National University of Singapore Department of Mathematics

Semester 1, 2017/18

MA1101R Linear Algebra I

November 2017 — Time allowed: 2 hours

Student Number: _

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper consists of 6 questions, for a total of 80 points. Excluding the cover page, there are 12 printed pages.
- 2. Answer all 6 questions.
- 3. This is a closed book examination but you are allowed to bring in one A4-size and doublesided helpsheet.
- 4. You can use any kind of calculators (except devices which can be used for communication and/or web-surfing). However, various steps in the calculations should be laid out systematically.
- 5. Write down your student number on the cover page of this booklet.
- 6. Write your answers in the space below each question. This booklet will be collected at the end of the examination.
- 7. The left-hand pages can be used for rough work.

Question	Points	Score
1	11	
2	8	
3	9	
4	18	
5	17	
6	17	
Total:	80	

1. (11 points) Let
$$\boldsymbol{A} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$
.

(a) Use the **Gauss-Jordan Elimination** to reduce **A** to its reduced row-echelon form. (Write down the steps of your computations.)

Question 1 continues...

(b) Write down a basis for the row space of \boldsymbol{A} .

(c) Write down a basis for the column space of \boldsymbol{A} .

(d) Write down a basis for the nullspace of \boldsymbol{A} .

2. (8 points) Let $V = \text{span}\{u_1, u_2, u_3\}$ where $u_1 = (1, 1, 0, 0)$, $u_2 = (1, 1, -1, -1)$ and $u_3 = (1, a, 1, a)$ where a is an unknown constant.

Apply the Gram-Schmidt Process to $\{u_1, u_2, u_3\}$ to obtain an orthonormal basis for V.

(Warning: The value of a may affect your answer.)

3. (9 points) Let *W* be a vector space with a basis $S = \{ v_1, v_2, v_3 \}$. Let $T = \{ w_1, w_2, w_3 \}$ where

$$w_1 = v_1 + 2v_2$$
, $w_2 = v_2 + 2v_3$ and $w_3 = v_3$.

(a) Show that T is a basis for W.

Question 3 continues...

(b) Find the transition matrix from S to T.

4. (18 points) Let
$$\boldsymbol{B} = \begin{pmatrix} -2 & 0 & -2 & 1 \\ -1 & -1 & -2 & 1 \\ 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
.

(a) Find the characteristic polynomial of \boldsymbol{B} and verify that the eigenvalues of \boldsymbol{B} are -1 and 0.

(b) Find a basis for the eigenspace E_{-1} of **B**.

Question 4 continues...

(c) Find a basis for the eigenspace E_0 of **B**.

(d) Write down an invertible matrix P and a diagonal matrix D such that $P^{-1}BP = D$.

Question 4 continues...

(e) Find B^{1101} .

- 5. (17 points) Let C be a square matrix.
 - (a) Show that the nullspace of C is a subset of the nullspace of C^2 .

(b) If $\operatorname{rank}(\mathbf{C}^2) = \operatorname{rank}(\mathbf{C})$, show that the nullspace of \mathbf{C}^2 is equal to the nullspace of \mathbf{C} .

Question 5 continues...

(c) Give an example of a 2×2 matrix \boldsymbol{C} with $\operatorname{rank}(\boldsymbol{C}^2) = \operatorname{rank}(\boldsymbol{C})$.

(d) Give an example of a 2×2 matrix \boldsymbol{C} with $\operatorname{rank}(\boldsymbol{C}^2) < \operatorname{rank}(\boldsymbol{C})$.

(e) Can $\operatorname{rank}(\mathbf{C}^2) > \operatorname{rank}(\mathbf{C})$? Why?

6. (17 points) Let \boldsymbol{A} be an $n \times n$ matrix.

For each $\lambda \in \mathbb{R}$, we define a linear transformation $T_{\lambda} : \mathbb{R}^n \to \mathbb{R}^n$ such that

$$T_{\lambda}(\boldsymbol{u}) = \boldsymbol{A}\boldsymbol{u} - \lambda \boldsymbol{u} \quad ext{for} \ \ \boldsymbol{u} \in \mathbb{R}^n.$$

(a) Write down the standard matrix for T_{λ} .

(b) For any $\lambda, \mu \in \mathbb{R}$, show that

$$(\boldsymbol{A} - \lambda \boldsymbol{I})(\boldsymbol{A} - \mu \boldsymbol{I}) = (\boldsymbol{A} - \mu \boldsymbol{I})(\boldsymbol{A} - \lambda \boldsymbol{I}).$$

- (c) Suppose A is diagonalizable and the eigenvalues of A are λ_1 , $\lambda_2, \ldots, \lambda_k$.
 - (i) If \boldsymbol{v} is an eigenvector of \boldsymbol{A} , say, $\boldsymbol{A}\boldsymbol{v} = \lambda_i \boldsymbol{v}$ for some i, show that $(\boldsymbol{A} \lambda_1 \boldsymbol{I})(\boldsymbol{A} \lambda_2 \boldsymbol{I}) \cdots (\boldsymbol{A} \lambda_k \boldsymbol{I}) \boldsymbol{v} = \boldsymbol{0}.$

(Hint: First, show that $(\boldsymbol{A} - \lambda_i \boldsymbol{I})\boldsymbol{v} = \boldsymbol{0}$ and then use the result in part (b).)

(ii) Define $S = T_{\lambda_1} \circ T_{\lambda_2} \circ \cdots \circ T_{\lambda_k}$. Prove that S is the zero transformation.