NATIONAL UNIVERSITY OF SINGAPORE

PC1143 PHYSICS III

(Semester II: AY 2012-13)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains **5 short** questions in Part I and **3 long** questions in Part II. It comprises **5** printed pages.
- 2. Answer **ALL** the questions.
- 3. Answers to the questions are to be written in the answer books.
- 4. This is a CLOSED BOOK examination.
- 5. The total marks for Part I is 40 and that for Part II is 60.
- 6. A table of constants and mathematical formulae is attached.

PART I

This part of the examination paper contains **five** short-answer questions on page 2. Answer <u>ALL</u> questions.

Question 1

A spherical capacitor C has an inner sphere of radius R_1 with a charge of +Q and an outer concentric spherical shell of radius R_2 with a charge of -Q.

- (a) Find the energy density associated with the electric field at any point in the space between the two conductors. [4]
- (b) Hence, or otherwise, find the capacitance of *C*.

[4]

Question 2

Of the total energy drawn from a battery of emf E in *charging* a capacitor of capacitance C via a resistor of resistance R, show that half ends up dissipated in the resistor. [8]

Question 3

A long straight wire and a small rectangular wire loop lie in the same plane, Figure 1.

Figure 1

Determine the *mutual inductance* in terms of l_1 , l_2 , and w. Assume that the wire is very long compared to l_1 , l_2 , and w, and that the rest of its circuit is very far away compared to l_1 , l_2 , and w.

Question 4

A series circuit consists of a 100 Ω resistor, a 36 mH inductor, and a 4.0 nF capacitor. The circuit is connected to an ac source with constant voltage amplitude 20 V, and whose frequency can be varied over a wide range.

- (a) Find the resonance frequency f_0 of the circuit. [2]
- (b) At *resonance*, what is the rms current in the circuit and what are the rms voltages across the inductor and capacitor? [6]

Question 5

The electric field of an electromagnetic wave oscillates in the z-direction and the Poynting vector is given by

$$\mathbf{S}(x,t) = (100 \text{ W/m}^2) \sin^2[10x - (3.0 \times 10^9)t] \hat{\mathbf{i}},$$

where x is in meters and t is in seconds.

- (a) What is the direction of propagation of the wave? [1]
- (b) Find its wavelength and frequency. [2]
- (c) Find the electric and magnetic fields. [5]

PART II

This part of the examination paper contains **three** long questions on pages 3 to 5. Answer <u>ALL</u> questions.

Question 6(a)

An electric dipole is *centred* at the origin O, with electric dipole moment \mathbf{p} in the direction of the +x-axis (Figure 2).

Derive an approximate expression for the electric field at a point P on the x-axis for which x is much larger than d. Express your answer in terms of \mathbf{p} .

Question 6(b)

A rod of length 2L lies on the x-axis, centred on the origin O. It carries a charge per unit length given by

$$\lambda(x) = \lambda_0 \frac{x}{L},$$

where λ_0 is a constant.

- (i) Find an expression for the electric potential at all points x > L on the x-axis. [5]
- (ii) Hence, find an expression for the electric field at all points x > L on the x-axis. [3]
- (iii)Determine the electric dipole moment **p** of the rod. Explain very briefly how you obtain your answer. [4]

Question 7(a)

Figure 3 shows a conducting loop lying in the *xy*-plane.

The loop is formed from *concentric* semicircles of radii a and b. If it carries a current I as shown, find the magnetic field at point P, the *common centre*. [8]

Question 7(b)

Two *concentric*, *coplanar* circular current loops have radii a and 2a. If the magnetic field is zero at their *common centre*, how does the current I_{outer} in the outer loop compare with that I_{inner} in the inner loop? Explain briefly how you arrive at your answer. [4]

Question 7(c)

A solid conducting wire of radius R runs parallel to the z-axis and carries a current density given by

$$\mathbf{J}(r) = J_0 \left(1 - \frac{r}{R} \right) \hat{\mathbf{k}},$$

where J_0 is a constant and r the radial distance from the wire axis. Find expressions for

(i) the total current in the wire. [3]

(ii) the magnetic field strength for
$$r < R$$
. [3]

(iii) the magnetic field strength for r > R. [2]

Question 8(a)

A square conducting loop of side l and resistance R lies in the xy-plane with its sides parallel to the x- and y-axes. It is being moved with a constant velocity $\mathbf{v} = v \,\hat{\mathbf{i}}$. For x < 0, there is a uniform magnetic field

$$\mathbf{B} = B_0 \hat{\mathbf{k}} .$$

For x > 0, the field is nonuniform and is given by

$$\mathbf{B} = (B_0 + bx)\,\hat{\mathbf{k}}\,,$$

where B_0 and b are positive constants. At time t = 0 the trailing side of the loop crosses the y-axis, so the loop is entirely in the nonuniform field region.

- (i) Find an expression for the loop current for times $t \ge 0$.
- (ii) Which way does the current flow, clockwise or anti-clockwise, as viewed from the positive z-axis?

Question 8(b)

Consider a pair of vertical long conducting rods, a distance l apart. They are connected at the bottom by a resistance R. A conducting bar of mass m runs horizontally between the rods and can slide freely down them while maintaining electrical contact. The whole apparatus is in a uniform magnetic field \mathbf{B} pointing horizontally and perpendicular to the bar.

- (i) Assuming air resistance is negligible, show that if the bar is released from rest at time t = 0 its speed at times t > 0 is given by $v(t) = v_0[1 \exp(-\alpha t)]$. [6]
- (ii) Hence, or otherwise, find v_0 and α .

Question 8(c)

A conducting disk with radius a, thickness h, and resistivity ρ is inside a solenoid of circular cross section. The disk axis coincides with the solenoid axis. The magnetic field in the solenoid at time t is given by B = bt, with b a constant. Find expressions for

- (i) the current density in the disk as a function of the distance r from the disk centre. [2]
- (ii) the power dissipation in the entire disk. [4]

YY

[2]

END OF PART II END OF PAPER

A. Fundamental Physical Constants

Speed of light, $c \approx 2.998 \times 10^8 \text{ m/s}$ Magnitude of charge of electron, $e \approx 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_e \approx 9.109 \times 10^{-31} \text{ kg}$ Mass of proton, $m_p \approx 1.673 \times 10^{-27} \text{ kg}$ Permittivity of free space, $\epsilon_0 \approx 8.854 \times 10^{-12} \text{ C}^2 \cdot \text{N}^{-1} \cdot \text{m}^{-2}$ Permeability of free space, $\mu_0 = 4\pi \times 10^{-7} \text{ Wb} \cdot \text{A}^{-1} \cdot \text{m}^{-1}$

Acceleration due to gravity, $g \approx 9.807 \text{ m/s}^{-2}$

B. Solutions to a Quadratic Equation

$$ax^2 + bx + c = 0,$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

C. Derivatives

$$\frac{d}{dx}x^n = nx^{n-1}$$

$$\frac{d}{dx}\sin ax = a\cos ax$$

$$\frac{d}{dx}\cos ax = -a\sin ax$$

$$\frac{d}{dx}e^{ax} = ae^{ax}$$

$$\frac{d}{dx}\ln ax = \frac{a}{x}$$

$$\frac{d}{dx}\ln f(x) = \frac{1}{f(x)}\frac{d}{dx}f(x)$$

$$\frac{d}{dx}\frac{P(x)}{Q(x)} = \frac{1}{[Q(x)]^2}\left[Q(x)\frac{d}{dx}P(x) - P(x)\frac{d}{dx}Q(x)\right]$$

D. Power series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \cdots$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \cdots$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

E. Integrals

$$\int x^n dx = \frac{x^{n+1}}{n+1} \ (n \neq -1)$$

$$\int \frac{dx}{x} = \ln x$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax$$

$$\int \cos ax dx = \frac{1}{a} \sin ax$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}$$

$$\int \frac{x dx}{\sqrt{a^2 + x^2}} = \sqrt{a^2 + x^2}$$

$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln(x + \sqrt{a^2 + x^2})$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}$$

$$\int \frac{dx}{(a^2 + x^2)^{3/2}} = \frac{1}{a^2} \frac{x}{\sqrt{a^2 + x^2}}$$

$$\int \frac{x dx}{(a^2 + x^2)^{3/2}} = -\frac{1}{\sqrt{a^2 + x^2}}$$

$$\int \frac{dx}{(a^2 + x^2)^{3/2}} = \ln \frac{1}{(a - x) + \sqrt{(a - x)^2 + b^2}}$$

$$\int \frac{(x - a) dx}{[(x - a)^2 + b^2]^{3/2}} = -\frac{1}{\sqrt{(x - a)^2 + b^2}}$$

$$\int \frac{dx}{[(x - a)^2 + b^2]^{3/2}} = \frac{x - a}{b^2 \sqrt{(x - a)^2 + b^2}}$$