PC1134 Lecture 18

Topic
Conservative field and potential
Objectives

To understand the concept of conservative and
nonconservative fields.

To be able to judge whether a given force field
Is conservative.

To be able to find the potential of a
conservative field.
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Example of Line Integral

Find

[ xdy —ydx
= z? + y?
along

1. the semicircle (1);
2. dotted lines (2);

3. path (3).
D C|(0,) E
3 1
A B
(-1,0 (1,0
The above is
[Foar, Fo Vit
x2 + y?

PC1134 Lecture 18, Slide 2



Example of Line Integral

Path 1:

A B

(-1,0 (1,0
Or

r =cosl dxr = —sinfdb

y =sinf dy = cosfdb

At point A: 0 =7
At point B: 6 = 0

rdy —ydx  cos®6df + sin? 6d6 B

x2 + y? 1

0
I:/ df = —7

do

PC1134
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Example of Line Integral

Path 2:

C|(0,2)

A B
(-1,0 (1,0

from A to C:

y=z+1, dy =dx

/0 zdxr — (x + 1)dx /0 —dz
Iac = —

1 24+ (x+1)? 122242z +1
0
—2dzx 1 0
= = —tan (2 1
_/_1(2x—l—1)2—|—1 an”" 2z +1)|_,
= —tan"'14tan"t(—1) = —% + (—%) = —g
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Example of Line Integral

Path 2:

C|(0,2)

A B
(-1,0 (1,0

from C to B:

y=1—2z, dy = —dzx

/1 —xzdr — (1 — z)dx /1 —dz
Icp = =
0

z? 4+ (1 — x)? 0 222 —2x+1

1
—2dzx 1 1 ™
—~ — —tan~ Y2z - 1) = -Z
/0(2x—1)2+1 an™ (2 — 1)}, = —

I =1Isc+Icp=—m
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Example of Line Integral

Path 3:
D (-1,1) E(1,1)

A(-1,0 B (1,0

fromAtoD:z2=—-1,dx =0

1

—dy 1 1 7r

Iap = = —tan~ = ——
AP QA y* +1 Vo 4

fromDtoE:y=1,dy=0

7 /1 —dx tan—1 ™ ™
— = — n €T = - — = ——
by L2+ 1 17 4 42

fromEtoB:z=1,dzx =0

0

dy 1 (0 7r

I = :t = ——

EB /1 72+ 1 an -yl A
I

— —T
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Summary

—

e F(x,y,z) is a function of one variable because z,
y and z are related.

e This variable can be one of x, ¥y and z or can be
something else.

e The integration over F' - dr is an one-dimensional
integral over this variable.

e The line integral between two points may or may
not be path dependent.

e If work done depdends on path, the force field is
non-conservative. If work done does not depend on
path, the force field is conservative.
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Conservative Field

F= jzw:yfgy - _?JF At o i 27
0 0 0
VxF = Oz By A2
~y . ;
(z* +y?) (2% +y?)
.| 0 x 0 Y
~ 7 os (wz +y2) Oy (_wz +y2)]
R 1 212
= < 22 L g2 (221 y?)?2
1 29?
+ 72 + 32 o (22 + y2)2]
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Non-conservative Field

F = YT — yzg

z 0 Z
- 0 0 0
F =
Vv X Oor Oy 0z
ry —y° 0
|0 5 )
= Z 8—x(_y ) — 8_y(xy)
= —xz
V x F =0 conservative

11

non-conservative
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Conservative Fields and Potentials

A vector field F that has continuous partial
derivatives in a simply connected region R is
conservative if, and only if, any of the following is
true:

1. The integral ff F - d7, where A and B line in the
region R, is independent of the path from A to B.
Hence the integral fcﬁ - dr”around any closed
loop in R is zero.

2. There exists a single-valued function W of position
such that F' = VW,

—

3. Vx F =0.

4. F.dfis an exact differential.
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Connectivity of Regions

A region is simply connected if any simple closed
curve in the region can be shrunk to a point without
encouraging any points not in the region.

P&

Simply connected regions

Not simply connected regions
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Exact Differential

Differentials which integrate directly are called exact
differentials, whereas those that do not are inexact
differentials

df = zdy +yder, = f(z,y) =zy+c

xdy + 3ydx cannot be integrated directly.

If
df = A(z,y)dz + B(z,y)dy

the necessary and the sufficient condition for a
differential to be exact is

04 _op
oy Oz’

This is because

fz = A(z,y) and f, = B(z,y)

" _ el

zy = Jyz the above equation must be

If we require
satisfied.
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Conservative Force Fields

e Assume the work done is independent of path
taken, then the work must be a function only of
the positions of the starting and ending points.

B
/ F.dFf = W(B) — W(A)
A

W is a single-valued scalar function of position.

e If A and B are separated by an infinitesimal
displacement dr, then

F.dF = dW
i.e. F-dris an exact differential.
e From d—W = VW -4
dr
ﬁszi—Wdr:VW-ﬁdr:VW-df’
r
AW — VW -di =0 = (F — VW) -df =0

— F=VW
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Finding Potential

for Conservative Force Field

1. Choose a reference point A.
2. Choose a convenient path.

3. Integrate F.dr along this path to a variable point
B(z,y, 2).

B—»
W:/ F.dr
A

The integral is the value of W (including an additive
constant) at point B which is an arbitrary point.

Gravitational field (choose Z upward):

F = —mgZz

Work done: W = / (—mg)z-dz'2 = —mgz
0

Change in PE: AU =U(2)-U(0) = -W

Force: F=VW = -VU
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Example

Potential due to a point charge g at the origin

= kg, kg,
FE = r—zer = r—37'
1. Choose g =0 at r — o0
2. Choose a path of integral along the radial
direction.

3. Use spherical coordinates

E dF:r—Br-dF—r—zdr
R " d 1\"
¢:—/E dF:—kq/—gqu(—)
kq
¢(7“)—7
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