Student Number:

| A |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## National University of Singapore

## MA1101R Linear Algebra I

Semester II (2016-2017)

Time allowed: 2 hours

## INSTRUCTIONS TO CANDIDATES

1. Write down your student number clearly in the space provided at the top of this page. This booklet (and only this booklet) will be collected at the end of the examination.
2. Please write your student number only. Do not write your name.
3. This examination paper contains SIX (6) questions and comprises NINETEEN (19) printed pages.
4. Answer ALL questions.
5. This is a CLOSED BOOK (with helpsheet) examination.
6. You are allowed to use one A4-size helpsheet.
7. You may use scientific calculators. However, you should lay out systematically the various steps in the calculations.

| Examiner's Use Only |  |
| :---: | :---: |
| Questions | Marks |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| Total |  |

## Question 1 [20 marks]

(a) Consider the following linear system

$$
\left\{\begin{aligned}
x+a y+\quad 2 z & =1 \\
x+2 a y+3 z & =1 \\
x+a y+(a+3) z & =2 a^{2}-1
\end{aligned}\right.
$$

Determine the conditions on the constant $a$ such that the linear system has (i) exactly one solution; (ii) no solution; (iii) infinitely many solutions.

Show your working below.
(b) Find the least squares solution of the following linear system

$$
\left\{\begin{aligned}
x+y+z & =2 \\
x+2 y-z & =1 \\
x-y+z & =2 \\
y-2 z & =5
\end{aligned}\right.
$$

Show your working below.

## Question 2 [15 marks]

Let $\boldsymbol{A}=\left(\begin{array}{cccccc}1 & -2 & 9 & 2 & 6 & -1 \\ 0 & 0 & 4 & 2 & 5 & -1 \\ 3 & -6 & 9 & -3 & 0 & 3 \\ 1 & -2 & 5 & 0 & 1 & 0\end{array}\right)$. It is given that there exists an invertible matrix $\boldsymbol{B}$ such that

$$
\boldsymbol{B} \boldsymbol{A}=\left(\begin{array}{cccccc}
1 & -2 & 3 & -1 & 0 & 1 \\
0 & 0 & 2 & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(i) Write down a basis for the row space of $\boldsymbol{A}$, and extend it to a basis for $\mathbb{R}^{6}$.
(ii) Let $\boldsymbol{v}_{i}$ be the $i$ th column of $\boldsymbol{A}, i=1, \ldots, 6$.

Find a basis $S$ for the column space of $\boldsymbol{A}$ such that $S \subseteq\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}, \boldsymbol{v}_{5}, \boldsymbol{v}_{6}\right\}$, and express each $\boldsymbol{v}_{i}$ not in $S$ as a linear combination of vectors in $S$.
(iii) Find a basis for the nullspace of $\boldsymbol{A}$.

Show your working below.

More working space for Question 2.

## Question 3 [20 marks]

Let $S=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$ be a basis for a vector space $V$, where

$$
\boldsymbol{u}_{1}=(1,2,1,2), \quad \boldsymbol{u}_{2}=(0,2,2,1), \quad \boldsymbol{u}_{3}=(1,12,1,0) .
$$

(i) Use the Gram-Schmidt process to transform the basis $S$ to an orthogonal basis $T$ for $V$.
(ii) Find the projection of $(-11,13,-17,11)$ onto the vector space $V$.
(iii) Extend $T$ to an orthogonal basis for $\mathbb{R}^{4}$.
(iv) Find the transition matrix from the basis $S$ to the basis $T$.

Show your working below.

More working space for Question 3.

## Question 4 [15 marks]

(a) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that

$$
T\left(\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\right)=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad T\left(\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)\right)=\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right), \quad T\left(\left(\begin{array}{l}
3 \\
3 \\
2
\end{array}\right)\right)=\left(\begin{array}{c}
-2 \\
1 \\
3
\end{array}\right)
$$

(i) Find the standard matrix for $T$.
(ii) Find $\operatorname{rank}(T)$ and nullity $(T)$.

Show your working below.
(b) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation such that $\operatorname{Ker}(T)=\operatorname{Ker}(T \circ T)$. Prove that $\operatorname{Ker}(T \circ T)=\operatorname{Ker}(T \circ T \circ T)$.

Show your working below.

## Question 5 [15 marks]

Let $\boldsymbol{A}=\left(\begin{array}{lll}0 & 0 & 1 \\ a & 1 & b \\ 1 & 0 & 0\end{array}\right)$, where $a, b$ are real constants.
(i) Find the eigenvalues of $\boldsymbol{A}$.
(ii) Prove that $\boldsymbol{A}$ is diagonalizable if and only if $a+b=0$.
(iii) Suppose that $a+b=0$. Find an invertible matrix $\boldsymbol{P}$ in terms of $a$ such that $\boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P}$ is a diagonal matrix.

Show your working below.

More working space for Question 5.

## Question 6 [15 marks]

(a) Let $\boldsymbol{A}$ be a square matrix of order $n$. Let $\boldsymbol{M}_{i j}$ be the matrix of order $n-1$ obtained from $\boldsymbol{A}$ by deleting the $i$ th row and the $j$ th column.

Prove that if $\boldsymbol{A}$ is invertible, then at least $n$ of the matrices $\boldsymbol{M}_{i j}$ are invertible. [Hint: Consider the adjoint matrix $\operatorname{adj}(\boldsymbol{A})$.]

Show your working below.
(b) Let $\boldsymbol{A}$ and $\boldsymbol{B}$ be square matrices of the same order.
(i) Prove that the nullspace of $\boldsymbol{B}$ is a subspace of the nullspace of $\boldsymbol{A} \boldsymbol{B}$.
(ii) Using (i) prove that

$$
\operatorname{nullity}(\boldsymbol{A})+\operatorname{nullity}(\boldsymbol{B}) \geq \operatorname{nullity}(\boldsymbol{A} \boldsymbol{B})
$$

Show your working below.

More working spaces. Please indicate the question numbers clearly.

More working spaces. Please indicate the question numbers clearly.

More working spaces. Please indicate the question numbers clearly.

More working spaces. Please indicate the question numbers clearly.

More working spaces. Please indicate the question numbers clearly.

More working spaces. Please indicate the question numbers clearly.

