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Question 1 (9 min 36 sec) 

A rod of length L lies perpendicular to an infinitely long, uniform line charge of charge 

density mCλ  (Figure 1). 

 

Figure 1 

The near end of the rod is a distance d above the line charge.  The rod carries a total charge Q 

uniformly distributed along its length.  Find the magnitude of the force that the infinitely long 

line charge exerts on the rod.  [8] 

Solution: 

Gauss’s law, 
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Question 2 

Consider the circuit in Figure 2, 

 

Figure 2 

Find  

(a) the currents 1I , 2I , and 3I .  [6] 

(b) the potential difference BA VV − .  [2] 

Solution: 

Kirchhoff’s junction rule, 

231132 IIIIII =−⇒=+  

Kirchhoff’s loop rule, 

1075125 3131 =+⇒=−−+− IIII  

45205 3232 =−⇒++− IIII  

It follows that 

12 21 =− II  

521 =+ II  

Therefore, 

A21 =I , A32 =I , A13 −=I  

The potential difference 

V8=− BA VV  
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Question 3 

A solenoid consists of a wire of radius a wrapped in a single layer on a paper cylinder of 

radius r.  Show that the time constant is 
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where ρ  is the resistivity.  [8] 
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Question 4 

In the R-L-C circuit of Figure 3, take Ω= 00.8R , mH0.40=L , µF0.20=C . 

 

Figure 3 

The ac source has voltage amplitude V100=V , and frequency Hz200 π=f .  Find 

(a) the impedance of the circuit.  [2] 

(b) the peak current in the circuit.  [1] 

(c) the peak potential difference across R, L, and C.  [3] 

(d) the peak potential difference across R and L combined.  [2] 

Solution: 

Impedance of the circuit, 
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Peak current in the circuit, 
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The peak potential difference across R and L combined 

V4.1622 ≈+ LR VV  
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Question 5 

The electric field of a plane traveling electromagnetic wave is given by 

( ) 0,cosmax ==ω+= zyx EEtkzEE . 

(a) State the direction of propagation.  [1] 

(b) Determine the magnitude and direction of B
r
.  Express the maximum value of B

r
 in terms 

of maxE .  [3] 

(c) Show that the average intensity – that is, the average rate of energy transport per unit area 

– of the above electromagnetic wave is given by 

0

2

max
av

2µ
=
cB

S .  [4] 

Solution: 

The direction of propagation is along the negative z-direction. 

Since 
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r

, 

we have 
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r
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Question 6(a) (24 minutes) 

A very long cylinder of radius 1R  and uniform charge density ρ  has a cylindrical hole cut 

along its entire length so that the axes of the cylinder and the hole are parallel and separated 

by a distance d (Figure 4). 

 

Figure 4 

The radius of the hole is 12 RR < .  Compute the electric field strength along the line AB in the 

following regions: 

(i) 2Rdr −≤ . 

(ii) 22 RdrRd +≤≤− . 

(iii) 12 RrRd ≤≤+ .  [8] 

Solution: 

According to Gauss’s law,  
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For 2Rdr >−
rr

, 
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For 22 RdrRd +≤≤− , the electric field inside the cavity satisfies 
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Question 6(b) 

A spherical capacitor consists of two concentric, metallic spheres, as shown in Figure 5 

 

Figure 5 

The inner sphere, of radius 1R , has charge Q+ .  The charge on the outer shell of radius 3R  

( )31 RR <  is Q− . 

(i) Suppose the spheres are separated by a vacuum, find the capacitance.  [6] 

Solution: 

Gauss’s law 
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(ii) Now, suppose between the spheres are two concentric, spherical dielectrics of constants 

1K  and 2K .  As shown in Figure 6, the radius of the boundary between the two 

dielectrics is 2R  ( )321 RRR << . 

 

Figure 6 

Compute the capacitance of the arrangement.  [6] 

Solution: 

The combination is series 
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Question 7(a) 

Consider a thin, straight wire of length 2a, carrying a constant current I, and placed along the 

x axis as shown in Figure 7. 

 

Figure 7 

Determine the magnitude of the magnetic field at point P due to this current.  Express your 

answer in terms of I, 1x , 2x , and y.  [6] 
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Question 7(b) 

Compute the magnetic field strength at point P shown in Figure 8 in terms of the radius a , 

the length b, and the current I.  [8] 

 

Figure 8 
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Question 7(c) 

A long, cylindrical conductor of radius b has a cylindrical cavity of radius a running parallel 

to its axis.  The axis of the cavity is located a distance d  from the axis of the cylinder as 

shown in Figure 9. 

 

Figure 9 

If the conductor carries a uniform current density J, compute the magnitude of the magnetic 

field strength within the cavity.  [6] 

Solution: 

According to Ampere’s law, 
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By the principle of superposition of magnetic fields, the magnetic field inside the cavity 
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Question 8(a) 

A rectangular loop of wire with dimensions l and w is released at 0=t  from rest just above a 

region in which the magnetic field is 0B  as shown in Figure 10. 

 

Figure 10 

The loop has resistance R, self-inductance L, and mass m.  Consider the loop during the time 

that it has its upper edge in the zero field region. 

(i) Show that 
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where v is the instantaneous speed of the wire loop and i is the instantaneous current in it.  

[2] 

(ii) Show that 

ilBmg
dt

dv
m 0−= .  [2] 

(iii)Assume that the self-inductance can be ignored but not the resistance, find the current i 

and speed v of the loop as functions of time.  [8] 

Solution: 

By conservation of energy, the rate of work done by the force of gravity equals the rate of 

change of the translational kinetic energy of the wire loop, the rate of change of the magnetic 

field energy, and the rate of energy dissipated in the wire loop: 
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The force of gravtiy mg and the magnetic force due to interaction between the external 

magnetic field 0B  and current i are acting on the wire loop.  Hence, v satisfies Newton’s 2
nd
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ilBmg
dt

dv
m 0−= . 

The minus sign in front of ilB0  is in accordance with Lenz’s law. 
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Question 8(b) 

Figure 11 shows a circular parallel-plate capacitor being charged. 

 

Figure 11 
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(i) Show that the Poynting vector S
r
 points eveywhere radially into the cylindrical volume.  

[2] 

(ii) Show that the rate at which energy flows into this volume, calculated by integrating the 

Poynting vector over the cylindrical boundary of this volume, is equal to the rate at which 

the stored electrostatic energy increases; that is 
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Ignore fringing of E
r
. 
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According to Ampere’s law, 
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