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1.
(a)
Prove that the trace of an operator A,  TrA = 

, is independent of the particular othonormal basis {(ui >} that is chosen for its evaluation.


(b)
Prove that Tr(u > < v(= < v (u >.

2.
(a)
Show that for 

= 1, the matrices representing 

 and 

 are respectively



  

      



(b)
Show that if an operator commutes with any two components of the angular momentum operator 

, it must commute with the remaining components.


(c)
Show that Tr 

= 0,  i = 1, 2, 3.

3.
Let a and a+ be two Hermitian conjugate operators such that [a, a+] = 1.  We put N = a+ a.  Show that 

[N, aj ] = -j aj;

[N, a+j ] = j a+j
(j integer > 0)

4.
In question (3), if { (n > } are the normalized eigenkets of the operator N, i.e.

N (n > = n (n >
n = 0, 1, 2, .....

< n( (n > = (nn(

Show that


(i)
< i( x2 (j >





 (no sum over j)



where i, j are non-negative integers.


(ii)





(no sum over j)


(iii)










Thus, 



Here, (i > and (j > are eigenstates of N with eigenvalues i and j   respectively and 




,                              


(iv) Show that the operator N can be expressed as

N =  
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5.        Suppose operators 
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 and 
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 satisfy the following relations
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           These are known as fermionic operators in contrast with the bosonic operators        
discussed in the lectures.

(i) 
Can the operator 
[image: image5.wmf]a

 be Hermitian ?       Explain.

(ii) Prove that the only possible eigenvalues for the operator 
[image: image6.wmf]a
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 are zero and one.

6.
Consider the Hamiltonian for the two dimensional motion of a  particle of mass ( in a harmonic oscillator potential:
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(i)
Show that the energy eigenvalues are given by 
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, where 
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, with 
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(ii)
Express the operator 
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 in terms of the annihilation operators
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and the corresponding creation operates 

and 

. Here 
[image: image16.wmf]2

2

i

i

x

X

h

mw

=

, 
[image: image17.wmf]2

2

1

i

i

p

P

wm

h

=

,  i = 1, 2.              

Show that 
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