PC1134 Lecture 3

Topic

Partial Differentiation

Objectives

Understand definition of partial derivative; **Understand** the geometric and physical meanings of partial derivative; **Know** how to calculate partial derivatives of simple functions.

Relevance

Many physical quantities depend on two or more other quantities. Many physical laws (Schrödinger equation, Maxwell's equation, wave equation, diffusion equation, ···). Partial differentiation is extremely important in a wide range of physical applications.

PC1134 Lecture 03, Slide 1

Partial Differentiation

Consider

$$z = f(x, y)$$

For

$$x \longrightarrow x + \Delta x$$

$$z \longrightarrow z + \Delta z$$

$$\Longrightarrow z + \Delta z = f(x + \Delta x, y)$$

$$\Longrightarrow \Delta z = f(x + \Delta x, y) - f(x, y)$$

$$\frac{\Delta z}{\Delta x} = \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

Let $\Delta x \to 0$

$$\frac{\partial z}{\partial x} = \lim_{\Delta x \to 0} \frac{\Delta z}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

 $\frac{\partial z}{\partial x}$ is the partial derivative of z with respect to x.

Partial Derivative

Partial derivative with respect to y

$$\frac{\partial z}{\partial y} = \lim_{\Delta y \to 0} \frac{\Delta z}{\Delta y} = \lim_{\Delta x \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

Other notations:

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} = f'_x = z'_x = \partial_x = \left(\frac{\partial f}{\partial x}\right)_y$$
$$\frac{\partial z}{\partial y} = \frac{\partial f}{\partial y} = f'_y = z'_y = \partial_y = \left(\frac{\partial f}{\partial y}\right)_x$$

In general, $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ are functions of x and y.

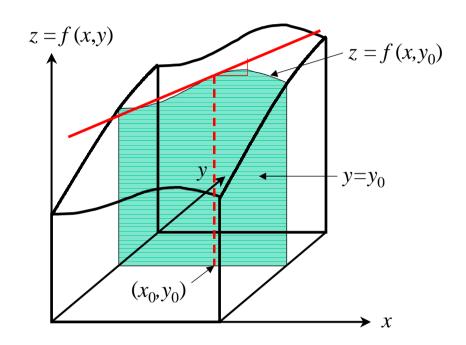
 $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at a given point (x_0,y_0) are denoted by

$$\left. \frac{\partial z}{\partial x} \right|_{x=x_0, y=y_0} = \frac{\partial z}{\partial x}(x_0, y_0)$$

PC1134

Interpretation of Partial Derivatives

 $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ can be regarded as the "rates of change" of the function along the positive x- and y-directions, respectively.



Intersection of z = f(x, y) and $y = y_0$: $z = f(x, y_0)$.

 $f_x'(x_0,y_0)$ is the **slope** or **gradient** of the tangential line of the surface, in the xz-plane and passing through (x_0,y_0) . Similarly, $f_y'(x_0,y_0)$ is the **slope** or **gradient** of the tangential line of the surface, in the yz-plane and passing through (x_0,y_0) .

PC1134 Lecture 03, Slide 4

Calculate Partial Derivatives

Partial derivatives can be calculated in the same way as ordinary differentiation, since only one of the variables is allowed to change. y is treated as a constant when calculating f_x' for the function f(x,y), and x is treated as a constant when calculating f_y' .

Example 1:

Given $z = x^2 + 3xy + y^2$, calculate the partial derivatives at $(x_0, y_0) = (1, 2)$.

$$\frac{\partial z(x,y)}{\partial x} = 2x + 3y \ (y \ \text{is treated as a constant})$$

$$\frac{\partial z(x,y)}{\partial y} = 3x + 2y \text{ (x is treated as a constant)}$$

$$\frac{\partial z}{\partial x}\bigg|_{(1,2)} = 2 \times 1 + 3 \times 2 = 8$$

$$\frac{\partial z}{\partial y}\bigg|_{(1,2)} = 3 \times 1 + 2 \times 2 = 7$$

$$\frac{\partial z}{\partial x}\Big|_{(1,2)} = 2 \times 1 + 3 \times 2 = 8$$

$$\frac{\partial z}{\partial y}\Big|_{(1,2)} = 3 \times 1 + 2 \times 2 = 7$$

Lecture 03. Slide 5 PC1134

Calculate Partial Derivatives

Example 2:

$$z = x^2 \sin(2y)$$

$$\frac{\partial z}{\partial x} = 2x\sin(2y)$$
$$\frac{\partial z}{\partial y} = x^2\cos(2y) \cdot 2 = 2x^2\cos(2y)$$

Example 3:

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\frac{\partial r}{\partial x} = \frac{x}{\sqrt{x^2 + y^2 + z^2}} = \frac{x}{r}$$
$$\frac{\partial r}{\partial y} = \frac{y}{\sqrt{x^2 + y^2 + z^2}} = \frac{y}{r}$$
$$\frac{\partial r}{\partial z} = \frac{z}{\sqrt{x^2 + y^2 + z^2}} = \frac{z}{r}$$