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Question 1 [20 marks]

(a) Consider the following linear system
x + ay + 2z = 1

x + 2ay + 3z = 1

x + ay + (a+ 3)z = 2a2 − 1.

Determine the conditions on the constant a such that the linear system has

(i) exactly one solution; (ii) no solution; (iii) infinitely many solutions.

Show your working below. 1 a 2 1

1 2a 3 1

1 a a+ 3 2a2 − 1

 R2−R1−−−−→
R3−R1

 1 a 2 1

0 a 1 0

0 0 a+ 1 2a2 − 2

.

If a = 0, then

 1 0 2 1

0 0 1 0

0 0 1 −2

. There is no solution.

If a ̸= 0, then the matrix is in row-echelon form. If a ̸= −1, the system has a unique solution.

If a = −1, the system has infinitely many solutions.

Continue on pages 14–19 if you need more writing space.
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(b) Find the least squares solution of the following linear system
x + y + z = 2

x + 2y − z = 1

x − y + z = 2

y − 2z = 5.

Show your working below.

A =


1 1 1

1 2 −1

1 −1 1

0 1 −2

 and b =


2

1

2

5

. Then

ATA =

3 2 1

2 7 −4

1 −4 7

 and ATb =

 5

7

−7

 .

 3 2 1 6

2 7 −4 7

1 −4 7 −7

 R1↔R3−−−−→

 1 −4 7 −7

2 7 −4 7

3 2 1 6

 R2−2R1−−−−→
R3−3R1

 1 −4 7 −7

0 15 −18 21

0 14 −20 26


R3− 14

15
R2−−−−−→

 1 −4 7 −7

0 15 −18 21

0 0 −16
5

32
5

 .

Then z = −2, 15y = 21 + 18z = −15 ⇒ y = −1 and x = −7 + 4y − 7z = 3.

Continue on pages 14–19 if you need more writing space.
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Question 2 [15 marks]

Let A =


1 −2 9 2 6 −1

0 0 4 2 5 −1

3 −6 9 −3 0 3

1 −2 5 0 1 0

. It is given that there exists an invertible matrix B such that

BA =


1 −2 3 −1 0 1

0 0 2 1 1 −1

0 0 0 0 3 1

0 0 0 0 0 0

 .

(i) Write down a basis for the row space of A, and extend it to a basis for R6.

(ii) Let vi be the ith column of A, i = 1, . . . , 6.

Find a basis S for the column space of A such that S ⊆ {v1,v2,v3,v4,v5,v6}, and express

each vi not in S as a linear combination of vectors in S.

(iii) Find a basis for the nullspace of A.

Show your working below.

(i) {(1,−2, 3,−1, 0, 1), (0, 0, 2, 1, 1,−1), (0, 0, 0, 0, 3, 1)}.

{(1,−2, 3,−1, 0, 1), (0, 0, 2, 1, 1,−1), (0, 0, 0, 0, 3, 1)} ∪ {e2, e4, e6}.

(ii) Since the 1st, 3rd and 5th columns of BA are pivot, S = {v1,v3,v5} forms a basis of the

column space of A.

BA
1
2
R2−−→

1
3
R3


1 −2 3 −1 0 1

0 0 1 1
2

1
2

−1
2

0 0 0 0 1 1
3

0 0 0 0 0 0

 R2− 1
3
R3−−−−−→


1 −2 3 −1 0 1

0 0 1 1
2

0 −2
3

0 0 0 0 1 1
3

0 0 0 0 0 0



R1−3R2−−−−→


1 −2 0 −5

2
0 3

0 0 1 1
2

0 −2
3

0 0 0 0 1 1
3

0 0 0 0 0 0


v2 = −2v1, v4 = −5

2
v1 +

1
2
v3, v6 = 3v1 − 2

3
v3 +

1
3
v6.

Continue on next page if you need more writing space.
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More working space for Question 2.

(iii) Let x2 = r, x4 = s and x6 = t. Then

x1 = 2r + 5
2
s− 3t, x3 = −1

2
s+ 2

3
t, x5 = −1

3
t.

Hence,

(x1, x2, x3, x4, x5, x6) = r(2, 1, 0, 0, 0, 0) + s(5
2
, 0,−1

2
, 1, 0, 0) + t(−3, 0, 2

3
, 0,−1

3
, 1).

The nullspace has a basis

{(2, 1, 0, 0, 0)T, (5
2
, 0,−1

2
, 1, 0, 0)T, (−3, 0, 2

3
, 0,−1

3
, 1)}.

Continue on page 14–19 if you need more writing space.
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Question 3 [20 marks]

Let S = {u1,u2,u3} be a basis for a vector space V , where

u1 = (1, 2, 1, 2), u2 = (0, 2, 2, 1), u3 = (1, 12, 1, 0).

(i) Use the Gram-Schmidt process to transform the basis S to an orthogonal basis T for V .

(ii) Find the projection of (−11, 13,−17, 11) onto the vector space V .

(iii) Extend T to an orthogonal basis for R4.

(iv) Find the transition matrix from the basis S to the basis T .

Show your working below.

(i) Let v1 = u1 = (1, 2, 1, 2).

v2 = u2 −
v1 · u2

v1 · v1

v1 = (0, 2, 2, 1)− 8

10
(1, 2, 1, 2) =

(
−4

5
,
2

5
,
6

5
,−3

5

)
.

v3 = u3 −
v1 · u3

v1 · v1

v1 −
v2 · u3

v2 · v2

v2

= (1, 12, 1, 0)− 26

10
(1, 2, 1, 2)− 26/5

13/5

(
−4

5
,
2

5
,
6

5
,−3

5

)
= (0, 6,−4,−4).

(ii) Let v = (−11, 13,−17, 11). The projection of v onto V is

p =
v1 · v
v1 · v1

v1 +
v2 · v
v2 · v2

v2 +
v2 · v
v2 · v2

v2

=
20

10
(1, 2, 1, 2) +

−13

13/5

(
−4

5
,
2

5
,
6

5
,−3

5

)
+

102

68
(0, 6,−4,−4)

= (6, 11,−10, 1).

(iii) v − p = (−11, 13,−17, 11)− (6, 11,−10, 1) = (−17, 2,−7, 10).

So {v1,v2,v3, (−17, 2,−7, 10)} is an orthogonal basis for R4.

(iv) By construction, u1 = v1, u2 =
4
5
v1 + v2 and u3 =

13
5
v1 + 2v2 + v3.

So the transition matrix from S to T is

1 4
5

13
5

0 1 2

0 0 1

.

Continue on next page if you need more writing space.
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More working space for Question 3.

Continue on pages 14–19 if you need more writing space.
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Question 4 [15 marks]

(a) Let T : R3 → R3 be a linear transformation such that

T


1

2

3


 =

1

1

0

 , T


0

1

2


 =

 2

1

−1

 , T


3

3

2


 =

−2

1

3

 .

(i) Find the standard matrix for T .

(ii) Find rank(T ) and nullity(T ).

Show your working below.

(i) A

1 0 3

2 1 3

3 2 2

 =

1 2 −2

1 1 1

0 −1 3

.

 1 0 3 1 0 0

2 1 3 0 1 0

3 2 2 0 0 1

 R2−2R1−−−−→
R3−3R1

 1 0 3 1 0 0

0 1 −3 −2 1 0

0 2 −7 −3 0 1


R3−R2−−−−→

 1 0 3 1 0 0

0 1 −3 −2 1 0

0 0 −1 1 −2 1

 −R3−−→

 1 0 3 1 0 0

0 1 −3 −2 1 0

0 0 −1 −1 2 −1


R1−3R3−−−−→
R2+3R3

 1 0 0 4 −6 3

0 1 0 −5 7 −3

0 0 1 −1 2 −1

 .

A =

1 2 −2

1 1 1

0 −1 3


 4 −6 3

−5 7 −3

−1 2 −1

 =

−4 4 −1

−2 3 −1

2 −1 0

.

(ii) A
R2− 1

2
R1−−−−−→

R3+
1
2
R1

−4 4 −1

0 1 −1
2

0 1 −1
2

 R3−R2−−−−→

−4 4 −1

0 1 −1
2

0 0 0

.

So rank(T ) = 2 and nullity(T ) = 3− 2 = 1.

Continue on pages 14–19 if you need more writing space.
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(b) Let T : Rn → Rn be a linear transformation such that Ker(T ) = Ker(T ◦ T ). Prove that

Ker(T ◦ T ) = Ker(T ◦ T ◦ T ).

Show your working below.

If v ∈ Ker(T ◦ T ), then T ◦ T (v) = 0; consequently T ◦ T ◦ T (v) = T (T ◦ T (v)) = T (0) = 0,

i.e., v ∈ Ker(T ◦ T ◦ T ).
Let v ∈ Ker(T ◦ T ◦ T ). Set w = T (v). Then

T ◦ T (w) = T ◦ T (T (v)) = T ◦ T ◦ T (v) = 0.

So w ∈ Ker(T ◦ T ) = Ker(T ). We thus have

T ◦ T (v) = T (T (v)) = T (w) = 0;

that is, v ∈ Ker(T ◦ T ).

Continue on pages 14–19 if you need more writing space.
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Question 5 [15 marks]

Let A =

0 0 1

a 1 b

1 0 0

, where a, b are real constants.

(i) Find the eigenvalues of A.

(ii) Prove that A is diagonalizable if and only if a+ b = 0.

(iii) Suppose that a + b = 0. Find an invertible matrix P in terms of a such that P−1AP is a

diagonal matrix.

Show your working below.

(i) det(λI −A) =

∣∣∣∣∣∣∣
λ 0 −1

−a λ− 1 −b

−1 0 λ

∣∣∣∣∣∣∣ = (λ− 1)

∣∣∣∣∣ λ −1

−1 λ

∣∣∣∣∣ = (λ− 1)2(λ+ 1).

So the eigenvalues of A are −1 and 1.

(ii) Let λ = 1. Then

I −A =

 1 0 −1

−a 0 −b

−1 0 1

 R2+aR1−−−−−→
R3+R1

1 0 −1

0 0 −b− a

0 0 0

 .

A is diagonalizable if and only if nullity(I −A) = 2 ⇔ −b− a = 0 ⇔ a+ b = 0.

Continue on next page if you need more writing space.
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More working space for Question 5.

(iii) Suppose a+ b = 0. Then I −A →

1 0 −1

0 0 0

0 0 0

. The nullspace has a basis

{(1, 0, 1)T, (0, 1, 0)T}.

−I −A =

−1 0 −1

−a −2 a

−1 0 −1

 R3−R1−−−−−→
R2−aR1

−1 0 −1

0 −2 2a

0 0 0

. The nullspace has a basis

{(−1, a, 1)T}.

Hence, P =

1 0 −1

0 1 a

1 0 1

.

Continue on pages 14–19 if you need more writing space.
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Question 6 [15 marks]

(a) Let A be a square matrix of order n. Let Mij be the matrix of order n− 1 obtained from A

by deleting the ith row and the jth column.

Prove that if A is invertible, then at least n of the matrices Mij are invertible. [Hint : Consider

the adjoint matrix adj(A).]

Show your working below.

Assume that at most n − 1 of the submatrices Mij are invertible. Then the cofactor Aij =

(−1)i+j det(Mij) = 0 for all but at most n− 1 pairs of (i, j).

So adj(A) = (Aji) would have at most n − 1 nonzero entries. In particular, adj(A) would

have a zero row; so adj(A) would be singular.

On the other hand, if A is invertible, then adj(A) is invertible. This leads to a contradiction.

Therefore, at least n submatrices Mij must be invertible.

Continue on pages 14–19 if you need more writing space.
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(b) Let A and B be square matrices of the same order.

(i) Prove that the nullspace of B is a subspace of the nullspace of AB.

(ii) Using (i) prove that

nullity(A) + nullity(B) ≥ nullity(AB).

Show your working below.

(i) Let A = B =

(
1 0

0 0

)
. Then AB =

(
1 0

0 0

)
. So

nullity(A) + nullity(B) = 2 > 1 = nullity(AB).

(ii) If Bv = 0, then ABv = 0. So

nullspace of B ⊆ nullspace of AB.

Let {v1, . . . ,vk} be a basis for the nullspace of B. Extend it to a basis for the nullspace

of AB:

{v1, . . . ,vk,vk+1, . . . ,vm}.

Then Bvk+1, . . . ,Bvm ̸= 0, and they belong to the nullspace of A. Suppose

ck+1Bvk+1 + · · ·+ cmBvm = 0.

Then B(ck+1vk+1 + · · ·+ cmvm) = 0, which implies

ck+1vk+1 + · · ·+ cmvm ∈ nullspace of B = span{v1, . . . ,vk}.

So ck+1 = · · · = cm = 0. Hence, Bvk+1, . . . ,Bvm are linearly independent. Then

nullity(A) ≥ m− k = nullity(AB)− nullity(B).

So

nullity(A) + nullity(B) ≥ nullity(AB).

Continue on pages 14–19 if you need more writing space.
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More working spaces. Please indicate the question numbers clearly.
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More working spaces. Please indicate the question numbers clearly.
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