PC1141 AY08/09 Sem I

1. $T=9600 \mathrm{~s}$
$r=2.3 \times 10^{7} \mathrm{~m}$
2. Normal force, $N=m g(3 \cos \theta-2)$

At $\theta_{1}, N=0$
$\Rightarrow \cos \theta_{1}=\frac{2}{3}$
$f=\mu_{s} N$
At θ_{2}, ball slides.
$\cos \theta_{2}>\frac{2}{3} \Rightarrow \theta_{2}<\theta_{1}$
Therefore, the ball slides before losing contact.
3. $f_{\oplus} \approx 3.4 \times 10^{-3}$
4. $\theta_{\text {min }}=\tan ^{-1}\left(\frac{1-\mu^{2}}{2 \mu}\right)$
5. (a) $f_{\text {beat }}=\left(\frac{2 V}{v}\right) f$
(b) $f_{\text {node }}=\left(\frac{2 V}{v}\right) f$
(c) The two frequencies from part (a) and part (b) are the same.
6. (a) $v_{\text {min }}=\sqrt{2 g h}$
(b) $d=\frac{v^{2}-2 g h}{2 g} \sin 2 \theta+\frac{1}{g} \cos \theta \sqrt{\left(v^{2}-2 g h\right)\left(v^{2} \sin ^{2} \theta+2 g h \cos ^{2} \theta\right)}$
(c) $v_{\text {min }}=\sqrt{\frac{2(m+M) g h}{m s^{2} \theta+M}}$
7. (a) $T=2 \pi \sqrt{\frac{m L^{2}}{2 \kappa}}$
(b) $G=\frac{2 \pi^{2} L r^{2}}{M T^{2}} \theta$
(c) $T=2 \pi \sqrt{\frac{m L^{2} r}{2 \kappa(r-L \theta \cos \theta)}}$
8. (a) $p(d)=-p g(d+h)+p_{\text {atm }}$
(b) $p(r)=\frac{\rho \omega^{2} r^{2}}{2}$
(c) $h(r)=\frac{\omega^{2} r^{2}}{2 g}$ The shape is parabolic.

