NATIONAL UNIVERSITY OF SINGAPORE

PC1142 PHYSICS II

(Semester I: AY 2013–14) Examiner: Assoc Prof Peter Ho

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. Please write your matriculation number in the answer booklet. DO NOT WRITE YOUR NAME.
- 2. This examination paper contains 5 short questions in Part I and 3 long questions in Part II. It comprises 9 printed pages.
- 3. Answer ALL questions.
- 4. This is a CLOSED BOOK examination.
- 5. You may use electronic calculators to make your answers.
- 6. A list of physical constants and formulae is given on pp. 2 and 3.

Thermal physics and kinetic theory:

(i) Kinetic mean free path is given by $\ell = \frac{1}{\sqrt{2\pi} \cdot n_{\nu} \cdot d^2}, \text{ where } n_{\nu} \text{ is the number density}$

and *d* is the molecular diameter.

(ii) Maxwell–Boltzmann distribution in 3D:

$$P(v) = 4\pi \cdot v^2 \cdot \left(\frac{m}{2\pi \cdot k_B \cdot T}\right)^{3/2} \cdot \exp\left(-\frac{m \cdot v^2}{2 \cdot k_B \cdot T}\right)$$

- (a) Root-mean-square speed: $v_{rms} = \sqrt{\frac{3\kappa_B r}{m}}$.
- (b) Average speed: $V_{av} = \sqrt{\frac{8k_BT}{\pi m}}$.

(c) Most-probable speed:
$$v_{mp} = \sqrt{\frac{2k_BT}{m}}$$
.

- (iii) Ideal gas equation: $p \cdot V = n \cdot R \cdot T$.
- (iv) Van der Waals equation:

$$(p + \frac{a \cdot n^2}{V^2}) \cdot (V - n \cdot b) = n \cdot R \cdot T.$$

Thermodynamics:

(i) First law of thermodynamics: $\Delta U = q_{in} + W_{in}$. Gas expansion work done by the gas: $W_{out} = \int p \cdot dV$.

(ii) Carnot heat-engine efficiency $e_{_C} = 1 - \frac{T_{_C}}{T_{_H}}$.

Geometric optics:

(i) *p* and *q* are object and image distances measured respectively on opposite sides of the lens or of the refracting surface:

(a) Object-image relation (thin lens):
$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$
,
where $\frac{1}{f} = (n-1) \cdot \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$.

(b) Refracting-surface equation:
$$\frac{n_1}{p} + \frac{n_2}{q} = \frac{n_2 - n_1}{R}$$
.

- (v) One form of adiabat: $p \cdot V^{\gamma} = cons \tan t$.
- (vi) Stefan–Boltzmann equation: $P_{rad} = \sigma \cdot A \cdot e \cdot T^4$.
- (vii) Planck radiation equation:

$$I_{rad}(\lambda) = \frac{2\pi \cdot h \cdot c^2}{\lambda^5 \cdot \left(\exp\left(\frac{h \cdot c}{\lambda \cdot k_B \cdot T}\right) - 1\right)}$$

(viii) Wien displacement law:

$$\lambda_{peak} = \frac{2.898 \times 10^{-3} \, m \cdot K}{T}$$

(ix) Convection equation: $P_{conv} = h \cdot A \cdot \Delta T$. (x) Conduction equation: $P_{ccond} = -k \cdot A \cdot \frac{\Delta T}{I}$.

(xi) Linear thermal expansion: $\Delta L = \alpha \cdot L \cdot \Delta T$.

(iii) Entropy
$$dS = \frac{dq_{rev}}{T}$$
.
(iv) Enthalpy $H = E + PV$.
(v) Helmholtz free energy $F = E - TS$.
(vi) Gibbs free energy $G = H - TS$.

(ii) Gullstrand equation:

(a) Effective power:
$$P_e = P_1 + P_2 - P_1 \cdot P_2 \cdot \frac{a}{n}$$
.

(b) Front-vertex refracting power:

$$P_f = P_1 + \frac{P_2}{1 - \frac{P_2 \cdot d}{n}}$$

(c) Back-vertex refracting power:

$$P_b = P_2 + \frac{P_1}{1 - \frac{P_1 \cdot d}{n}}$$

٦

(iii) Spherical-mirror equation:
$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$
, where

$$\frac{1}{f} = \frac{2}{R}$$
.

(iv) *F*-number:
$$\frac{F}{\#} = \frac{f}{D}$$
.

(v) Numerical aperture: $NA = n \cdot \sin \theta$.

Wave optics:

(i) Circular aperture (Airy's disc): first diffraction minimum is at $\sin \theta = \frac{1.22\lambda}{\partial}$.

(ii) Slit: first diffraction minimum is at
$$\sin \theta = \frac{\lambda}{a}$$

(iii) *N*-slit intensity pattern:
$$I = I_o \cdot \frac{\sin^2(N \cdot \phi/2)}{\sin^2(\phi/2)}$$

General:

(i) Geometry:

The arc length on a circle of radius r subtended by angle α is $S = I \alpha$.

The surface area A subtended by polar angle 20 is: $A = 2 \pi r^2 (1 - \cos \theta).$

(ii) Logarithms and exponents :

$$\log_a (b c) = \log_a b + \log_a c$$

$$\log_a b = \log_d b / \log_d a$$

$$a^{b} * a^{c} = a^{b+c}$$

 $(a^b)^c = a^{bc}$

(iii) Integrations:

 $\int x^n dx = \frac{x^{n+1}}{n+1} + c \quad , \quad \text{except for } n = -1 \quad \text{for}$ which $\int x^{-1} dx = \ln x + c$. Universal constants: Gas constant $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ Boltzmann constant $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Stefan–Boltzmann constant σ = 5.670x10⁻⁸ W m⁻²K⁻⁴ Speed of light in vacuum $c = 2.998 \times 10^8 \text{ m s}^{-1}$

(vi) Snell's law:
$$n_1 \cdot \sin \theta_1 = n_2 \cdot \sin \theta_2$$
.
(a) Critical angle: $\sin \theta_c = n_2 / n_1$.
(b) Brewster angle: $\tan \theta_p = n_2 / n_1$.
(vii) Wave relation: $\nu = f \cdot \lambda$.
(viii) Abbe number: $\nu = \frac{n_D - 1}{n_F - n_C}$.

where
$$\phi = \frac{2\pi}{\lambda} \cdot d \cdot \sin \theta$$
.

$$I = I_o \cdot \frac{\sin^2(\delta/2)}{(\delta/2)^2}$$
, where $\delta = \frac{2\pi}{\lambda} \cdot a \cdot \sin \theta$

(v) Thin-film interference:

 $\delta = 2 \cdot n \cdot d \cdot \cos \beta$, where β is the refracted angle.

(iv) Taylor expansions:

$$\sin \theta = \theta - \frac{1}{6}\theta^3 + \dots$$

 $\cos \theta = 1 - \frac{1}{2}\theta^2 + \dots$
 $\tan \theta = \theta + \frac{1}{3}\theta^3 + \dots$
 $(1 + x)^a = 1 + ax + \frac{a(a-1)}{2}x^2 + \dots$
(v) Series sum:

$$\sum_{n=0}^{n=m} a_0 r^n = \frac{a_0(1-r^{m+1})}{1-r}$$

(vi) Differentiations: d(sin u) = cos u du $d(\cos u) = -\sin u \, du$ $d(u^m) = mu^{m-1} du$

Avogadro's number $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Permittivity of free space $\varepsilon_o = 8.854 \times 10^{-12} \text{ Fm}^{-1}$ Planck constant $h = 6.626 \times 10^{-34} \text{ J s}$

Part 1. Answer ALL questions. Each question carries 8 marks.

- Assume that air can be modeled by molecules with a molecular diameter of 3.0 Å, and molar mass of 28.0 g mol⁻¹. The temperature of this air is 298 K, and its pressure is 101325 Pa. [NB: 1 Å = 10⁻¹⁰ m]
 - (i) Compute the root-mean-square speed of an air molecule.
 - (ii) Compute the mean free path of an air molecule.

[8 marks]

Retarders change the state of polarisation of light. A retarder can be made from a plate of a birefringent material in which the *ρ*-ray (i.e., ray with linear polarisation perpendicular to optic axis) and the *ρ*-ray (i.e., polarisation parallel to optic axis) travel with different velocities. If these rays are initially in phase, they develop a phase difference Φ after passing the retarder.

(i) Show that
$$\Phi$$
 of the *o*-ray relative to the *c*-ray is given by $\Phi = \frac{2\pi}{\lambda_o} (n_e - n_o) d$, where

 n_{e} is the refractive index for the *e*-ray, n_{o} is the refractive index for the *o*-ray, and *d* is the thickness of the plate.

(ii) If the retarder is a half-wave plate, i.e., $\Phi = \pi$, and the incident light is linearly polarised at an angle of 45° relative to the optic axis of the retarder, explain the state of polarisation of this light after passing the retarder.

[8 marks]

- The Hubble Space Telescope (HST) has an aperture diameter of 2.4-m set by its primary mirror, and a focal length of 57.6 m.
 - Compute the size of the Airy disk, i.e., radius of the first dark ring, at the image plane for green light.
 - (ii) Sketch the image intensity profile for a star and mark on this plot the edge of the Airy disc. [NB: Image intensity profile is the plot of intensity vs distance from the centre of the image.]

[8 marks]

4. The constant-pressure adiabatic flame temperature $T_{ad,p}$ is the temperature reached by the combustion products when the fuel is burnt at constant pressure without any heat loss to the surroundings and without any non-PV work done. This means the enthalpy of a closed system of fuel, oxidant and any other substances present in the mixture in its initial state at 298 K equals the enthalpy of the system of combustion products and other substances in the final state at $T_{ad,p}$. The combustion of acetylene (C₂H₂) in 200% theoretical air is given by:

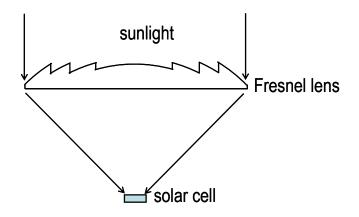
$$C_2H_2(g) + 2.5 O_2(g) + 2.5 O_2(g) + 20 N_2(g) \rightarrow 2CO_2(g) + H_2O(g) + 2.5 O_2(g) + 20 N_2(g)$$

The table below gives some thermochemical data. $\Delta H_{f_{r,298}}^{o}$ is the enthalpy of formation of the substance at standard pressure and 298 K, S_{298}^{o} is the entropy at standard pressure and 298 K, c_{p} is the molar heat capacity at constant pressure, and c_{v} is the molar heat capacity at constant volume. Both c_{p} and c_{v} are given for 1000 K, and may be taken to be the average heat capacities over the temperature range of interest.

	$\Delta H^{ m o}_{ m f,298}$	S_{298}^{o}	C _p	C _v
_	(kJ mol ^{−1})	(J K ^{_1} mol ^{_1})	(J K ^{−1} mol ^{−1})	(J ^{K-1} mol ⁻¹) 35.8 [8 marks]
C ₂ H ₂ (g)	226.7	200.8	44.1	35.8
O ₂ (g)	0	205.2	34.9	26.6
N ₂ (g)	0	192.0	32.7	24.4
CO ₂ (g)	-393.5	213.8	54.3	45.8
H ₂ O (g)	-241.8	188.8	41.2	32.8

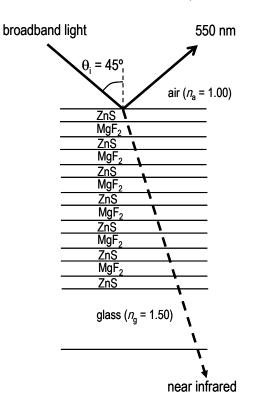
(i) Compute the enthalpy of combustion at 298 K and standard pressure.

(ii) Write down an expression for the change in enthalpy of the system of substances shown on the right hand side of the equation corresponding to a temperature change from 298 K to *T*. Hence or otherwise, compute *T*_{ad,p} for the combustion of acetylene in 200% theoretical air.


[8 marks]

- 5. A concentrated solar power (CSP) system uses mirrors or lenses to concentrate solar power onto a heat receiver. This heat receiver drives a heat engine, often a steam turbine. One such system has a mirror concentrator with a total collection area A_c , and collection efficiency ξ which gives the ratio of reflected power on the receiver to the incident power on the collection mirror. The heat receiver has an area A_R , absorptivity α for solar radiation, and emissivity ε for thermal radiation. During operation, it reaches a steady-state temperature T_R , set by the condition that heat gain from the concentrator equals the sum of heat input to the engine Q_H and heat loss by thermal radiation Q_{rad} at the receiver. A_R is also the effective area for this thermal radiation. The heat engine operates between T_R and a low temperature bath T_o that corresponds to the environment. The incident solar intensity is I_o .
 - (i) Write down an expression for $Q_{\rm H}$ in terms of $I_{\rm O}$, $A_{\rm C}$, $A_{\rm R}$, $T_{\rm R}$ and any other necessary parameters.
 - (ii) Hence or otherwise, write down an expression for the maximum solar-to-electricity energy conversion efficiency η of this CSP in terms of T_0 , T_R and any other necessary parameters. You may wish to start from $\eta = \eta_R \cdot \eta_{Carnot}$, where η_R is the overall efficiency for transfer of incident solar power to the heat engine, and η_{Carnot} is the Carnot efficiency of the engine.

[8 marks]


Part 2. Answer ALL questions. All questions carry 20 marks each.

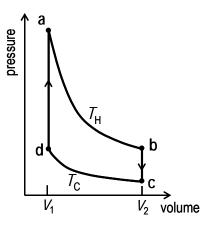
6. A concentrated photovoltaic (CPV) system uses mirrors or lenses to focus sunlight onto a small but highly efficient and expensive solar cell to generate electricity. In one design, a lightweight and inexpensive plastic plano-convex Fresnel lens is used to focus sunlight onto the solar cell, as shown below. The plastic material is polycarbonate which has a refractive index of 1.60. The Fresnel lens has a square shape with side length of 30 cm and a focal length of 1.5 m. The solar cell also has a square shape. The sun subtends a full angle of 0.533° at the earth, and provides an intensity of 1.0 kW m⁻² at lens surface.

- (i) Compute the minimum size of the solar cell required to capture all the sunlight at the image plane of this CPV design.
 [5 marks]
- (ii) Compute the intensity of sunlight at the solar cell, neglecting reflections at the lens surface. [5 marks]
- (iii) Compute the required radius of curvature of the curved surface of this Fresnel lens in first order paraxial ray theory.
 [5 marks]
- (iv) Briefly explain whether Fresnel lenses would be useful to make high-quality images for photography. [5 marks]

7. A dielectric mirror makes use of thin-film interference to reflect light. A cold mirror is an example of a dielectric mirror that reflects visible light but transmits near infrared radiation. A simple cold mirror fabricated using a single periodic stack of transparent high-index ZnS (refractive index $n_{\rm H} = 2.20$) and transparent low-index MgF₂ ($n_{\rm L} = 1.35$) is shown below. It is designed to strongly reflect light with a centre-wavelength $\lambda_{\rm ctr}$ of 550 nm, when this light falls on the mirror at an angle of incidence $\theta_{\rm i}$ of 45°.

- (i) Compute the required thicknesses of the ZnS and MgF₂ layers. [8 marks]
- (ii) Consider thin-film interference inside a single ZnS layer in the middle of the stack. Show that λ_{ctr} varies with θ_i according to:

$$\frac{d\lambda_{\rm ctr}}{d\theta_{\rm i}} = -4n_{\rm H}d_{\rm H}\left(\frac{n_{\rm a}}{n_{\rm H}}\right)^2 \frac{\sin\theta_{\rm i}\cos\theta_{\rm i}}{\left(1 - \left(\frac{n_{\rm a}}{n_{\rm H}}\right)^2\sin^2\theta_{\rm i}\right)^{1/2}}.$$
[8 marks]


 (iii) Briefly explain why this periodic stack is able to strongly reflect visible light but not near infrared wavelengths. [4 marks] 8. A concentrated power system can also employ a Stirling engine to convert the input heat to work. A Stirling engine is a closed cycle engine that contains a fixed mass of working gas that is cycled between a hot heat exchanger (such as the solar heat receiver) and a cold heat exchanger (usually the environment). An idealised Stirling cycle is shown below. This can be used as a starting point to analyse the behaviour of a practical Stirling engine, even though it is a poor representation of what actually goes on in the engine. The idealised Stirling cycle comprises the following steps:

 $a \rightarrow b$: isothermal expansion of a hot gas with heat input from the hot heat exchanger;

 $b \rightarrow c$: isochoric cooling of the hot gas by heat loss to an internal heat regenerator;

 $c \rightarrow d$: isothermal compression of the cold gas with heat output to the cold heat exchanger;

 $d \rightarrow a$: isochoric heating of the cold gas by heat gain from the internal heat regenerator. External heat input into the cycle occurs only over $a \rightarrow b$, while external heat output from the cycle occurs only over $c \rightarrow d$. The regenerator performs an important role to internally store heat energy lost by the gas over $b \rightarrow c$ and returns this to the gas over $d \rightarrow a$.

- (i) Sketch the temperature *vs* entropy state-variable diagram for this cycle. Indicate on the diagram the locations of a, b, c and d, and the direction of the cycle. [8 marks]
- (ii) Hence or otherwise, derive an expression for the thermal efficiency of this cycle in terms of $T_{\rm H}$, $T_{\rm C}$ and any other necessary parameters. [8 marks]
- (iii) Briefly comment on the result from (ii), and comment also on whether the isothermal processes are practical for engine cycles. [4 marks]

-----END OF PAPER ------