## PC1143 PHYSICS III AY2005/2006 Semester 2 Part I

1. By considering an appropriate Gaussian surface, it can be found that, for a charged plate,  $E_{+} = \frac{\sigma}{2\epsilon_{0}}$ , assuming negligible fringe effect. In the region between the two parallel plates,  $E = E_{+} + E_{-} = \frac{\sigma}{\epsilon_{0}}$ . Therefore,  $C = \frac{Q}{V} = \frac{\epsilon_{0}A}{d}$ .

2.  $\Phi = (E_{out} - E_{in})A = 0.56 \text{ Nm}^2 \text{ C}^{-1}$ . Since Gauss's Law states:  $\Phi = \oint E \, dA = \frac{Q}{\epsilon_0}$ , we have  $Q = 5.0 \times 10^{-12} \text{ C}$ .

3. Consider a Gaussian sphere of radius r. For  $r \leq R$ , integrating 0 to r gives  $Q = 2\pi a r^2$ . Applying Gauss's Law will result in  $E = \frac{a}{2\epsilon_0}$ . For r > R,  $Q = 2\pi a R^2$ , so  $E = \frac{aR^2}{2\epsilon_0 r^2}$ .

4a.  $X_L = 79 \Omega$ . 4b.  $X_C = 1.6 \times 10^3 \Omega$ . 4c.  $Z = 1.5 \times 10^3 \Omega$ . 4d.  $I_{max} = 0.14 \text{ A}$ . 4e.  $\phi = -84^{\circ}$ .

5. Listeners at the radio will receive the news first as it takes  $t = 2.9 \times 10^{-3}$  s to reach them, as compared to the people in the newsroom, which hears it after  $t = 8.8 \times 10^{-3}$  s.

## PC1143 PHYSICS III AY2005/2006 Semester 2 Part II

6a. Resolving forces on one of the bead parallel to the surface, one finds  $q = \sqrt{\frac{4}{\sqrt{3}}\pi\epsilon_0 mgR^2}$ .

6b. By symmetry, E = 0 in the x-direction. By consider a small element  $dr = R d\theta$  of the wire with charge dQ, one can integrate over the whole wire and find  $\lambda_0 = \frac{Q}{2R}$ . Then, by considering the force due to that element and integrating over the whole wire, one discovers that F = 0.707 N.

7a. (i)



7a. (ii) Given that, for a wire of infinite length,  $B = \frac{\mu_0 I}{2\pi r}$ . Since, along the z-axis,  $B_{net}$  is the sum of the horizontal components, by taking  $\frac{dB_{net}}{dz} = 0$ , one finds that  $B_{net}$  is maximum when  $z = \pm a$ .

7b. (i) For a Gaussian surface of radius r,  $I(r) = \frac{2}{3}b\pi r^3$ . From this, one can find that  $b = \frac{3I}{2\pi R^3}$  and thus  $B = \frac{\mu_0 I}{2\pi R^3}r_1^2$ .

7b. (ii) 
$$B = \frac{\mu_0 I}{2\pi r_2}$$
.

8a. At a distance x from the wire, where  $r \le x \le r + l$ , the electromotive force due to an element dx is  $|d\epsilon| = \frac{\mu_0 I}{2\pi x} v \, dx$ . Integrating over the length of the rod gives  $|\epsilon| = \frac{\mu_0 I}{2\pi} v \ln\left(1 + \frac{l}{r}\right)$ .

8b. By finding the kinematic expressions for speed v and distance r of the short wire, one can find that  $|\epsilon| = Blv = \frac{1.18 \times 10^{-4}t}{0.800 - 4.9t^2}$ . 0.30 seconds after the wire is released,  $|\epsilon| = 9.9 \times 10^{-5}$  V.