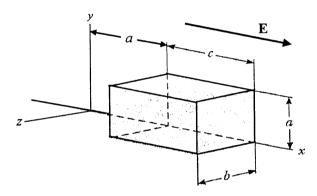
NATIONAL UNIVERSITY OF SINGAPORE

PC1143 PHYSICS III

(Semester II: AY 2005-6, April)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES


- 1. This examination paper contains **5 short** questions in Part I and **3 long** questions in Part II. It comprises **5** printed pages.
- 2. Answer ALL the questions in Part I and any TWO questions in Part II.
- 3. Answers to all questions are to be written in the answer books.
- 4. This is a CLOSED BOOK examination.
- 5. The total marks for Part I is 40 and that for Part II is 60.

PART I

This part of the examination paper contains **five (5)** short-answer questions on page 2.

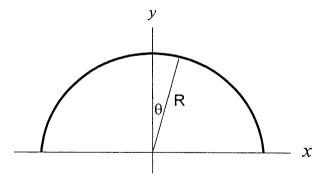
Answer **all** questions.

- Two uniform metal plates of area A are a distance d apart. One plate has a positive charge of q and the other has a negative charge of -q. Stating any assumptions you make, derive an expression for the capacitance of this system using Gauss's Law.
- 2. A closed surface with dimensions a = b = 0.40 m and c = 0.60 m is located as shown below. The electric field throughout the region is non-uniform and given by $\mathbf{E} = (3.0x + 2.0 \ x^2)$ i N/C, where x is in meters. Calculate the net electric flux leaving the closed surface. What is the net charge within the surface?

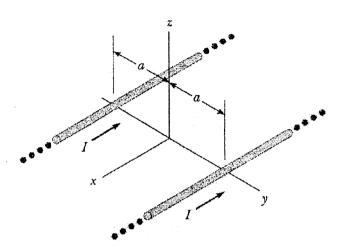
- 3. A spherically symmetric charge distribution has a charge density given by $\rho = a/r$, where a is a constant. Find the electric field as a function of r. (HINT Note that the charge within a sphere of radius R is equal to the integral of $\rho \, dV$, where r extends from 0 to R).
- 4. A series *RLC* circuit contains the following components: $R = 150 \Omega$, L = 250 mH, $C = 2.0 \mu\text{F}$, and a generator which supplies a maximum a.c. voltage of $V_{\text{max}} = 210 \text{ V}$ and operating at 50 Hz. Calculate the:
 - (a). Inductive reactance.
 - (b). Capacitative reactance.
 - (c). Impedance.
 - (d). Maximum current.
 - (e). Phase angle between the current and the generator voltage.
- 5. An important news announcement is transmitted by radio waves to people 1000 km away from the radio station who are sitting 1.0 m away from their radios. The announcement is also heard directly by people in the newsroom who are 3.0 m away from the newscaster. Who receives the news first? Explain your answer.

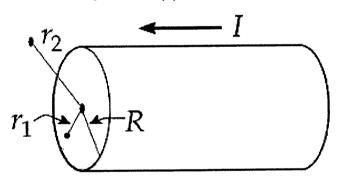

END OF PART I

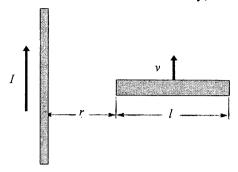
PART II


This part of the examination paper contains **three** (3) long questions on pages 3 to 5.

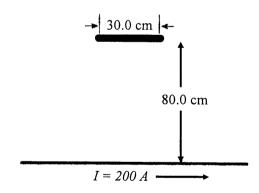
Answer **two out of three** questions.


6. (a). Two identical beads each have a mass *m* and charge *q*. When placed in a hemispherical bowl of radius *R* with frictionless, non-conducting walls, the beads move and at equilibrium they are a distance *R* apart. Find an expression for the charge on each bead.


(b). A line of positive charge is formed into a semicircle of radius R = 60.0 cm, as shown below. The charge per unit length along the semicircle is given by $\lambda = \lambda_0 \cos \theta$. The total charge on the semicircle is 12.0 μ C. Calculate the total force acting on a charge of 3.0 μ C placed at the centre of curvature (i.e. the coordinate x=0, y=0 in the figure below).


7. (a). In the sketch below, both currents are in the negative x direction. (i) Sketch the magnetic field pattern in the yz plane. (ii) At what distance d along the z axis is the magnetic field a maximum?

(b). A long, cylindrical conductor of radius R carries a current I as shown below. The current density J varies over the cross-section of the conductor according to J = br, where b is a constant and r is the radius. Find an expression for the magnetic field \mathbf{B} (i) at a distance $r_1 < R$ and (ii) at a distance $r_2 > R$, measured from the axis.


8. (a). A conducting rod of length l moves with a velocity v parallel to a long wire which carries a constant current l. The axis of the rod is maintained perpendicular to the wire with the near end a distance r away, as shown below.

Show that the magnitude of the electromotive force ε induced in the rod is:

$$\left|\varepsilon\right| = \frac{\mu_o I}{2\pi} v \ln\left(1 + \frac{l}{r}\right)$$

(b). A wire which is 30.0 cm long is held parallel to, and 80.0 cm above, a long wire which carries a constant current of 200 A and is resting on the floor, as shown below. The 30.0 cm long wire is released and falls, remaining parallel with the current-carrying wire as it falls. Assume that the falling wire accelerates at $g = 9.8 \text{ m/s}^2$, derive an equation for the electromotive force ε which is induced in it. Express your result as a function of the time t after the wire is dropped. What is the induced electromotive force 0.30 seconds after the wire is released?

(M.B)

END OF PART II

END OF PAPER

