Question 1:

(i) f is continuous and differentiable everywhere. The first derivative

$$f'(x) = \frac{d}{dx}(x^3 + 4x^2 + 11x + 14)e^{-x} + (x^3 + 4x^2 + 11x + 14)\frac{d}{dx}(e^{-x})$$

= $(3x^2 + 8x + 11)e^{-x} + (x^3 + 4x^2 + 11x + 14)(-e^{-x})$
= $(-x^3 - x^2 - 3x - 3)e^{-x}$
= $-(x+1)(x^2+3)e^{-x}$

is zero at x = -1.

When x < -1, f'(x) > 0. Applying the Increasing Test, f is increasing on $(-\infty, -1)$. When x > -1, f'(x) < 0. Applying the Decreasing Test, f is decreasing on $(-1, \infty)$.

(ii) x = -1 is the only critical point.

Since f'(x) changes from positive to negative, from the First Derivative Test, f has a local maximum at x = -1. The value of the local maximum is f(-1) = 6e.

(iii) The second derivative

$$f''(x) = \frac{d}{dx}(-x^3 - x^2 - 3x - 3)e^{-x} + (-x^3 - x^2 - 3x - 3)\frac{d}{dx}(e^{-x})$$

= $(-3x^2 - 2x - 3)e^{-x} + (-x^3 - x^2 - 3x - 3)(-e^{-x})$
= $(x^3 - 2x^2 + x)e^{-x}$
= $x(x - 1)^2e^{-x}$

is zero when x = 0 or x = 1.

When 0 < x < 1, f''(x) > 0. f' is increasing on [0, 1].

When 1 < x, f''(x) > 0. f' is increasing on $[1, \infty)$.

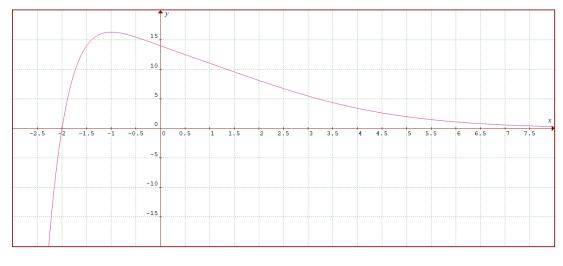
Since f' is increasing on $[0, \infty)$, f is concave up on $(0, \infty)$.

When x < 0, f''(x) < 0. Applying the Concavity Test, f is concave down on $(-\infty, 0)$.

(iv) Since the concavity only changes at x = 0, that corresponds to the only inflection point.

f(0) = 14

Coordinates: (0, 14)



Graph of y = f(x)

Question 2:

(a) Given $\epsilon > 0$, let $\delta = \min\{1, 3\epsilon\}$. If $0 < |x - 2| < \delta$, then

$$\begin{split} \left| \frac{x}{x^2 + 2} - \frac{1}{3} \right| &= \left| \frac{3x - (x^2 + 2)}{3(x^2 + 2)} \right| \\ &= \left| \frac{-(x - 2)(x - 1)}{3(x^2 + 2)} \right| \\ &\leq \left| \frac{(x - 2)(x - 1)}{6} \right| \qquad |\frac{-1}{x^2 + 2}| \leq \frac{1}{2} \\ &= \frac{|(x - 2)((x - 2) + 1)|}{6} \\ &\leq \frac{|x - 2|(|x - 2| + 1)}{6} \\ &\leq \frac{\delta(\delta + 1)}{6} \\ &\leq \frac{\delta(\delta + 1)}{6} \\ &\leq \frac{\delta(2)}{6} \qquad \delta \leq 1 \\ &\leq \epsilon \qquad \delta \leq 3\epsilon \end{split}$$

(b) Expressing the limit as a Reimann sum

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{i^3}{n^2 (n^2 + i^2)} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{(i/n)^3}{1 + (i/n)^2}$$
$$= \int_0^1 \frac{x^3}{1 + x^2} dx$$

Using the substitution $u = 1 + x^2$, $\frac{du}{dx} = 2x$

$$\int_0^1 \frac{x^3}{1+x^2} dx = \frac{1}{2} \int_0^1 \frac{x^2}{1+x^2} (2x) dx$$
$$= \frac{1}{2} \int_1^2 \frac{u-1}{u} du$$
$$= \frac{1}{2} [u - \ln |u|]_1^2$$
$$= \frac{1 - \ln 2}{2}$$

(c) When x > 0, both $e^x - 1 > 0$ and $\frac{1}{x} > 0$. Using the fact that $\exp(\ln x) = x$,

$$\lim_{x \to 0^+} \left(\frac{e^x - 1}{x}\right)^{\frac{1}{x}} = \lim_{x \to 0^+} \exp\left(\frac{1}{x}\ln\left(\frac{e^x - 1}{x}\right)\right)$$
$$= \exp\left(\lim_{x \to 0^+} \frac{1}{x}\ln\left(\frac{e^x - 1}{x}\right)\right)$$

Using L'hopital Rule,

Question 3:

Let θ be the angle (in radians) subtended by the arc.

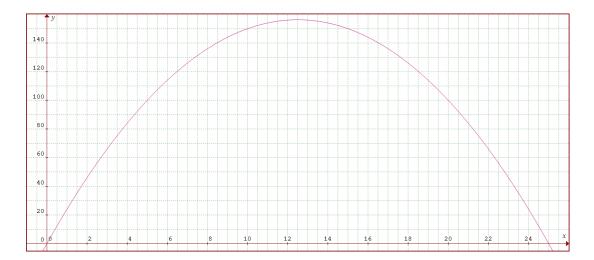
Perimeter =
$$r + r + r\theta = 50m$$

 $\theta = \frac{50m - 2r}{r}$
 $A = \frac{1}{2}r^{2}\theta$
 $= \frac{1}{2}r(50m - 2r)$

To use the Closed Interval Method, solve for the critical numbers.

$$\frac{dA}{dr} = \frac{d}{dr} \left(\frac{1}{2} ((50\text{m})r - 2r^2) \right)$$
$$= \frac{1}{2} (50\text{m} - 4r)$$
$$= 0$$
$$r = 12.5\text{m}$$

When r = 12.5m, A = 156.25m². Next, check the values at the endpoints. When r = 0m or r = 50m, A = 0m². Therefore, a radius of 12.5 m will yield the largest area of 156.25m².



Graph of Area Enclosed against Radius

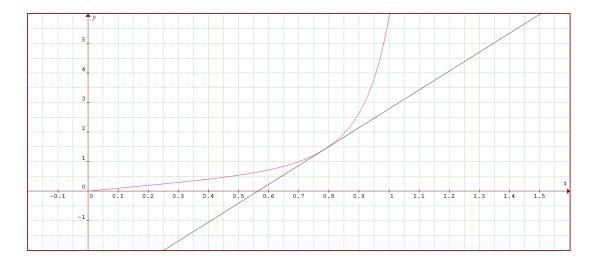
Question 4:

(a) When $x = \frac{\pi}{4}$, $y = (1)^{\sqrt{2}}(\sqrt{2})^1 = \sqrt{2}$. Let $0 < x < \frac{\pi}{2}$. Since the equation is always positive, taking the natural logarithm on both sides gives

 $\ln y = \sec x \ln(\tan x) + \tan x \ln(\sec x)$

Performing implicit differentiation,

$$\begin{aligned} \frac{d}{dx}(\ln y) &= \frac{d}{dx}(\sec x \ln(\tan x)) + \frac{d}{dx}(\tan x \ln(\sec x)) \\ \frac{1}{y}\frac{dy}{dx} &= \sec x \tan x \ln(\tan x) + \sec x \frac{\sec^2 x}{\tan x} \\ &+ \sec^2 x \ln(\sec x) + \tan x \frac{\sec x \tan x}{\sec x} \\ &= \sec x \tan x \ln(\tan x) + \frac{\sec^3 x}{\tan x} \\ &+ \sec^2 x \ln(\sec x) + \tan^2 x \\ \frac{1}{\sqrt{2}}\frac{dy}{dx}\Big|_{x=\frac{\pi}{4}} &= \sqrt{2}(1)\ln 1 + \frac{(\sqrt{2})^3}{1} + (\sqrt{2})^2 \ln \sqrt{2} + 1^2 \\ &= 2\sqrt{2} + \ln 2 + 1 \\ \frac{dy}{dx}\Big|_{x=\frac{\pi}{4}} &= 4 + \sqrt{2}(\ln 2 + 1) \end{aligned}$$



Graph of $y = (\tan x)^{\sec x} (\sec x)^{\tan x}$ and its tangent line at $x = \frac{\pi}{4}$

(b) The upper limit of integration is not x but x^2 . This makes F a composite function.

$$F(u) = \int_0^u f(t)dt$$
 and $u = x^2$

To find the critical numbers, the Chain Rule is needed.

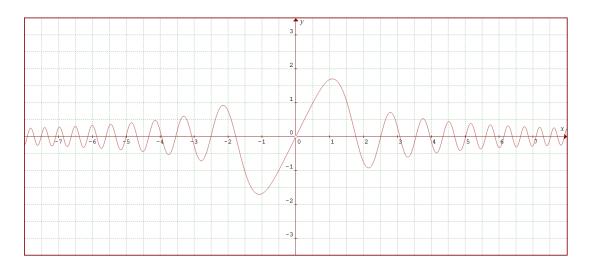
$$\frac{d}{dx}F(x) = \frac{d}{du}\left(F(u)\right)\frac{du}{dx} = \frac{d}{du}\left(\int_0^u f(t)dt\right)\frac{du}{dx}$$

From the Fundamental Theorem of Calculus, $\frac{d}{du} \int_0^u f(t) dt = f(u)$. Thus, the derivative

$$\frac{d}{dx}F(x) = \frac{du}{dx}f(u)$$
$$= 2xf(x^2)$$
$$= \begin{cases} \frac{2\sin(x^2)}{x}, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

is zero iff $x^2 = k\pi$ for some integer k.

When k is odd, $\frac{\sin(x^2)}{x}$ changes from positive to negative, and F attains a local maximum. When k is even, $\frac{\sin(x^2)}{x}$ changes from negative to positive, and F attains a local minimum.



Graph of $y = \frac{2\sin(x^2)}{x}$

(c) From the Decreasing Test, f''(x) < 0 means that f' is decreasing on [0,∞). Using the definition of a decreasing function, for all x > 0, f'(x) < f'(0) = 0. Since f'(x) is negative, f is also decreasing on [0,∞). Now, suppose f has more than one positive root. There would then exist 0 < x₁ < x₂, such that f(x₁) = f(x₂) = 0. However, since f is decreasing, f(x₁) > f(x₂). A contradiction! Therefore, f has at most 1 positive root.

To show that f has at least one positive root, consider some a > 0. Case f(a) = 0: Shown.

Case f(a) < 0: The Intermediate Value Theorem guarentees a root in (0, a). Case f(a) > 0: Let $b = a - \frac{f(a)}{f'(a)}$. Note that $b - a = -\frac{f(a)}{f'(a)} > 0$. According to Taylor's Theorem (n = 1), there exists a c in (a, b) such that

$$f(b) = f(a) + f'(a)(b-a) + \frac{f''(c)}{2}(b-a)^2$$

= $f(a) + f'(a)(-\frac{f(a)}{f'(a)}) + \frac{f''(c)}{2}(-\frac{f(a)}{f'(a)})^2$
= $\frac{f''(c)}{2}(\frac{f(a)}{f'(a)})^2$

Since f''(c) < 0, f(b) < 0. The Intermediate Value Theorem guarentees a root in (a, b).

The number of positive roots is at least one and at most one. Therefore, f has exactly one positive root.

Question 5:

First, solve the system of equations to find the points of intersections.

$y^2 = 2x$	(1)
$x^2 + y^2 = 8$	(2)
$x^2 + 2x = 8$	
$(x+1)^2 = 9$	
x + 1 = 3	from (1), $x \ge 0$
x = 2	
y = 2 or y = -2	

The points of intersection are (2,2) and (2,-2). Therefore, R is the region bounded by $x_1 = \frac{y^2}{2}$ and $x_2 = \sqrt{8-y^2}$ on the interval $-2 \le y \le 2$.

(i) The area of R is given by

$$\int_{-2}^{2} x_2 dy - \int_{-2}^{2} x_1 dy = \int_{-2}^{2} \sqrt{8 - y^2} dy - \int_{-2}^{2} \frac{y^2}{2} dy$$

For the first integral, let $y = 2\sqrt{2}\sin\theta$.

$$\frac{dy}{d\theta} = 2\sqrt{2}\cos\theta$$
$$\int_{-2}^{2} \sqrt{8 - y^2} dy = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sqrt{8 - 8\sin^2\theta} (2\sqrt{2}\cos\theta) d\theta$$
$$= 16 \int_{0}^{\frac{\pi}{4}} \sqrt{1 - \sin^2\theta} (\cos\theta) d\theta$$
$$= 8 \int_{0}^{\frac{\pi}{4}} 2\cos^2\theta d\theta$$
$$= 8 \int_{0}^{\frac{\pi}{4}} (\cos 2\theta + 1) d\theta$$
$$= 8 \left[\frac{\sin 2\theta}{2} + \theta\right]_{0}^{\frac{\pi}{4}}$$
$$= 8 \left(\frac{1}{2} + \frac{\pi}{4}\right)$$
$$= 4 + 2\pi$$
$$\int_{-2}^{2} \sqrt{8 - y^2} dy - \int_{-2}^{2} \frac{y^2}{2} dy = (4 + 2\pi) - \left[\frac{y^3}{6}\right]_{-2}^{2}$$
$$= (4 + 2\pi) - \frac{8}{3}$$
$$= \frac{4}{3} + 2\pi$$

(ii) The volume of revolution is given by the integral

$$\int_{-2}^{2} \pi (x_{2}^{2} - x_{1}^{2}) dy = \pi \int_{-2}^{2} ((8 - y^{2}) - \frac{y^{4}}{4}) dy$$
$$= \pi \left[8y - \frac{y^{3}}{3} - \frac{y^{5}}{20} \right]_{-2}^{2}$$
$$= \frac{352}{15}\pi$$

Question 6:

(i) Integrate by parts. Using the substitution $u = 1 + x^2$, $\frac{du}{dx} = 2x$, consider the integral

$$\int \frac{x}{(1+x^2)^2} dx = \int \frac{1}{2u^2} du$$

= $\frac{-1}{2u} + C$
= $\frac{-1}{2(x^2+1)} + C$
= $\frac{x^2}{2(x^2+1)} - \frac{1}{2} + C$

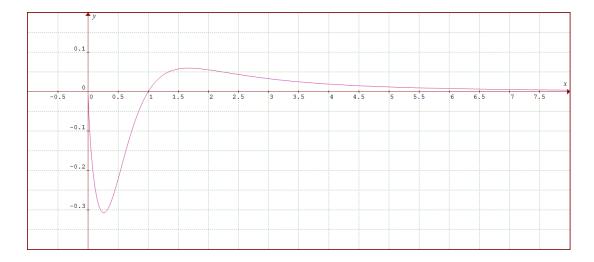
Using the results above,

$$\int \frac{x \ln x}{(1+x^2)^2} dx = \int (\ln x) \frac{d}{dx} \left(\frac{x^2}{2(x^2+1)} \right) dx$$
$$= \frac{1}{2} \left[(\ln x) \frac{x^2}{x^2+1} - \int \frac{x^2}{x^2+1} \frac{d}{dx} (\ln x) dx \right]$$
$$= \frac{x^2 \ln x}{2(x^2+1)} - \frac{1}{2} \int \frac{x^2}{x^2+1} \frac{1}{x} dx$$
$$= \frac{x^2 \ln x}{2(x^2+1)} - \frac{1}{4} \int \frac{2x}{x^2+1} dx$$
$$= \frac{x^2 \ln x}{2(x^2+1)} - \frac{1}{4} \ln(x^2+1) + C$$

(ii) Let the antiderivative

$$\begin{split} F(x) &= \frac{x^2 \ln x}{2(x^2 + 1)} - \frac{1}{4} \ln(x^2 + 1) \\ &= \frac{1}{4} \left(\frac{\ln(x^2)}{1 + x^{-2}} - \ln(x^2 + 1) \right) \\ &= \frac{1}{4} \left(\frac{\ln(\frac{x^2}{x^2 + 1})}{1 + x^{-2}} - \frac{\ln(x^2 + 1)}{x^2 + 1} \right) \\ \int_0^\infty \frac{x \ln x}{(1 + x^2)^2} dx &= \lim_{b \to \infty} F(b) - \lim_{a \to 0^+} F(a) \\ &= \lim_{b \to \infty} \frac{1}{4} \left(\frac{\ln(\frac{b^2}{b^2 + 1})}{1 + b^{-2}} - \frac{\ln(b^2 + 1)}{b^2 + 1} \right) - \lim_{a \to 0^+} \left(\frac{a^2 \ln a}{2(a^2 + 1)} - \frac{1}{4} \ln(a^2 + 1) \right) \\ &= \frac{1}{4} \lim_{b \to \infty} \frac{\ln(\frac{b^2}{b^2 + 1})}{1 + b^{-2}} - \frac{1}{4} \lim_{b \to \infty} \frac{\ln(b^2 + 1)}{b^2 + 1} \\ &- \lim_{a \to 0^+} \left(\frac{1}{2(a^2 + 1)} \right) \lim_{a \to 0^+} (a^2 \ln a) + \lim_{a \to 0^+} \frac{1}{4} \ln(a^2 + 1) \end{split}$$

$$\begin{split} &= \frac{1}{4} \frac{\ln 1}{1+0} - \frac{1}{4} \lim_{b \to \infty} \frac{\ln(b^2 + 1)}{b^2 + 1} - \left(\frac{1}{2}\right) \lim_{a \to 0^+} \left(\frac{\ln a}{a^{-2}}\right) + \frac{1}{4} \ln(0^2 + 1) \\ &= 0 - \frac{1}{4} \lim_{b \to \infty} \frac{\ln(b^2 + 1)}{b^2 + 1} - \frac{1}{2} \lim_{a \to 0^+} \frac{\frac{d}{da}(\ln a)}{\frac{d}{da}(a^{-2})} + 0 & \frac{0}{0} \text{ indeterminate form} \\ &= -\frac{1}{4} \lim_{b \to \infty} \frac{\frac{d}{db}(\ln(b^2 + 1))}{\frac{d}{db}(b^2 + 1)} - \frac{1}{2} \lim_{a \to 0^+} \frac{a^{-1}}{(-2)a^{-3}} & \frac{\infty}{\infty} \text{ indeterminate form} \\ &= -\frac{1}{4} \lim_{b \to \infty} \frac{\left(\frac{2b}{b^2 + 1}\right)}{2b} - \frac{1}{2} \lim_{a \to 0^+} \frac{-a^2}{2} \\ &= -\frac{1}{4} \lim_{b \to \infty} \frac{1}{b^2 + 1} - 0 \\ &= 0 \end{split}$$



Graph of
$$y = \frac{x \ln x}{(1+x^2)^2}$$

Alternative Solution:

$$\int_0^\infty \frac{x \ln x}{(1+x^2)^2} dx = \int_0^1 \frac{x \ln x}{(1+x^2)^2} dx + \int_1^\infty \frac{x \ln x}{(1+x^2)^2} dx$$

Extend the domain of the integrand to include zero and apply the substitution $u = \frac{1}{x}$ on the last integral.

Question 7:

(a) Differentiate y implicitly w.r.t. x.

_

$$\frac{dy}{dx} = -\frac{1}{x^2} - \frac{1}{z^2} \frac{dz}{dx}$$
$$\cdot \frac{1}{x^2} - \frac{1}{z^2} \frac{dz}{dx} = (\frac{1}{x} + \frac{1}{z})^2 - \frac{\frac{1}{x} + \frac{1}{z}}{x} - \frac{1}{x^2}$$
$$- \frac{1}{z^2} \frac{dz}{dx} = (\frac{1}{x} + \frac{1}{z})^2 - \frac{1}{x}(\frac{1}{x} + \frac{1}{z})$$
$$= \frac{1}{z^2} + \frac{1}{xz}$$
$$0 = \frac{dz}{dx} + 1 + \frac{z}{x}$$

Using the substitution $u=zx,\,\frac{du}{dx}=z+\frac{1}{x}\frac{dz}{dx}$.

$$\frac{1}{x}\frac{du}{dx} + 1 = 0$$
$$\frac{du}{dx} = -x$$

When x = 1, y = 2, z = 1, u = 1.

$$u - 1 = \int_1^x (-t)dt$$
$$u = \frac{3 - x^2}{2}$$
$$z = \frac{3 - x^2}{2x}$$
$$y = \frac{1}{x} + \frac{2x}{3 - x^2}$$
$$= \frac{3 + x^2}{x(3 - x^2)}$$

(b) Since height is always decreasing w.r.t. time, t is a function of h.

$$\frac{dt}{dh} = -\frac{4h - h^2}{\sqrt{h}}$$

The time taken to empty the sphere, $\tau = t(0) - t(4)$, can be derived using the Fundamental Theorem of Calculus.

$$\tau = \int_4^0 \frac{dt}{dh} dh$$
$$= \int_4^0 -\frac{4h - h^2}{\sqrt{h}} dh$$

Using the substitution $u = \sqrt{h}$, $\frac{du}{dh} = \frac{1}{2\sqrt{h}}$,

$$-\int_{4}^{0} \frac{4h - h^{2}}{\sqrt{h}} dh = \int_{0}^{4} \frac{4h - h^{2}}{\sqrt{h}} dh$$
$$= \int_{0}^{2} 2(4u^{2} - u^{4}) du$$
$$= 2\left[\frac{4u^{3}}{3} - \frac{u^{5}}{5}\right]_{0}^{2}$$
$$= \frac{128}{15}$$

Question 8:

 $|f'(x)| \le M \implies -M \le f'(x) \le M.$

For $0 \le x \le 0.5$,

$$\int_0^x -Mdt \le \int_0^x f'(t)dt \le \int_0^x Mdt$$
$$-Mx \le f(x) - f(0) \le Mx$$

Since f(0) = 0, $-Mx \le f(x) \le Mx$ and $|f(x)| \le Mx$. Therefore,

$$\int_{0}^{0.5} |f(x)| dx \le \int_{0}^{0.5} Mx dx = \frac{M}{8}$$

For $0.5 \leq x \leq 1$,

$$\int_x^1 -Mdt \le \int_x^1 f'(t)dt \le \int_x^1 Mdt$$
$$-M(1-x) \le f(1) - f(x) \le M(1-x)$$

Since f(1) = 0, $-M(1-x) \le f(x) \le M(1-x)$ and $|f(x)| \le M(1-x)$. Therefore,

$$\int_{0.5}^{1} |f(x)| dx \le \int_{0.5}^{1} M(1-x) dx = \frac{M}{8}$$

Thus,

$$\int_0^1 |f(x)| dx = \int_0^{0.5} |f(x)| dx + \int_{0.5}^1 |f(x)| dx \le \frac{M}{8} + \frac{M}{8} = \frac{M}{4}.$$