NATIONAL UNIVERSITY OF SINGAPORE

MA1102R - CALCULUS

(Semester 2: AY2015/2016)

Time allowed : 2 hours

INSTRUCTIONS TO CANDIDATES

1. Write your matriculation/student number only. Do not write your name.
2. This examination paper contains a total of SIX (6) questions and comprises FOUR (4) printed pages.
3. This examination carries a total of $\mathbf{1 0 0}$ marks.
4. Answer ALL questions.
5. This is a CLOSED BOOK examination.
6. Your are allowed to use four A4-sized, double-sided help sheets.
7. You may use non-graphing and non-programmable calculators. However, you should lay out systematically the various steps in the calculations.

Question 1 [15 marks]

(a) Solve the differential equation

$$
\left(x^{2}-4\right) \frac{d y}{d x}+2 x y=4 y+12 \quad(x>2)
$$

(b) Show that the substitution $y=z x^{2}$ reduces the differential equation

$$
x^{3} \frac{d y}{d x}=2 y^{2}+4 x^{2} y \quad(x>0)
$$

to

$$
x \frac{d z}{d x}=f(z)
$$

where the function $f(z)$ is to be determined.
Given that $y=1$ when $x=1$, express y in terms of x.

Question 2 [15 marks]

The function f is defined on $[0,1]$ by

$$
f(x)=e^{2 \sqrt{x}}
$$

(i) Show that

$$
f^{\prime \prime}(x)=\frac{k e^{2 \sqrt{x}}(2 \sqrt{x}-1)}{x \sqrt{x}}
$$

where k is a constant to be determined.
(ii) Find the interval(s) on which f is concave upward.
(iii) Sketch the graph of f.
(iv) Use the substitution $x=u^{2}$ to find the exact area of the region enclosed by the graph of f, the axes and the line $x=1$.
(v) Use your answer in (iv) to deduce the exact value of

$$
\int_{1}^{e^{2}}(\ln y)^{2} d y
$$

Question 3 [15 marks]

(a) For $n \geq 0$, let

$$
I_{n}=\int_{0}^{8} x^{n}(8-x)^{1 / 3} d x
$$

(i) Find the value of I_{0}.
(ii) Show that for $n \geq 1$,

$$
I_{n}=\frac{24 n}{3 n+4} I_{n-1} .
$$

(iii) R is the region bounded by the axes and the curve $y=(8-x)^{4 / 3}$ for $0 \leq x \leq 8$. Use the answer from (i) and the reduction formula in (ii) to find the volume of the solid formed by rotating R completely about the y-axis.
(b) A curve C has equation

$$
y=\sec (2 x), \quad 0 \leq x \leq \frac{\pi}{6} .
$$

Find the exact length of the curve C.

Question 4 [15 marks]

Let $P\left(p^{2}, 2 p\right)$, where $p>0$, be a variable point on the curve whose equation is $y^{2}=4 x$. The normal at P meets the curve again at the point $Q\left(q^{2}, 2 q\right)$.
(i) Express q in terms of p.
(ii) Prove that the length, L, of the line segment $P Q$ is given by

$$
L^{2}=\frac{k\left(1+p^{2}\right)^{3}}{p^{4}}
$$

where k is a constant to be determined.
(iii) Find the value of p for which L attains its least value. Justify your answer.

Question 5 [20 marks]

(a) Use Riemann sum to find

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k^{2}}{2 n^{3}+k^{3}} .
$$

(b) Find the exact value of

$$
\lim _{x \rightarrow 0} \frac{\int_{e^{x}}^{e^{5 x}}\left(e^{x+t^{2}}\right) d t}{\ln (3 x+1)}
$$

(c) Let $[x]$ denote the greatest integer not exceeding x. Find the exact value of

$$
\int_{1}^{2016} \frac{[\ln x]}{x} d x
$$

(d) Let f be continuous on $[-a, a]$, where a is a positive constant. Show that

$$
\int_{-a}^{a} f(x) d x=\int_{0}^{a}(f(x)+f(-x)) d x
$$

Hence, find the exact value of

$$
\int_{-1}^{1} \frac{x^{2016} e^{x}}{e^{x}+1} d x
$$

Question 6 [20 marks]

(a) Use the Rolle's Theorem to show that the equation

$$
\left(x^{2}-6 x+12\right) e^{x}=2015 x+2016
$$

has at most two real roots.
(b) Find the exact value of

$$
\lim _{x \rightarrow 0}(3-2 \cos 3 x+3 \sin 4 x)^{4 \cot 2 x}
$$

(c) Let a be a positive real number. Use the precise definition of limit to prove that

$$
\lim _{x \rightarrow a} \frac{3 x^{2}+2 a x+a^{2}}{2 x+a}=2 a .
$$

(d) Let f be continuous on $[0,1]$ and differentiable on $(0,1)$ such that $f(0)=1$ and $f(1)=0$ and let k be a positive constant.
(i) Show that there exists c in $(0,1)$ such that $f(c)=k c$.
(ii) Show that there exist a and b in $(0,1)$ such that

$$
c f^{\prime}(a)+(1-c) f^{\prime}(b)=-1 .
$$

