PC1143 2011/2012 Exam Solutions

Question 1

a) Assumption: shells are conductors.

Notes: the system given is a capacitor. Make use of spherical symmetry.
Energy density, $u=\frac{1}{2} \varepsilon_{0} E^{2}$. in this case E means electric field strength.
To find E, we use gauss law.
$\int E \cdot d \vec{A}=\frac{q_{\text {encl }}}{\epsilon_{0}}$
$E\left(4 \pi r^{2}\right)=\frac{Q}{\varepsilon_{0}}$
$E=\frac{1}{4 \pi r^{2}} \frac{Q}{\varepsilon_{0}}$
$u=\frac{1}{2} \varepsilon_{0} \frac{1}{4 \pi r^{2}} \frac{Q^{2}}{\varepsilon_{0}^{2}}=\frac{1}{2} \frac{Q^{2}}{\varepsilon_{0} 4^{2} \pi^{2} r^{4}}$
$U_{0}=\int u d V$
where V represents volume.
$U_{0}=\int \frac{1}{2} \frac{Q^{2}}{4^{2} \pi^{2} \varepsilon_{0} r^{4}} 4 \pi r^{2} d r=\frac{1}{2} \frac{Q^{2}}{4 \pi \varepsilon_{0}} \int \frac{1}{r^{2}} d r=\frac{1}{2} \frac{Q^{2}}{4 \pi \varepsilon_{0}}\left[-\frac{1}{r}\right]_{a}^{b}=\frac{1}{8} \frac{Q^{2}}{\pi \varepsilon_{0}}\left(-\frac{1}{b}+\frac{1}{a}\right)$
Remember to include upper and lower limit when doing integration!
b) $U=\frac{1}{8} \frac{Q^{2}}{\pi k \varepsilon_{0}}\left(-\frac{1}{b}+\frac{1}{a}\right) \cdot k$ represents dielectric constant.
c) U is smaller than U_{0}, since there are induced charges on the dielectric surface and work is done by system to induce these charges, leading to a decrease in stored energy.

Question 2

a) $F_{B}=\frac{m v^{2}}{r}$
$B q v=\frac{m v^{2}}{r}$
$B\left(1.60 \times 10^{-19}\right)=\frac{9.11 \times 10^{-31} \times 0.01 c}{10^{-8} \times 10^{-2}}$
$B=1.71 \times 10^{5} \mathrm{~T}$
b) i) Use $B=\frac{\mu_{0}}{2 \pi r}$. Using the right hand grip rule, the magnetic fields due to the wires carrying current I cancel each other out. Thus, we only need to consider magnetic field produced by wire carrying current $2 I$.
$r=\sqrt{\frac{d^{2}}{4}+\frac{d^{2}}{4}}=\frac{d}{\sqrt{2}}$
$B=\frac{\mu_{0} 2 I}{2 \pi r}=\frac{\mu_{0} 2 I}{2 \pi \frac{d}{\sqrt{2}}}=\frac{\mu_{0} I \sqrt{2}}{\pi d}$
b) ii)

Arrows defining positive x and positive y .
$B_{2 I}=\frac{\mu_{0} 2 I}{2 \pi r}$
$r=\sqrt{d^{2}+d^{2}}=\sqrt{2} d$
$B_{2 I}=\frac{\mu_{0} 2 I}{2 \pi \sqrt{2} d}$
$B_{2 I x}=-\frac{\mu_{0} 2 I}{2 \pi \sqrt{2} d} \sin 45^{\circ}=-\frac{\mu_{0} I}{\pi \sqrt{2} d \sqrt{2}}=-\frac{\mu_{0} I}{2 \pi d}$
$B_{2 I y}=-\frac{\mu_{0} 2 I}{2 \pi \sqrt{2} d} \cos 45^{\circ}=-\frac{\mu_{0} I}{2 \pi d}$
$B_{I x}=\frac{\mu_{0} I}{2 \pi d}$
$B_{I y}=\frac{\mu_{0} I}{2 \pi d}$
$B_{x}=\frac{\mu_{0} I}{2 \pi d}-\frac{\mu_{0} I}{2 \pi d}=0$
$B_{y}=\frac{\mu_{0} I}{2 \pi d}-\frac{\mu_{0} I}{2 \pi d}=0$
So, $B=0$.

Question 3

a) At steady state, before the switch is flipped:

By loop rule, $-i R_{2}-L \frac{d i}{d t}+\mathcal{E}_{0}=0$
At steady state, $\frac{d i}{d t}=0$
$\mathcal{E}_{0}=i R_{2}$
$i(t=0)=\frac{\varepsilon_{0}}{R_{2}}$
After the switch is flipped from a to b :
By loop rule, $-R_{1} i-L \frac{d i}{d t}=0$
$\frac{d i}{d t}=-\frac{R_{1}}{L i}$
$i(t)=i(t=0) e^{-\frac{R_{1} t}{L}}=\frac{\mathcal{E}_{0}}{R_{2}} e^{-\frac{R_{1} t}{L}}$

Must memorise solution to above differential equation!
b) Power dissipated in resistor $=i^{2} R_{1}=\frac{\varepsilon_{0}^{2}}{R_{2}^{2}} e^{-\frac{2 R_{1}}{L} t} R_{1}$

Total energy dissipated $=\int P d t=\frac{\varepsilon_{0}^{2}}{R_{2}^{2}} R_{1} \int e^{-\frac{2 R_{1}}{L} t} d t=\frac{\varepsilon_{0}^{2}}{R_{2}} R_{1} e^{-\frac{2 R_{1}}{L} t}\left(-\frac{L}{2 R_{2}}\right)$
Integrate from $t=0$ to $t=\infty$, total energy dissipated,
$\frac{\varepsilon_{0}^{2}}{R_{2}^{2}} \frac{L}{2 R_{1}} R_{1}=\frac{1}{2} L \frac{\varepsilon_{0}^{2}}{R_{2}^{2}}=\frac{1}{2} L[i(t=0)]^{2}=$ Energy stored in inductor at $t=0$. (shown)

Question 4

a) For RLC is parallel, i_{R} is the same phase as the source voltage. $v_{R}=v_{L}=v_{C}=v_{\text {source }}$.
$i_{R}=I_{R} \sin (\omega t)=\frac{V}{R} \sin (\omega t)$
$i_{L} \operatorname{lag} i_{R}$ by $\frac{\pi}{2}$ radian (Note: must know this for exam!)
$i_{L}=-\frac{V}{L \omega} \cos (\omega t)$
i_{C} lead i_{R} by $\frac{\pi}{2}$ radian (Note: must know this for exam!)
$i_{C}=I_{C} \cos (\omega t)=\frac{V}{X_{C}} \cos (\omega t)=C V \omega \cos (\omega t)$
b) Power dissipated in circuit $=$ Power dissipated in resistor $=i_{R}^{2} R=\frac{V^{2}}{R^{2}} \sin ^{2}(\omega t) R=\frac{V^{2}}{R} \sin ^{2}(\omega t)$
c) Energy stored in circuit $=$ Energy in capacitor + Energy in inductor

$$
\begin{aligned}
& =\frac{1}{2} C V^{2}+\frac{1}{2} L i_{L}^{2} \\
& =\frac{1}{2} C V^{2} \sin ^{2}(\omega t)+\frac{1}{2} L \frac{V^{2}}{L^{2} \omega^{2}} \cos ^{2}(\omega t) \\
& =\frac{1}{2} C V^{2} \sin ^{2}(\omega t)+\frac{1}{2} \frac{V^{2}}{L \omega^{2}} \cos ^{2}(\omega t)
\end{aligned}
$$

Question 5

a) Concept: Direction of propagation is same as direction of $E \times B$.

Direction of propagation is $-\hat{\imath}$ direction (given) and E is in $\hat{\jmath}$ direction, since it is given that E is perpendicular to \hat{k} direction and it must also be perpendicular to the $-\hat{\imath}$ direction.
Note: $\hat{\imath}, \hat{\jmath}$ and \hat{k} in solution to this question refer to unit vectors.
$-\hat{\imath}=\hat{\jmath} \times-\hat{k}$
$\vec{E}(x, t)=E_{\text {max }} \cos (k x+\omega t) \hat{\jmath}=c B_{\text {max }} \cos (k x+\omega t) \hat{\jmath}$
$\vec{B}(x, t)=-B_{\text {max }} \cos (k x+\omega t) \hat{k}$
Find ω using $\omega=2 \pi f, f$ is given in the question to be 100 MHz . Find k using $k=\frac{\omega}{c}$.
b) $S=\frac{1}{\mu_{0}} E \times B$
$S=1 / \mu_{0} E_{\max } \cos (k x+\omega t) \hat{\jmath} \times\left(-B_{\max } \cos (k x+\omega t)\right) \hat{k}=-\frac{1}{\mu_{0}} E_{\max } B_{\max } \cos ^{2}(k x+\omega t) \hat{\imath}$
c) $I=S_{a v}=\frac{1}{2 \mu_{0}} E_{\max } B_{\max }=\frac{1}{2 \mu_{0}} c B_{\max } B_{\max }$

Given $I=1000 \mathrm{~W} / \mathrm{m}^{2}$, and given μ_{0} and c, we can solve for $B_{\max }$.
Then, find $E_{\max }$ with formula $E_{\max }=c B_{\max }$.

Question 6

a) i) In this solution, $\hat{\imath}$ and \hat{k} refer to unit vectors.
$E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} \hat{r}$
$r=x \hat{\imath}-z \hat{k}$
$r^{2}=x^{2}+z^{2}$
Unit vector, $r=\frac{x \hat{\imath}-z \hat{k}}{\sqrt{x^{2}+z^{2}}}$
$d E=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{x^{2}+z^{2}} \frac{x \hat{\imath}-z \hat{k}}{\sqrt{x^{2}+z^{2}}}$
$d q=\frac{d z}{2 l} Q$
$d E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{2 l} \frac{x \hat{\imath}-z \hat{k}}{\left(x^{2}+z^{2}\right)^{\frac{3}{2}}} d z$
$E_{x}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{2 l} \int_{-l}^{l} \frac{x}{\left(x^{2}+z^{2}\right)^{\frac{3}{2}}} d z$
$E_{x}=\frac{Q x}{8 \pi \varepsilon_{0} l}\left(\frac{1}{x^{2}} \frac{z}{\sqrt{x^{2}+z^{2}}}\right)$
$E_{x}=\frac{Q x}{8 \pi \varepsilon_{0} l} \frac{1}{x^{2}} \frac{2 l}{\sqrt{x^{2}+l^{2}}}=\frac{2 Q}{8 \pi \varepsilon_{0} x \sqrt{x^{2}+l^{2}}}$
Because charge distribution is symmetrical about x axis, net $E_{z}=0$.
a) ii) When line of charge is infinitely long, $l \gg x$,
$E_{x}=\frac{Q}{4 \pi \varepsilon_{0} x \sqrt{x^{2}+l^{2}}}=\frac{Q}{4 \pi \varepsilon_{0} x \sqrt{l^{2}}\left(1+\sqrt{\left(\frac{x}{l}\right)^{2}}\right)} \approx \frac{Q}{4 \pi \varepsilon_{0} x l}=\frac{\lambda}{4 \pi \varepsilon_{0} x}$
where $\lambda=\frac{Q}{l}$.
b) i) $C=\frac{Q}{V}$. Consider Gauss' Law, $\oint \vec{E} \cdot d \vec{A}=\frac{Q_{e n c}}{\varepsilon_{0}}$,
$E(2 \pi r L)=\frac{Q}{\varepsilon_{0}}$, where Q is the charge on one cylinder.
$E=\frac{1}{2 \pi r L} \frac{Q}{\varepsilon_{0}}$
Since $E=-\frac{d V}{d r}, d V=-E d r$,
$d V=-\frac{Q}{2 \pi r L \varepsilon_{0}} d r$
$\int d V=-\frac{Q}{2 \pi L \varepsilon_{0}} \int \frac{1}{r} d r$
Take integration limits from $r=a$ to $r=b$,
$V_{a}-V_{b}=\frac{Q}{2 \pi L \varepsilon_{0}} \ln \left(\frac{b}{a}\right)$
$C=\frac{Q}{V}=\frac{Q}{\frac{Q}{2 \pi L \varepsilon_{0}}} \ln \left(\frac{b}{a}\right)=2 \pi L \varepsilon_{0} \ln \left(\frac{b}{a}\right)$
b) ii) Given $b-a \ll a$. Consider the very thin cylindrical strip, by Gauss' Law, $\oint \vec{E} \cdot d \vec{A}=\frac{Q_{\text {enc }}}{\varepsilon_{0}}$,
$E(2 \pi a L)=\frac{Q}{\varepsilon_{0}}$
$\frac{d V}{d r}(2 \pi a L)=\frac{Q}{\varepsilon_{0}}$
$d V=\frac{Q}{2 \pi \varepsilon_{0} a L} d r$
$V=\frac{Q}{2 \varepsilon_{0} \pi a L}(b-a)$
$C=\frac{Q}{V}=\frac{Q}{\frac{Q}{2 \varepsilon_{0} \pi a L}}(b-a)=2 \varepsilon_{0} \pi a L(b-a)$
But I don't know how to comment on my answer. =(

Question 7

a) i) Making use of Biot-Savart's Law:

$$
\begin{aligned}
& d B=\frac{\mu_{0}}{4 \pi} \frac{1}{r^{2}} d l \times \hat{r} \\
& \text { Let } \hat{r}_{2}=a \cos \theta \hat{\imath}+a \sin \theta \hat{\jmath} \\
& d l=-a \sin \theta d \theta \hat{\imath}+a \cos \theta d \theta \hat{\jmath} \\
& \hat{r}_{1}=z \hat{k} \\
& \vec{r}=\vec{r}_{1}-\vec{r}_{2}=-a \cos \theta \hat{\imath}-a \sin \theta \hat{\jmath}+z \hat{k} \\
& r^{2}=a^{2}+z^{2} \\
& \text { Unit vector or } \vec{r}, r=\frac{1}{\sqrt{a^{2}+z^{2}}}(-a \cos \theta \hat{\imath}-a \sin \theta \hat{\jmath}+z \hat{k}) \\
& d B=\frac{\mu_{0}}{4 \pi} \frac{I}{a^{2}+z^{2}}(-a \sin \theta d \theta \hat{\imath}+a \cos \theta d \theta \hat{\jmath}) \times \frac{-a \cos \theta \hat{\imath}-a \sin \theta \hat{\jmath}+z \hat{k}}{\sqrt{a^{2}+z^{2}}} \\
& \quad=\frac{\mu_{0}}{4 \pi} \frac{I}{\left(a^{2}+z^{2}\right)^{\frac{3}{2}}}\left(a^{2} \sin ^{2} \theta d \theta \hat{k}+a z \sin \theta d \theta \hat{\jmath}+a^{2} \cos ^{2} \theta d \theta \hat{k}+a z \cos \theta d \theta \hat{\imath}\right) \\
& \quad=\frac{\mu_{0}}{4 \pi} \frac{I}{\left(a^{2}+z^{2}\right)^{\frac{3}{2}}}\left(a^{2} d \theta \hat{k}+a z \sin \theta d \theta \hat{\jmath}+a z \cos \theta d \theta \hat{\imath}\right) \\
& B=\int_{0}^{2 \pi} \frac{d B=\frac{\mu_{0}}{4 \pi} \frac{I}{\left(a^{2}+z^{2}\right)^{\frac{3}{2}}} \int_{0}^{2 \pi} a^{2} d \theta \hat{k}=\frac{\mu_{0}}{4 \pi} \frac{I}{\left(a^{2}+z^{2}\right)^{\frac{3}{2}}} 2 \pi \hat{k}=\frac{1}{2} \frac{\mu_{0} I}{\left(a^{2}+z^{2}\right)^{\frac{3}{2}}} \hat{k}}{}
\end{aligned}
$$

a) ii) $\int_{-L}^{L} B_{Z} d z=\frac{\mu_{0} I a^{2}}{2} \int_{-L}^{L} \frac{1}{\left(a^{2}+z^{2}\right)^{\frac{3}{2}}} d z=\frac{\mu_{0} I a^{2}}{2} \frac{1}{a^{2}}\left[\frac{z}{\sqrt{a^{2}+z^{2}}}\right]_{-L}^{L}$
$\int_{-L}^{L} B_{z} d z=\mu_{0} \frac{1}{2} \frac{2 L}{\sqrt{a^{2}+L^{2}}}=\frac{\mu_{0} I L}{\sqrt{a^{2}+L^{2}}}$
For L approaching ∞ :
$\frac{\mu_{0} I L}{\sqrt{a^{2}+L^{2}}}=\frac{\mu_{0} I L}{\sqrt{L^{2}}} \frac{1}{\sqrt{1+\left(\frac{a}{L}\right)^{2}}} \approx \mu_{0} I$
b) $B=\frac{\mu_{0} I n}{2} a^{2} \int_{z-\frac{l}{2}}^{z+\frac{l}{2}} \frac{1}{\left(a^{2}+m^{2}\right)^{\frac{3}{2}}} d m=\frac{\mu_{0} I n}{2} a^{2} \frac{1}{a^{2}}\left[\frac{m}{\sqrt{a^{2}+m^{2}}}\right]_{z-\frac{l}{2}}^{z+\frac{l}{2}}=\frac{\mu_{0} I n}{2}\left[\frac{z+\frac{l}{2}}{\sqrt{a^{2}+\left(z+\frac{l}{2}\right)^{2}}}-\frac{z-\frac{l}{2}}{\sqrt{a^{2}+\left(z-\frac{l}{2}\right)^{2}}}\right] \hat{k}$
c) i) $\hat{\imath}$ and $\hat{\jmath}$ represent unit vectors. At point Q,
$\vec{r}_{2}=y \hat{\jmath}$
$\vec{r}_{1}=a \cos \theta \hat{\imath}+a \sin \theta \hat{\jmath}$
$d \vec{l}=-a \sin \theta d \theta \hat{\imath}+a \cos \theta d \theta \hat{\jmath}$
Using Biot-Savart's Law,
$d B=\frac{\mu_{0}}{4 \pi} \frac{1}{r^{2}} d l \times \hat{r}$
$\vec{r}=\vec{r}_{2}-\vec{r}_{1}=-a \cos \theta \hat{\imath}+(y-a \sin \theta) \hat{\jmath}$
For point Q far away from loop,
$\vec{r}=-a \cos \theta \hat{\imath}+y \hat{\jmath}$
$r=\sqrt{a^{2} \cos ^{2} \theta+y^{2}}=y$, since point on y axis is very far away from loop.
$\hat{r}=\frac{1}{y}(-a \cos \theta \hat{\imath}+y \hat{\jmath})$
$d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I}{y^{2}}(-a \sin \theta d \theta \hat{\imath}+a \cos \theta d \theta \hat{\jmath}) \times \frac{1}{y}(-a \cos \theta \hat{\imath}+y \hat{\jmath})$

$$
=\frac{\mu_{0}}{4 \pi} \frac{I}{y^{3}}\left(-a y \sin \theta d \theta \hat{k}+a^{2} \cos ^{2} \theta d \theta \hat{k}\right)
$$

$B=\frac{\mu_{0}}{4 \pi} \frac{I}{y^{3}} \int_{0}^{2 \pi}-a y \sin \theta+a^{2} \cos ^{2} \theta d \theta$

$$
=\frac{\mu_{0}}{4 \pi} \frac{I a^{2}}{y^{3}} \int_{0}^{2 \pi} \cos ^{2} \theta d \theta
$$

$$
=\frac{\mu_{0}}{4 \pi} \frac{I a^{2}}{y^{3}} \int_{0}^{2 \pi} \frac{\cos 2 \theta+1}{2} d \theta
$$

$$
=\frac{\mu_{0}}{4} \frac{I a^{2}}{y^{3}}
$$

For point very far away from loop, y is very large. $B=0$.
c) ii) Ampere's Law:
$\int \vec{B} \cdot d \vec{l}=\mu_{0} I_{e n c}$
Consider a closed loop from $z=-\infty$ to ∞, from $y=0$ to point Q.

Consider $\vec{B} \cdot d \vec{l}$ over this closed loop,
$\int_{-\infty}^{\infty} B_{z} d z=\mu_{0} I$
This is because the system is symmetric about y axis, so $\vec{B} \cdot d \vec{l}$ on line above y axis cancels out with $\vec{B} \cdot d \vec{l}$ on line below y axis, and $\vec{B} \cdot d \vec{l}$ on line cutting through Q is 0 because we approximate $B=0$ at any point along this line.

Question 8

a) i) By Faraday's Law,
$E=-\frac{d \Phi}{d t}$
In this case, $\Phi=\frac{B_{0}}{\sqrt{2}}\left(1-e^{-\lambda t}\right) \pi a^{2}$
Note: consider B in \hat{k} direction only, because B in $\hat{\jmath}$ direction doesn't contribute to flux.
$E=-\frac{d}{d t}\left[\frac{B_{0}}{\sqrt{2}}\left(1-e^{-\lambda t}\right) \pi a^{2}\right]=-\frac{\pi a^{2} B_{0}}{\sqrt{2}}\left[-e^{-\lambda t}(-\lambda)\right]=-\frac{\pi a^{2} B_{0} \lambda e^{-\lambda t}}{\sqrt{2}}$
$R_{e f f}=R_{1}+R_{2}$
$I(t)=\frac{E}{R_{e f f}}=\frac{\pi a^{2} B_{0}}{\sqrt{2}} \frac{\lambda e^{-\lambda t}}{R_{1}+R^{2}}$
a) ii) Draw a graph, same shape as $y=e^{-x}$ graph. Must say that asymptote is at $I(t)=0$ and $I(t)$ intercept is $\frac{\pi a^{2} B_{0}}{\sqrt{2}} \frac{\lambda}{R_{1}+R_{2}}$.
a) iii) $V_{1}=I R_{1}=\frac{\pi a^{2} B_{0}}{\sqrt{2}} e^{-\lambda t} \frac{\lambda R_{1}}{R_{1}+R_{2}}$
$V_{2}=I R_{2}=\frac{\pi a^{2} B_{0}}{\sqrt{2}} e^{-\lambda t} \frac{\lambda R_{2}}{R_{1}+R_{2}}$
a) iv) The emf induced as a result of changing magnetic flux through wire loop is non conservative and depends on path taken. Even if $R_{1}=R_{2}$, with respect to R_{1}, current flows from q to p, q has higher potential. With respect to R_{2}, current flows from p to q, p has higher potential. So the readings on both voltmeters will be different (have different sign).
b) Use the definition: flux through triangle loop $=$ mutual inductance \times current through straight wire Consider similar triangles:

From trigonometry ratios, $\tan 60^{\circ}=\sqrt{3}=\frac{y}{x}$
$x=\frac{y}{\sqrt{3}}$

Consider many horizontal rectangular strips,
$d A=2 x d y=2 \frac{y}{\sqrt{3}} d y$
B cutting through the rectangular strip, $B=\frac{\mu_{0} I}{2 \pi[b+(a-y)]}$.
Flux through the triangle,

$$
\begin{aligned}
\int \vec{B} \cdot d \vec{A} & =\int \frac{\mu_{0} I}{2 \pi[b+(a-y)]} 2 \frac{y}{\sqrt{3}} d y \\
& =\frac{\mu_{0} I}{\pi \sqrt{3}} \int_{0}^{a} \frac{y}{b+a-y} d y \\
& =\frac{\mu_{0} I}{\pi \sqrt{3}} \int_{0}^{a} \frac{y-b-a+b+a}{b+a-y} d y \\
& =\frac{\mu_{0} I}{\pi \sqrt{3}} \int_{0}^{a} \frac{b+a}{b+a-y}-1 d y \\
& =\frac{\mu_{0} I}{\pi \sqrt{3}}[-(b+a) \ln (b+a-y)-y]_{0}^{a} \\
& =\frac{\mu_{0} I}{\pi \sqrt{3}}\left[-a+(b+a) \ln \left(\frac{b+a}{b}\right)\right]
\end{aligned}
$$

Using the definition: flux through triangle loop $=$ mutual inductance \times current through straight wire
$\frac{\mu_{0} I}{\pi \sqrt{3}}\left[-a+(b+a) \ln \left(\frac{b+a}{b}\right)\right]=M I$
$M=\frac{\mu_{0}}{\pi \sqrt{3}}\left[-a+(b+a) \ln \left(\frac{b+a}{b}\right)\right]$

Answers provided by Formatted and edited by
: Woo Jia Qlan
: John Soo

