
Fourier Series

1



Dirichlet conditions

The particular conditions that a function f(x) must

fulfil in order that it may be expanded as a Fourier

series are known as the Dirichlet conditions, and

may be summarized by the following points:

1. the function must be periodic;

2. it must be single-valued and continuous, except

possibly at a finite number of finite

discontinuities;

3. it must have only a finite number of maxima

and minima within one periodic;

4. the integral over one period of |f(x)| must

converge.

If the above conditions are satisfied, then the

Fourier series converge to f(x) at all points where

f(x) is continuous.
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FIG. 1: An example of a function that may, without

modification, be represented as a Fourier series.
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Fourier coefficients

The Fourier series expansion of the function f(x) is

written as

f(x) =
a

2
+

∞∑
r=1

[
ar cos

(
2πrx

L

)
+ br sin

(
2πrx

L

)]

(1)
where a0, ar and br are constants called the Fourier

coefficients.

For a periodic function f(x) of period L, the

coefficients are given by

ar =
2
L

∫ x0+L

x0

f(x) cos
(

2πrx

L

)
dx (2)

br =
2
L

∫ x0+L

x0

f(x) sin
(

2πrx

L

)
dx (3)

where x0 is arbitrary but is often taken as 0 or

−L/2. The apparent arbitrary factor 1/2 which

appears in the a0 term in Eq. (1) is included so that

Eq. (2) may apply for r = 0 as well as r > 0.
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The relations Eqs. (2) and (3) may be derived as

follows.

Suppose the Fourier series expansion of f(x) can be

written as in Eq. (1),

f(x) =
a

2
+

∞∑
r=1

[
ar cos

(
2πrx

L

)
+ br sin

(
2πrx

L

)]

Then multiplying by cos(2πpx/L), integrating over

one full period in x and changing the order of

summation and integration, we get

∫ x0+L

x0

f(x) cos
(

2πpx

L

)
dx =

a0

2

∫ x0+L

x0

cos
(

2πpx

L

)
dx

+
∞∑

r=1

ar

∫ x0+L

x0

cos
(

2πrx

L

)
cos

(
2πpx

L

)
dx

+
∞∑

r=1

br

∫ x0+L

x0

sin
(

2πrx

L

)
cos

(
2πpx

L

)
dx

(4)
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Using the following orthogonality conditions,

∫ x0+L

x0

sin
(

2πrx

L

)
cos

(
2πpx

L

)
dx = 0 (5)

∫ x0+L

x0

cos
(

2πrx

L

)
cos

(
2πpx

L

)
dx =





L, r = p = 0
1
2L, r = p > 0

0, r 6= p

(6)

∫ x0+L

x0

sin
(

2πrx

L

)
sin

(
2πpx

L

)
dx =





0, r = p = 0
1
2L, r = p > 0

0, r 6= p

(7)
we find that when p = 0, Eq. (4) becomes

∫ x0+L

x0

f(x) dx =
a0

2
L
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When p 6= 0 the only non-vanishing term on the

RHS of Eq. (4) occurs when r = p, and so

∫ x0+L

x0

f(x) cos
(

2πrx

L

)
dx =

ar

2
L.

The other coefficients br may be found by repeating

the above process but multiplying by sin(2πpx/L)
instead of cos(2πpx/L).

7



Example

Express the square-wavefunction illustrated in the

figure below as a Fourier series.

FIG. 2: A square-wavefunction.

The square wave may be represented by

f(t) =




−1 for − 1

2T ≤ t < 0,

+1 for 0 ≤ t < 1
2T .
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Note that the function is an odd function and so the

series will contain only sine terms. To evaluate the

coefficients in the sine series, we use Eq. (3). Hence

br =
2
T

∫ T/2

−T/2

f(t) sin
(

2πrt

T

)
dt

=
4
T

∫ T/2

0

sin
(

2πrt

T

)
dt

=
2
πr

[1− (−1)r] .

Thus the sine coefficients are zero if r is even and

equal to 4/πr if r is odd. hence the Fourier series

for the square-wavefunction may be written as

f(t) =
4
π

(
sin ωt +

sin 3ωt

3
+

sin 5ωt

5
+ · · ·

)
,

where ω = 2π/T is called the angular frequency.
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Discontinuous functions

At a point of finite discontinuity, xd, the Fourier

series converges to

1
2

lim
ε→0

[f(xd + ε) + f(xd − ε)].

At a discontinuity, the Fourier series representation

of the function will overshoot its value. Although as

more terms are included the overshoot moves in

position arbitrarily close to the discontinuity, it never

disappears even in the limit of an infinite number of

terms. This behavior is known as Gibbs’

phenomenon.
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Example

Find the value to which the Fourier series of the

square-wavefunction converges at t = 0.

Answer

The function is discontinuous at t = 0, and we

expect the series to converge to a value half-way

between the upper and lower values; zero in this

case. Considering the Fourier series of this function,

we see that all the terms are zero and hence the

Fourier series converges to zero as expected.

11



The Gibbs phenomenon is shown below.

FIG. 3: The convergence of a Fourier series expansion of

a square-wavefunction, including (a) one term, (b) two

terms, (c) three terms and (d) 20 terms. The overshoot

δ is shown in (d).
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Non-periodic functions

Figure 4(b) shows the simplest extension to the

function shown in Figure 4(a). However, this

extension has no particular symmetry. Figures 4(c),

(d) show extensions as odd and even functions

respectively with the benefit that only sine or cosine

terms appear in the resulting Fourier series.

FIG. 4: Possible periodic extensions of a function.
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Example

Find the Fourier series of f(x) = x2 for 0 < x ≤ 2.

Answer

We must first make the function periodic. We do

this by extending the range of interest to

−2 < x ≤ 2 in such a way that f(x) = f(−x) and

then letting f(x + 4k) = f(x) where k is any

integer.

FIG. 5: f(x) = x2, 0 < x ≤ 2, with extended range and

periodicity.
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Now we have an even function of period 4. Thus, all

the coefficients br will be zero. Now we apply

Eqs. (2) and (3) with L = 4 to determine the

remaining coefficients:

ar =
2
4

∫ 2

−2

x2 cos
(

2πrx

4

)
dx =

4
4

∫ 2

0

x2 cos
(πrx

2

)
dx,

Thus,

ar =
[

2
πr

x2 sin
(πrx

2

)]2

0

− 4
πr

∫ 2

0

x sin
(πrx

2

)
dx

=
8

π2r2

[
x cos

(πrx

2

)]2

0
− 8

π2r2

∫ 2

0

cos
(πrx

2

)
dx

=
16

π2r2
cos πr

=
16

π2r2
(−1)r.
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Since the expression for ar has r2 in its

denominator, to evaluate a0 we must return to the

original definition,

ar =
2
4

∫ 2

−2

f(x) cos
(πrx

2

)
dx.

From this we obtain

a0 =
2
4

∫ 2

−2

x2 dx =
4
4

∫ 2

0

x2 dx =
8
3
.

The final expression for f(x) is then

x2 =
4
3

+ 16
∞∑

r=1

(−1)r

π2r2
cos

(πrx

2

)
, for 0 < x ≤ 2.

(8)
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Integration and differentiation

Example

Find the Fourier series of f(x) = x3 for 0 < x ≤ 2.

Answer

If we integrate Eq. (8) term by term, we obtain

x3

3
=

4
3
x + 32

∞∑
r=1

(−1)r

π3r3
sin

(πrx

2

)
+ c,

where c is an arbitrary constant. We have not yet

found the Fourier series for x3 because the term 4
3x

appears in the expansion. However, now

differentiating our expression for x2, we obtain

2x = −8
∞∑

r=1

(−1)r

πr
sin

(πrx

2

)
.
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We can now write the full Fourier expansion of x3 as

x3 = −16
∞∑

r=1

(−1)r

πr
sin

(πrx

2

)

+96
∞∑

r=1

(−1)r

π3r3
sin

(πrx

2

)
+ c

We can find the constant c by considering f(0). At

x = 0, our Fourier expansion gives x3 = c since all

sine terms are zero, and hence c = 0.
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Complex Fourier series

Using exp(irx) = cos rx + i sin rx, the complex

Fourier series expansion is written as

f(x) =
∞∑

r=−∞
cr exp

(
2πirx

L

)
, (9)

where the Fourier coefficients are given by

cr =
1
L

∫ x0+L

x0

f(x) exp
(
−2πirx

L

)
dx (10)

This relation can be derived by multiplying Eq. (9)

by exp(−2πipx/L) before integrating and using the

orthogonality relation

∫ x0+L

x0

exp
(
−2πipx

L

)
exp

(
2πirx

L

)
dx =





L, r = p

0, r 6= p

The complex Fourier coefficients have the following

relations with the real Fourier coefficients

cr =
1
2
(ar − ibr), (11)

c−r =
1
2
(ar + ibr).
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Example

Find a complex Fourier series for f(x) = x in the

range −2 < x < 2.

Answer

Using Eq. (10),

cr =
1
4

∫ 2

−2

x exp
(
−πirx

2

)
dx

=
[
− x

2πir
exp

(
−πirx

2

)]2

−2

+
∫ 2

−2

1
2πir

exp
(
−πirx

2

)
dx

= − 1
πir

[exp(−πir) + exp(πir)]

+
[

1
r2π2

exp
(
−πirx

2

)]2

−2

=
2i

πr
cosπr +

2i

r2π2
sin πr

=
2i

πr
(−1)r.
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Hence

x =
∞∑

r=−∞

2i(−1)r

rπ
exp

(
πirx

2

)
.
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Parseval’s theorem

Parseval’s theorem gives a useful way of relating the

Fourier coefficients to the function that they

describe. Essentially a conservation law, it states

that

1
L

∫ x0+L

x0

|f(x)|2 dx =
∞∑

r=−∞
|cr|2

=
(

1
2
a0

)2

+
1
2

∞∑
r=1

(a2
r + b2

r).

(12)

This says that the sum of the moduli squared of the

complex Fourier coefficients is equal to the average

value of |f(x)|2 over one period.
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Proof of Parseval’s theorem

Let us consider two functions f(x) and g(x), which

are (or can be made) periodic with period L, and

which have Fourier series (expressed in complex

form)

f(x) =
∞∑

r=−∞
cr exp

(
2πirx

L

)
,

g(x) =
∞∑

r=−∞
γr exp

(
2πirx

L

)

where cr and γr are the complex Fourier coefficients

of f(x) and g(x) respectively. Thus,

f(x) ∗ g(x) =
∞∑

r=−∞
crg

∗(x) exp
(

2πirx

L

)
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Integrating this equation with respect to x over the

interval (x0, x0 + L), and dividing by L, we find

1
L

∫ x0+L

x0

f(x)g∗(x)dx =

∞∑
r=−∞

cr
1
L

∫ x0+L

x0

g∗(x) exp
(

2πirx

L

)
dx

=
∞∑

r=−∞
cr

[
1
L

∫ x0+L

x0

g(x) exp
(−2πirx

L

)
dx

]∗

=
∞∑

r=−∞
crγ

∗
r .

Finally, if we let g(x) = f(x), we obtain Parseval’s

theorem (Eq. (12)).
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Example

Using Parseval’s theorem and the Fourier series for

f(x) = x2, calculate the sum
∑∞

r=1 r−4.

Answer

Firstly, we find the average value of |f(x)|2 over the

interval −2 < x ≤ 2,

1
4

∫ 2

−2

x4 dx =
16
5

.

Now we evaluate the RHS of Eq. (12):

(
1
2
a0

)2

+
1
2

∞∑
1

a2
r+

1
2

∞∑
1

b2
n =

(
4
3

)2

+
1
2

∞∑
r=1

162

π4r4
.

Equating the two expression, we find

∞∑
r=1

1
r4

=
π4

90
.
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