

MA1102R – Calculus

Semester 2: AY2017/2018

Final Exam

9 May 2018 — Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. Write your matriculation number clearly in the spaces provided on this cover page.
- 2. Please answer all the questions and write your solutions in the spaces inside this booklet.
- 3. You may use non-programmable calculators.
- 4. This paper contains 8 questions and comprises 15 pages.
- 5. Page 5 and Page 13 are left blank to provide sufficient space for solutions.
- 6. This is a closed book test. However, every candidate is allowed to bring one A4-size help sheet.

Matriculation Number:	Α					
					 	· .

MARKS (Examiner's Use):

Q1	Q2	Q3	Q4	
05	O 6	07	08	Total (Max. 70)
<u> </u>	QU	<u><u>v</u>'</u>	QU	

Q1 Consider the function

$$f(x) = \sin^{-1} \frac{1}{\ln \frac{e^x + 1}{e^x - 1}}.$$

(i) Find the maximal domain of the function f(x). [5 marks]

Q1 (continued)

(ii) Determine if f(x) is a one-to-one function on its maximal domain. If yes, find the expression and the domain of definition for its inverse function $f^{-1}(x)$; if not, find x_1 and x_2 ($x_1 \neq x_2$) such that $f(x_1) = f(x_2)$. [5 marks]

Q2 Let f(x) be the function

$$f(x) = \begin{cases} \frac{a}{x-1} [3\sin(x-1) - 2\tan(\ln x)], & \text{if } 1/2 < x < 1, \\ b, & \text{if } x = 1, \\ \int_{4(x-1)}^{x^2} e^{x + [\ln(t+1)]^c} dt, & \text{if } x > 1. \end{cases}$$

Given that *f* is differentiable, find the values of *a*, *b* and *c*. [10 marks]

This page intentionally left blank

Q3 Suppose the function f(x) is continuous on [0,1] and twice differentiable on (0,1). Show that there exist $A \in \left(-\frac{1}{2}, \frac{1}{2}\right)$ and $c \in (0,1)$ such that

$$f(1) = f(0) + f'\left(\frac{1}{2}\right) + Af''(c),$$

where f'' is the second-order derivative of f. [5 marks]

6

Q4 For given positive constants *A* and *B*, let

$$f(x) = (Ax^2 + B)^{-3/2}.$$

(i) Find

 $\int f(x) \, \mathrm{d}x. \qquad [5 \text{ marks}]$

Q4 (continued)

(ii) For a given $t \in \mathbb{R}$, let S(t) be the area bounded by the straight line y = 1/8 and the curve $y = \left[(2x^2(2+\sin t)^4+2-\sin t)\right]^{-3/2}$ (the shaded region in the diagram). Show that

Q4 (continued)

(iii) Find the absolute maximum and absolute minimum values of S(t) when they exist. [5 marks]

Q5 For any non-negative integer *n*, let $I_n = \int_0^{\pi/2} \sin^n x \, dx$.

(i) Show that

$$I_{n+2} = \frac{n+1}{n+2}I_n$$

holds for any non-negative integer n.

[5 marks]

Q5 (continued)

(ii) Find the values of I_9 and I_{10} .

[5 marks]

Q6 Consider the *cycloid* given by the parametric equations

$$\begin{cases} x = t - \sin t, \\ y = 1 - \cos t, \end{cases} \quad t \in \mathbb{R},$$

whose graph is as follows:

Find the length of one period of this curve, which is a part of the above curve shown in the following the diagram:

[10 marks]

This page intentionally left blank

Q7 Show that the equation

 $x = 2 \tanh x$

has exactly 3 solutions.

[5 marks]

Q8 Solve the differential equation

$$(x^2y - y)\frac{dy}{dx} + (xy^2 + x) = 0, \quad -1 < x < 1; \quad y = 1 \text{ when } x = 0.$$

Express your answer in the form of y = f(x). [5 marks]