PC1134 Lecture 23
Topic:
Divergence theorem and applications
Relevance:

e The divergence theorem converts a volume
(triple) integral into a integral over a closed
surface and vice versa. We can then evaluate
whichever one is easier to do.

e Very important applications in electricity
(Gauss' law), fluid dynamics (equation of
continuity), heat flow, flow of particles, etc.

Scope

The theorem

Proof

Equation of continuity
Gauss's law

Examples
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Divergence Theorem

The normal surface integral of a function V over the
boundary of a closed surface of arbitrary shape is
equal to the volume (triple) integral of the divergence
of V taken throughout the enclosed volume.

//V-d(?:///V-VdT

o) T

0)

.

|[[: integral over closed surface

d7: volume element

do: surface element
Magnitude = area
Direction: normal
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Proof of Divergence Theorem

//ﬁ-d&z///V-ﬁdT
rits = [[] (224255 22 gy

Consider the volume shown below

Integrate the last term with respect to z from z; to 2o

/// ——Zdrdydz = // (z,y,22) — F:(z,y, 21)] dzdy
= //Fz(x,y,zz)dxdy— //Fz(xayazl)dxdy
ot Op
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Proof of Divergence Theorem (cont.)

Bottom d&, = —dzdyk
Front dos = dydzi
Left dey = —dzdz]
Top d3, = dzdyk
Back dcr, = —dydzi
Right  d&, = dzdzxj

k- dd, = dzdy
k-da, = —dzdy

— //Fz(xayazZ)l%dO_:t—l_ //FZ(xayazl)]Af'do_:b
ot op

For all other surfaces (sides): % - d& = 0

/// 5, dedydz = //Fz(w,y,Z)l%-dg

o
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Proof of Divergence Theorem (cont.)

Similar integrations can be done to get

/// O iodydz = // Fo(z,y, 2)i - dG
/// Oy twdydz = //Fy(x,y,z)] d5
// “Zdrdydz = //Fz(x,y,z)l%.d(?

Combine the three equations

J (545
82
— // (in+Fy3‘+le%) . d&

Therefore
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Example

Let V = 21 + yj + 2k, evaluate [[V - d& over the
closed surface of the cylinder shown below.

z

//V-d(?:///V-VdT

o) T

V:x%—l—yf—l—zl%

V- V=1+1+1=3

//V.d(?:///v.vdegffdezgmzh

o) T T
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Flow of Substance

Water, gas, heat, radioactive particles, electric and
magnetic fields, etc.

Stream line: ——

Assume density of fluid is p, velocity of fluid is v.

NN | [+
: -

<~ \{ ——>
Amount of fluid crossing an area A’ in time ¢ is

(vt)A'p
(vt)Apcosb

Is | cross section

U
U1 = vcosb

Amount of fluid cross unit area of the surface in unit
time Is

vpcosf =Veos =V -a (V= pv)
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Physical Meaning of Divergence

Assume that fluid flows from left to right and enters
the left surface with velocity V, and leaves the right
surface with velocity V,;. Amount of fluid flow into
the volume through surface 1 is

(V - J)dzdz = V,dxdz

Amount of fluid flow out of the volume through
surface 2 is

oV,
Vy'dacdz = (Vy -+ 8—yydy) dxdz
Net increase in mass
oV, oV,
Vydxdz — (Vy + 8—yydy) dxdz = —8—yydacdydz
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Physical Meaning of Divergence (cont.)

Similarly, net mass increase due to flow in the
x-direction and the z-direction are

_94, —Zdzdydz, & —%dacdydz
or 0z

respectively. Total increase in mass per unit volume
per unit time Is

1 0A, O0A, O0A,
drdydz (_ Ox Oy 0z ) dedydz

= — — _Vv.A
(8:16 i Oy i 82) v

If there is no source in the volume, this must be equal
to the increase of the fluid mass per unit time per
unit volume — rate of density increase

;0
Ot

AL 2P
Vv +8t 0

(Equation of continuity)
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Gauss’ Law

Electric field: E
Maxwell's equation: V - E = p/eg

p: charge density
£o: constant

[ [ -s=2 [

o) T T

//E.d(?:g@

0
Q = /// pdT is the total charge inside o.

Point Charge
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