Lecture 32
Topic:
Eigenvalue problem

Relevance:

Eigenvalue problem is a very common physics
problem. Small oscillation of a physical system,
time-independent Schrodinger equation in
quantum mechanics, are good examples of
eigenvalue problem.

Aim:

e Understand the nature of eigenvalue problem.

e Given the matrix representation of an
operator, to be able to find the eigenvalues
and eigenvectors.

e Understand simple properties of eigenvalues
and eigenvectors.

PC1134 Lecture 32, Slide 1



Eigenvalue Problems

When an operator A acts on a vector |¢), the
resulting vector A1) is, in general, distinct from |v).
However, there may exist certain (nonzero) vector for

which A|vy) is just |¢) multiplied by a constant .
That is

Alp) = A|b)

Such a vector is called an eigenvector of the operator
A, and the constant X is called an eigenvalue. The
eigenvector is said to “belong” to the eigenvalue.

A good example of eigenvalue problem is the time
independent Schrodinger equation in quantum
physics,

Hl|y) = E[y)

For a single particle in a field with potential V,

2
H=———v"+V
2m
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Matrix Notation

In a given coordinate system, the eigenvalue problem
can be expressed in matrix notation

A = M

The i-component of it is
> At = My
J

The matrix equation can also be written as
(A= Ay =0

The condition for a nontrival solution of the above
equation Is

A—MX| =0
This is called the secular (or characteristic) equation
of A.

The problem of finding the eigenvalues A for which
the system of linear equations has a nontrival solution
IS a very important one.
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If A is the matrix

-3 2 2
2 1 3
2 3 1
(A — A)x = 0 becomes
[/ -3 2 2 1 0 0\]| [/ =1
2 1 3 —AX] 01 O To
i 2 3 1 0 0 1 | T3
[/ -3 2 2 A0 0\] [/ =
= 2 1 3 — 0 X O 2
i 2 3 1 0 0 A\ | T3
—3—A 2 2 I
= 2 1— A 3 9 =0
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Example (cont.)

Condition for a nontrival solution of the above system
of equations is

—3—-A 2 2
2 1—A 3 =0
2 3 1—A

—B34+N1=XN2+24-8(1-X)+93+)) =0
B+AN[9-(1-XN’]+8B8-(1-XN)]=0
BENBLA-N[B-(1-N]+83-(1-N]=0
B—(1-N{8+B+NB+1=N]}=0
2+M){8+B+AN)(4—-XN)}=0
(24+ A)(=A°+ X +20) =0

2+ M)A +NG-N) =0
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Example (cont.)

Solution: A\ = =2, Ay =—4, A3=25

—3 — A 2 2 I
Since 2 1— A 3 To =0
2 3 1— A I3
When )\ = —2,
-1 2 2 T1
2 3 3 I =0
2 3 3 I3

Because |A — AI| = 0, two of the equations are
always linearly dependent. As a results, a unique
solution cannot be obtained. But the N — 1 linearly
independent equations can be used to express the
N — 1 variables in terms of the remaining one. Here

I9 — —I3 $1:0

The value of x3 is determined by other requirement,
such as normalization of the vector. ||z|| = 1. Then

1
r1,T9,r3) = —(0,—1,1
(71,22, 73) \@( )
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Example (cont.)

For A = —4
1 2 2 1
2 5 3 I =0
2 3 5 I3
1 — —4£E3 Io9 — I3
The normalized eigenvector is thus
1
x1,To,x3) = ——=(—4,1,1
(z1, T2, T3) 3\@( )
For A =5
—8 2 2 I
2 —4 3 I =0
2 3 —4 I3

1 — £E3/2 Io9 — I3
The normalized eigenvector is thus

1
(xl, L9, $3) = 5(1, 2, 2)

PC1134
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Eigenvalue Problem

In general, the eigenvalues of a matrix A are
determined by the secular equation

[A— M| =0

If Ais a n X n matrix, the left hand side of the above
equation is an nth degree polynomial and the
equation has n roots, not necessarily all different. The
system is then said to have n eigenstates.
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Oscillatory System

Consider the mechanical oscillation of the following
mass-spring system. Assume that the three particles
have the same mass (m) and they are connected by
identical springs of spring constant (k).

Equations of motion:

m:i*l = k(ZEQ — ZEl)
me.Q = k($3 — ZEQ) — k(ZEQ — ZEl)
me.3 = —k(iEg — ZEQ)

Assume the solution of of the following form

1 = Al cos(wt + ¢1) Zfl = —w2x1
Iy = A2 cos(wt + ¢2) Zfl = —w2x1
ry = A3 cos(wt + ¢3) Zfl = —w2x1
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Oscillatory System (cont.)

The equations on the last slide can be written as
2

—kxr1 +kxo = —mwr

kr, —2kxo +krs = —mw’zs

kry —kxrs = —mw’zcs

or
—w% wg 0 T1 T1
2 2 2 _ 2

wy —2wi W T2 | = —w X2
0 wy  —wh x3 T3

where wi = k/m. This is an eigenvalue problem and
the eigenvalue is —w?. The secular equation is given
by

w? — w? wg 0
Wy w? — 2wk Wy =0
0 Wy w? — wé
or
2 2\2 (, ,2 2 4 (, 2 A
(w —wo) (w — 2w0) — 2wy (w —wo) =0
Eigenvalues:
k 3k
w1 =0, wy=wp=1/—, w3:\/§w0: —
m m
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Oscillatory System (cont.)

Eigenvector corresponding to w; =0,

—w} Wy 0 X1
wg —2wi  wp x2 | =0
0 wi  —wp T3

—> I1 =92 = I3
or )
' = (z1,T0,73) = ﬁ(l’ 1,1)

Normal mode:

@ @@
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Oscillatory System (cont.)

Eigenvector corresponding to wy = wg = v/k/m,

0 w% 0 1
wi  —wh Wi 2 | =0
0 w% 0 I3

or

Normal mode:
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Oscillatory System (cont.)

Eigenvector corresponding to wo = v/3wy = 1/3k/m,

2 2
2a120 wg O2 X1
0 wi 2wi T3
— X1 =x3, To = —2x1
or 1
3 _
r° = (x1,x2,23) = —(1,—2,1)

V6

Normal mode:

@@

—> B S —>

ol -
o] = [
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Observations

1. For mechanical oscillation, the eigenvalues are the
squares of vibration frequencies. Therefore, it is
required that w? > 0. A symmtric (Hermitian)
matrix A all eigenvalues positive is called positive
definite. If it is possible that some of the
eigenvalues are zero, then A is called positive
semi-definite. The following matrix is positive
semi-definite and its eigenvalues are 0, w3 and 3wé.

wi  —wp 0
—wi  2wE —wp

2 2
0 —wj W

2. In general, the eigenvalue in an eigenvalue problem
respresents certain physical quantity. It is therefore
necessary that the eigenvalues be real. It can be
shown that the eigenvalues of an Hermitian matrix
are real. Therefore, most physical quantities are
represented by Hermitian matrices.
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Eigenvectors of Hermitian Matrix

3. Consider the three eigenvectors for the three-
particle system,

These eigenvectors are orthogonal, i.e.

(z'|2?) = 65

In general, the eigenvectors of an Hermitian matrix
corresponding to different eigenvalues are
orthogonal.
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