3}{(5x^4 + 1)^3}$$

$$x = a\cos^3 t, \quad y = a\sin^3 t$$

$$\frac{d^2y}{dx^2} = ?$$

$$\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt} = \frac{3a\sin^2 t \cos t}{-3a\cos^2 t \sin t} = -\tan t$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}(-\tan t) = \frac{d}{dt}(-\tan t)\frac{dt}{dx}$$
$$= -\frac{1}{\cos^2 t} \left(3a\cos^2 t \sin t\right)^{-1}$$
$$= \frac{1}{3a\cos^4 t \sin t}$$