NATIONAL UNIVERSITY OF SINGAPORE FACULTY OF SCIENCE
 DEPARTMENT OF MATHEMATICS
 SEMESTER 2 EXAMINATION 2014-2015
 MA1102R Calculus

April 28, 2014 Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

1. This examination paper contains a total of EIGHT (8) questions and comprises THREE (3) printed pages.
2. Answer ALL questions. Write your solutions in the ANSWER BOOK.
3. Please start each question on a new page.
4. Please write your student number only. Do NOT write your name on the answer book.
5. Total marks for this exam are 60. The marks for each question are indicated at the beginning of each question.
6. This is a CLOSED BOOK examination. Two A4-sized helpsheet (twosided) are allowed.
7. Candidates may use scientific calculators. However, they should lay out systematically the various steps in the calculations.

Question 1 [10 marks]

Evaluate the following.
(1) $\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{\ln x}\right)$.
(2) $\frac{d}{d x} x^{x \ln x}$.

Question 2 [7 marks]

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on \mathbb{R} and that

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow \infty} f(x)=0
$$

By making use of the extreme value theorem or otherwise, prove that $f(x)$ is bounded on \mathbb{R}.

Question 3 [7 marks]

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined as follows:

$$
g(x)=\left\{\begin{array}{rll}
x^{2} \sin \left(1 / x^{2}\right) & \text { for } & x \neq 0 \\
0 & \text { for } & x=0
\end{array}\right.
$$

Show that $g(x)$ is differentiable for all $x \in \mathbb{R}$ and calculate $g^{\prime}(x)$.

Question 4 [9 marks]

The Young's inequality asserts: let a, b, p, q be positive real number. Assume further that

$$
\frac{1}{p}+\frac{1}{q}=1
$$

Then

$$
\frac{a^{p}}{p}+\frac{b^{q}}{q} \geq a b .
$$

Answer the following questions.
(1) Define

$$
f(t)=\frac{t^{q}}{q}-t+\frac{1}{p}
$$

for $t \geq 0$. Prove that $f(t) \geq 0$ for $t \geq 0$.
(2) Hence or otherwise, prove the Young's inequality.
(Hint: consider $t=b / a^{p-1}$.)

Question 5 [6 marks]

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). Show that if

$$
\lim _{x \rightarrow a} f^{\prime}(x)=A
$$

then

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a}=A
$$

Question 6 [6 marks]

Prove the following integral mean value theorem. Let $f(x)$ be a continuous function on $[a, b]$. Show that there is a $c \in(a, b)$ such that

$$
\frac{\int_{a}^{b} f(x) d x}{b-a}=f(c)
$$

Question 7 [7 marks]

For $a>0$ is a fixed constant, let C be the loop defined by the equation

$$
3 a y^{2}=x(a-x)^{2} .
$$

Find the area of the surface generated by rotating the loop C about the x-axis.

Question 8 [8 marks]

For each non-negative integer n, define the Legendre polynomial

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(\left(x^{2}-1\right)^{n}\right)
$$

Use integration by parts or otherwise, prove that if $m \neq n$, then

$$
\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0 .
$$

End of paper.

