NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS
 SEMESTER 1 EXAMINATION 2016-2017
 MA1101R Linear Algebra I
 November 2016 - Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

1. This examination paper consists of Six (6) questions and comprises FOUR (4) printed pages.
2. Answer ALL questions.
3. This is a closed book examination but each candidate is allowed to bring in TWO (2) double-sided A4-sized handwritten helpsheets.
4. Calculators can be used. However, various steps in the calculations should be laid out systematically.
5. Write down your matriculation/registration number on the cover page of each answer book used.

Question 1 [14 Marks]
Let $\boldsymbol{A}=\left(\begin{array}{cccc}1 & 0 & 1 & -1 \\ 0 & k & 1 & k \\ k & k & 2 & 0 \\ k & 0 & k & 0\end{array}\right)$ where k is a constant.
(a) Use Gauss-Jordan Elimination to reduce \boldsymbol{A} to the reduced row-echelon form. (Write down the elementary row operations clearly.)
(b) Find a basis for the nullspace space of \boldsymbol{A}.
(Warning: The value of k will affect your answers.)

Question 2 [12 Marks]

Let $V=\{(a+b-2 c, 2 b-c, 3 c+d, a+3 b+d) \mid a, b, c, d \in \mathbb{R}\}$.
(a) Show that V is a subspace of \mathbb{R}^{4}.
(b) Find a basis for V and determine the dimension of V.
(c) Let $W=\{(1+a+b-2 c, 2 b-c, 3 c+d, 1+a+3 b+d) \mid a, b, c, d \in \mathbb{R}\}$.
(i) Is the zero vector contained in W ? Justify your answer.
(ii) Is W a subspace of \mathbb{R}^{4} ?

Question 3 [18 Marks]
Let $\boldsymbol{B}=\left(\begin{array}{cccc}4 & 0 & 2 & -2 \\ 0 & 4 & -2 & 2 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 2\end{array}\right)$.
(a) Find an invertible matrix \boldsymbol{P} and a diagonal matrix \boldsymbol{D} so that $\boldsymbol{P}^{-1} \boldsymbol{B} \boldsymbol{P}=\boldsymbol{D}$.
(b) Write down a matrix \boldsymbol{C} such that $\boldsymbol{C}^{2}=\boldsymbol{B}$.
(You can express your answer in the form $\boldsymbol{P} \boldsymbol{X} \boldsymbol{P}^{-1}$ where \boldsymbol{X} is a 4×4 matrix and \boldsymbol{P} is the invertible matrix obtained in (a).)

Question 4 [22 Marks]
(All vectors in this question are written as column vectors.)
Let $\boldsymbol{u}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \boldsymbol{u}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right), \boldsymbol{u}_{3}=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$, and $\boldsymbol{e}_{\mathbf{1}}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \boldsymbol{e}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), \boldsymbol{e}_{\boldsymbol{3}}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
(a) (i) Find the reduced row-echelon form of the following 3×6 matrix

$$
\left(\begin{array}{llllll}
u_{1} & u_{2} & u_{3} & e_{1} & e_{2} & e_{3}
\end{array}\right)
$$

(ii) Let $S=\left\{\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}}, \boldsymbol{u}_{\mathbf{3}}\right\}$. You can assume that S is a basis for \mathbb{R}^{3}.

Write down the coordinate vectors $\left(\boldsymbol{e}_{\mathbf{1}}\right)_{S},\left(\boldsymbol{e}_{\mathbf{2}}\right)_{S},\left(\boldsymbol{e}_{\mathbf{3}}\right)_{S}$.
(b) Define a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that

$$
T(\boldsymbol{x})=c_{1} \boldsymbol{u}_{\boldsymbol{1}}+c_{2} \boldsymbol{u}_{\mathbf{2}} \quad \text { for } \boldsymbol{x}=c_{1} \boldsymbol{u}_{\mathbf{1}}+c_{2} \boldsymbol{u}_{\mathbf{2}}+c_{3} \boldsymbol{u}_{\boldsymbol{3}} \in \mathbb{R}^{3} .
$$

(i) Find the standard matrix for T.
(ii) Determine the rank and nullity of T.
(iii) Explain why $T(\boldsymbol{x})$ is the orthogonal projection of \boldsymbol{x} onto $V=\operatorname{span}\left\{\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}}\right\}$.

Question 5 [17 Marks]
(All vectors in this question are written as column vectors.)
Let \boldsymbol{A} be a square matrix of order n.
(a) Let $E=\left\{\boldsymbol{e}_{\mathbf{1}}, \boldsymbol{e}_{\mathbf{2}}, \ldots, \boldsymbol{e}_{\boldsymbol{n}}\right\}$ be the standard basis for \mathbb{R}^{n}.

Show that $\boldsymbol{A} \boldsymbol{e}_{\boldsymbol{j}}=$ the j th column of \boldsymbol{A}.
(b) Suppose $\boldsymbol{A}^{m}=\mathbf{0}$ and $\boldsymbol{A}^{m-1} \neq \mathbf{0}$ for some integer $m \geq 2$.
(i) Show that there exists at least one vector $\boldsymbol{u} \in \mathbb{R}^{n}$ such that $\boldsymbol{A}^{m-1} \boldsymbol{u} \neq \mathbf{0}$.
(ii) Show that $\left\{\boldsymbol{u}, \boldsymbol{A} \boldsymbol{u}, \ldots, \boldsymbol{A}^{m-1} \boldsymbol{u}\right\}$ is linearly independent where \boldsymbol{u} is the vector obtained in Part (i).
(c) Prove that if $\boldsymbol{A}^{n+1}=\mathbf{0}$, then $\boldsymbol{A}^{n}=\mathbf{0}$.

PAGE 4

Question 6 [17 Marks]

(All vectors in this question are written as column vectors.)
(a) Let \boldsymbol{B} be a 2×2 symmetric matrix and let $\boldsymbol{u}, \boldsymbol{v}$ be two eigenvectors of \boldsymbol{B} associated with the eigenvalues λ and μ respectively.
(i) Show that if $\lambda \neq \mu$, then $\boldsymbol{u} \cdot \boldsymbol{v}=0$.
(ii) Suppose $\boldsymbol{u}=\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}, \boldsymbol{v}=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}, \lambda=1$ and $\mu=3$.

Find \boldsymbol{B}. (Hint: $\{\boldsymbol{u}, \boldsymbol{v}\}$ is an orthonormal basis for \mathbb{R}^{2}.)
(b) Let \boldsymbol{C} be a symmetric matrix of order n with a characteristic polynomial

$$
\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \cdots\left(\lambda-\lambda_{n}\right)
$$

where $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$.
Prove that for any nonzero vector $\boldsymbol{x} \in \mathbb{R}^{n}, \lambda_{1} \leq \frac{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{x}}{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}} \leq \lambda_{n}$.
(Hint for (a)(i) and (b): For $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}, \boldsymbol{u}^{\mathrm{T}} \boldsymbol{v}=\boldsymbol{u} \cdot \boldsymbol{v}$.)

