PC1134 Lecture 12

Topic

Review on Vectors

Objectives

To become familiar with vector and its properties, representation, addition (subtraction), and products (scalar and vector) of two vectors.

Relevance

Many physical quantities are vectors (field, force, etc.). Such quantities can depend on other quantities (both scalar and vectors) and can also be variables of other functions.

Vectors

Examples of vector:

- Velocity / momentum
- Acceleration
- Force
- Fields (electric, magnetic, ···)

A vector consists of

- a magnitude &
- a direction

Two vectors are equal only if their magnitudes are the same and their directions are also the same.

Representation of Vector

Notations:

- Bold letter (A) (book printing)
- \vec{A} or \tilde{A} or \underline{A} (hand writing)

Basis vectors:

$$|\hat{x}| = 1$$

$$|\hat{y}| = 1$$

$$|\hat{z}| = 1$$

Components:

$$\vec{A} = A_x \hat{x} + A_y \hat{y} + A_z \hat{z}$$

Magnitude:

$$A = |\vec{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

Addition of Vectors

$$ec{A}+ec{B}=ec{B}+ec{A}$$
 (commutative law)
$$(ec{A}+ec{B})+ec{C}=ec{A}+(ec{B}+ec{C})$$
 (associative law)

$$\vec{A} + \vec{B} = (A_x \hat{x} + A_y \hat{y}) + (B_x \hat{x} + B_y \hat{y})$$

$$= (A_x + B_x) \hat{x} + (A_y + B_y) \hat{y}$$

$$\vec{C} = C_x \hat{x} + C_y \hat{y}$$

$$\vec{C} = \vec{A} + \vec{B} \iff \begin{cases} C_x = A_x + B_x \\ C_y = A_y + B_y \end{cases}$$

Scalar Product

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$$

$$ec{A} = A_x \hat{x} + A_y \hat{y} + A_z \hat{z}$$
 $ec{B} = B_x \hat{x} + B_y \hat{y} + B_z \hat{z}$
 $ec{A} \cdot ec{B} = A_x B_x + A_y B_y + A_z B_z$

$$ec{A} \cdot ec{B} = ec{B} \cdot ec{A} \quad ext{(commutative law)} \ ec{A} \cdot (ec{B} + ec{C}) = ec{A} \cdot ec{B} + ec{A} \cdot ec{C} \quad ext{(distributive law)}$$

If \vec{A} is perpendicular to \vec{B} , then

$$A_x B_x + A_y B_y + A_z B_z = 0$$

If
$$\vec{A}$$
 is parallel to \vec{B} , then
$$\frac{A_x}{B_x} = \frac{A_y}{B_y} = \frac{A_z}{B_z}$$

Vector Product

$$\vec{C} = \vec{A} \times \vec{B}$$

Magnitude of \vec{C} : $|\vec{C}|=|\vec{A}\times\vec{B}|=|\vec{A}||\vec{B}|\sin\theta$ Direction of \vec{C} : right hand rule

$$\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$$

$$\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$$

 $\vec{A}\times\vec{B}=0$ if \vec{A} and \vec{B} are parallel to each other $\vec{A}\times\vec{A}=0$ for all \vec{A}

Vector Product

Using

$$\hat{x} \times \hat{x} = 0, \quad \hat{y} \times \hat{y} = 0, \quad \hat{z} \times \hat{z} = 0$$

$$\hat{x} \times \hat{y} = \hat{z}, \quad \hat{y} \times \hat{z} = \hat{x}, \quad \hat{z} \times \hat{x} = \hat{y}$$

$$\vec{A} \times \vec{B} = (A_x \hat{x} + A_y \hat{y} + A_z \hat{z}) \times (B_x \hat{x} + B_y \hat{y} + B_z \hat{z})$$

$$= (A_y B_z - A_z B_y) \hat{x} +$$

$$(A_z B_x - A_x B_z) \hat{y} +$$

$$(A_x B_y - A_y B_x) \hat{z}$$

This can be written as

$$ec{A} imesec{B} = \left|egin{array}{cccc} \hat{x} & \hat{y} & \hat{z} \ A_x & A_y & A_z \ B_x & B_y & B_z \end{array}
ight|$$

Work

$$W = Fd$$

$$W = Fd\cos\theta = \vec{F} \cdot \vec{d}$$

$$dW = \vec{F} \cdot d\vec{r}$$

$$W = \int ec{F} \cdot dec{r}$$

Torque

$$\tau = Fd$$

$$\vec{\tau} = \vec{r} \times \vec{F}$$

Angular Velocity

$$\vec{v} = \vec{\omega} \times \vec{r}$$