NATIONAL UNIVERSITY OF SINGAPORE

MA1101R - LINEAR ALGEBRA I

(Semester 1 : AY2018/2019)

Time allowed : 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. Please write your matriculation/student number only. Do not write your name.
- 2. This examination paper contains **SIX** questions and comprises **FOUR** printed pages.
- 3. Answer **ALL** questions.
- 4. Please start each question on a new page.
- 5. This is a CLOSED BOOK (with helpsheet) examination.
- 6. Students are allowed to use one A4 size helpsheet.
- 7. Candidates may use scientific calculators. However, they should lay out systematically the various steps in the calculations.

Question 1 [16 marks]

(a) Consider the following matrix

$$\boldsymbol{C} = \begin{pmatrix} 1 & 2 & -1 & 0 \\ 2 & 5 & -3 & 2 \\ 2 & 4 & -2 & 0 \\ 3 & 8 & -5 & 4 \end{pmatrix}.$$

- (i) Find a basis for the row space of C.
- (ii) Find a basis for the nullspace of C. What is the rank and nullity of C?
- (iii) Is the last row of C a linear combination of the other rows of C? If it is, find such a linear combination. If it is not, explain why.
- (b) Suppose D is a matrix with k columns such that the linear system Dx = r is consistent for all vectors $r \in \mathbb{R}^n$. For each of the statements below, determine if the statement is true. Justify your answer.
 - (i) \boldsymbol{D} has n rows.
 - (ii) k is at least n.
 - (iii) \boldsymbol{D} is of full rank.

Question 2 [20 marks]

(a) A is a square matrix of order 10 with entries a_{ij} such that det(A) = 2. Let B be another square matrix of order 10 such that

$$b_{ij} = \begin{cases} -\frac{1}{2}a_{ij} & \text{if } i \text{ is odd;} \\ 2a_{ij} & \text{if } i \text{ is even.} \end{cases}$$

Find $det(\boldsymbol{B})$.

(b) Let
$$\boldsymbol{B} = \begin{pmatrix} 1 & 2 & 4 \\ -1 & 10 & 5 \\ 1 & -2 & 3 \end{pmatrix}$$
.

Perform three elementary row operations to reduce B to a row-echelon form. Hence find three elementary matrices E_1 , E_2 , E_3 such that $B^T E_1 E_2 E_3$ is a lower triangular matrix. Write down the elementary row operations that E_1 , E_2 , E_3 represents respectively.

- (c) Let X, Y, Z be square matrices of the same order. Prove the following statements.
 - (i) $\mathbf{X}^T \mathbf{X} = \mathbf{0}$ if and only if $\mathbf{X} = \mathbf{0}$. (Hint: Consider the diagonal entries of $\mathbf{X}^T \mathbf{X}$.)
 - (ii) XY = 0 if and only if $X^TXY = 0$. (Hint: Use part (i).)

Question 3 [16 marks]

(a) Let $V = \{(a - b, a - 2b, a + b, a + 3b) \mid a, b \in \mathbb{R}\}.$

- (i) Show that V is a subspace of \mathbb{R}^4 .
- (ii) Find a basis for V. What is the dimension of V?
- (iii) Let W be the solution space of the following homogeneous linear system:

$$\begin{cases} x_1 - x_2 + x_3 + x_4 = 0\\ x_2 - x_3 + 6x_4 = 0\\ x_3 + 3x_4 = 0 \end{cases}$$

Find a basis for W and hence show that $W \subseteq V$.

- (b) Let $E = \{(1,0), (0,1)\}$ and $S = \{(1,1), (1,-1)\}.$
 - (i) E is the standard basis for \mathbb{R}^2 . Is S also a basis for \mathbb{R}^2 ? Justify your answer.
 - (ii) The triangle in the right figure is re-drawn exactly on the left figure as shown. Find the coordinates of the 3 points a, b and c, with respect to the coordinates used in the left figure. The coordinates of A, B and C are given by (1.2, 2.2), (3.2, 3.2) and (2.2, 4.8) respectively.

Question 4 [20 marks]

Let $V = \operatorname{span}\{u_1, u_2, u_3\}$, where

$$\boldsymbol{u_1} = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \quad \boldsymbol{u_2} = \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}, \quad \boldsymbol{u_3} = \begin{pmatrix} 0\\1\\0\\2 \end{pmatrix}.$$

- (i) Find a vector \boldsymbol{u} such that $||\boldsymbol{u}|| = 3\sqrt{10}$ and \boldsymbol{u} is orthogonal to $\boldsymbol{u_1}, \boldsymbol{u_2}$ and $\boldsymbol{u_3}$.
- (ii) Use the Gram-Schmidt Process to transform $\{u_1, u_2, u_3\}$ into an orthonormal basis for V.

(iii) Find the projection of
$$\boldsymbol{w} = \begin{pmatrix} -1\\ 1\\ -1\\ 13 \end{pmatrix}$$
 onto V .

(iv) Let $A = (u_1 \ u_2 \ u_3)$, that is, u_1, u_2, u_3 are the columns of A. Find a least squares solution to the linear system Ax = w.

Question 5 [20 marks]

(a) Let
$$\boldsymbol{A} = \begin{pmatrix} 2 & 0 & 0 \\ -1 & 1 & 3 \\ 1 & 1 & -1 \end{pmatrix}$$
.

- (i) Find all the eigenvalues of A.
- (ii) Find a basis for the eigenspace associated with each eigenvalue of A.
- (iii) Find a matrix P that diagonalizes A and determine $P^{-1}AP$.
- (b) Let A and B be square matrices of order n. Suppose AB = BA and A has n distinct eigenvalues.
 - (i) Show that each eigenspace of A has dimension 1.
 - (ii) Show that if u is an eigenvector of A, then u is also an eigenvector of B.
 - (iii) Show that A and B are simultaneously diagonalizable, i.e., there exists an invertible matrix P such that PAP^{-1} and PBP^{-1} are diagonal.

Question 6 [8 marks]

Let $T:\mathbb{R}^3\to\mathbb{R}^2$ be the linear transformation such that

$$T\left(\begin{pmatrix}x\\y\\z\end{pmatrix}\right) = \begin{pmatrix}x-y+z\\2x-y-z\end{pmatrix}$$
 for all $\begin{pmatrix}x\\y\\z\end{pmatrix} \in \mathbb{R}^3$.

Find 2 different linear transformations S_1 and S_2 such that $(T \circ S_1)$ and $(T \circ S_2)$ are both the identity linear operator on \mathbb{R}^2 , showing clearly how S_1 and S_2 are derived. Give your answers by providing the formulae for S_1 and S_2 .