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PC1143 AY 2013/14

1. Consider an isolated spherical conductor S of radius R carrying a net charge Q.

(a) Calculate the total work W needed to assemble this charge Q by bringing infinitesimal
charges dq from infinity and depositing them on the surface of S. [2]

Approach

We first note that the potential at the surface of a uniformly charged sphere with charge

q of radius R is given by V =
(

1
4πε0

)
q
R

.

As such the infinitesimal work that is needed to bring infinitesimal charges dq from
infinity to the surface of the sphere is:

dW = V dq =

(
1

4πε0

)
q

R
dq

W =

∫ Q

0

qdq

4πε0R

=

(
1

4πε0

)
Q2

2R

(b) Calculate the electrostatic energy UE stored in the electric field ~E outside the spherical
conductor. [2]

Approach

Firstly, use Gauss’ law to determine the electric field at all points in space. Using
Gauss’ Law, we obtain:

~E(~r) =

{
0 |r| < R
Q

4πε0r2
|r| ≥ R

We then integrate the electric field energy density (1
2
ε0E

2) to determine the electrostatic
energy stored in the electric field. Note that we can exploit the spherical symmetry of
the system and thus replace dV with 4πr2dr.

UE =
ε0
2

∫ ∞
0

[
Q

4πε0r2

]2

4πr2dr

=

(
1

4πε0

)
Q2

2R
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(c) Is UE less than, equal to, or greater than W? Explain very briefly the physical sig-
nificance of your answer. [2]

Approach

UE is exactly equal to W . This shouldn’t come as a surprise as the work done by
the external agent in assembling this charge configuration is stored in the electric field
produced by this charge configuration.

(d) Hence, or otherwise, find the capacitance C of the spherical conductor. [2]

Approach

Recall that the energy stored in the capacitor carrying a charge Q is given by U = Q2

2C
.

As such, to find the capacitance of this system, we equate this expression of energy
with the total energy stored in the electric field, UE (that we obtained in (b)).

Q2

2C
= UE =

(
1

4πε0

)
Q2

2R

C = 4πε0R
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PC1143 AY 2013/14

2. A toroidal coil of square cross section has inner radius R and side l as shown in Figure 1.
The coil consists of N turns, and carries a current I.

Figure 1

Do NOT assume that magnetic field is uniform across a cross-section

(a) What is the total magnetic energy stored in the toroid? [4]

Approach

We use Ampere’s law to determine the magnetic field strength at a point located a
distance r from the center of the toroid.∮

~B · d~l = µ0Iencl

~B(~r) =
µ0NI

2πr
φ̂

Recall that the magnetic field energy density is defined as

uB =
B2

2µ0

As such, to obtain the total magnetic energy stored in the toroid, we integrate the
magnetic field energy density over the entire toroidal volume. Note that the infinitesimal
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volume we will use for the integration is dV = 2πrldr.

UB =
1

2µ0

∫ l+R

R

(
µ0NI

2πr

)2

2πrldr

=
µ0N

2I2l

4π
ln

(
1 +

l

R

)
(b) Hence, or otherwise, determine the inductance L of the toroid. [2]

Approach

To find determine the inductance of the toroid, we equate the expression for the total
magnetic energy to the energy stored in the inductor, U = 1

2
LI2.

1

2
LI2 =

µ0N
2I2l

4π
ln

(
1 +

l

R

)
L =

µ0N
2l

2π
ln

(
1 +

l

R

)
(c) Show that L reduces to the inductance of a long solenoid when R >> l. [2]

Approach

Recall that that the magnetic field inside the long solenoid is uniform. Its magnitude
(obtained from Ampere’s Law) is B = µ0

N
l′
i where N is the total number of turns, l′ is

the total length of the solenoid and i is the magnitude of the current passing through
the coils of the solenoid.

The inductance of the long solenoid, with cross-sectional area A is given by:

1

2
LI2 = UB =

(
µ0

N
l′
i
)2

2µ0

Al′

L =
µ0N

2A

l′

We compare this expression with the one we obtained in (b). In the limit where R >> l,
The Taylor expansion yields (to first order):

ln

(
1 +

l

R

)
≈ l

R

As such, for the toroidal solenoid,

L ≈ µ0N
2l

2π

(
l

R

)
=

µ0N
2l2

2πR

Now, l2 is ’equivalent’ to the cross-sectional area A and 2πR is the ’effective length’ of
the toroidal solenoid. Making the appropriate substitutions will show that this reduces
to the inductance of the long solenoid.
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3. The switch in Figure 2 has been open for a long time. It is closed at time t = 0s.

100V

i

60 Ω

10 Ω

i1

2.0 µH

40 Ω

i− i1

Figure 2

(a) What is the current in the 40 Ω resistor immediately after the switch is closed? [2]

Approach

Immediately after the switch is closed, the current passing through the inductor is 0
(the inductor behaves like a break in the circuit). Thus the circuit reduces to one in
which the 40 Ω and 60 Ω resistors are connected to the 100 V battery in series.

i =
E

Reffective

=
100V

40Ω + 60Ω
= 1A

(b) Find an expression for the current I through the inductor as a function of time t. [4]

Approach

We apply Kirchoff Loop Rule to this circuit. We define loop 1 to be the path taken
when transversing the path starting from the positive terminal of the 100V battery,
through the 60 Ω and the 40 Ω resistor and back to the negative terminal of the 100V
battery.

We define loop 2 to be the path taken when transversing the path starting from the
10 Ω resistor through the 2 µH inductor and upwards through the 40 Ω resistor (going
against the ’proposed’ direction of current).

Loop 1 : 100− 60i− 40(i− i1) = 0

Loop 2 : −10i1 − (2.0× 10−6)
di1
dt

+ 40(i− i1) = 0
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To arrive at an expression for i1(t), we need to find an expression for i using the equation
obtained for loop 1 and substitute that expression for i into the equation obtained for
loop 2.

i =
100 + 40i1

100

50i1 + (2× 10−6)
di1
dt

= 40

(
100 + 40i1

100

)
∫ i1(t)

0

di′1
40− 34i′1

=

∫ t

0

1

2× 10−6
dt′

i1(t) =
20

17

[
1− exp(−17× 106t)

]
(c) What is the current in the 10 Ω resistor after the switch has been closed for a long

time? [2]

Approach

To arrive at the answer for this part, take the limit of the expression obtained in (b) as
t→∞.

i =
20

17
A

In this case the voltage dropped across the inductor vanishes.
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4. Consider the series RLC circuit in Figure 3.

10 Ω

(10V) cosωt

10 µF

10 mH

Figure 3

(a) Find the impedance of the circuit. Express your answer in terms of ω. [2]

Approach

Recall the expression for the impedance of an AC circuit:

Z =

√
R2 +

(
ωL− 1

ωC

)2

Substitute in the known values: R = 10Ω, L = 10mH and C = 10µF.

Z =

√
100 +

(
ω(10−2)− 1

ω(10−5)

)2

(b) What is the resonance frequency, in both rad/s and Hz? [2]

Approach

Recall that the resonance frequency is obtained when inductive reactance equals the
inductive impedance.

ωL =
1

ωC

ω =

√
1

LC

Substituting in the known values, we obtain:

ω = 3162rad/s

f =
ω

2π
= 503Hz
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(c) Find VR and VL at resonance. [2]

Approach

First, we need to find the current amplitude at resonance.

I0 =
V0

Z
=

10√
100

= 1.0A

We then use this value of the current amplitude to determine VL and VR. Recall that
VL = I0ωL and VR = I0R. Substitute the value of ω which we obtained in (b) to
determine VR and VL.

VR = 10V

VL = 31.62V

(d) How can VL be larger than 10 V? Explain. [2]

Approach

In a series alternating current circuit, the voltage amplitudes across the inductor and
capacitor are not in phase with the current. As such, VL can be larger than 10 V as
long as the phasor sum of all the voltage amplitudes equal 10 V.

5. At one instant, the electric field ~E and magnetic field ~B at one point of an electromagnetic
wave are

~E = (200̂i+ 300ĵ − 50k̂)V/m

and
~B = B0(7.30̂i− 7.30ĵ + αk̂)µT

(a) What are the values of α and B0? [4]

Approach

There are two unknowns which we need to find, namely α and B0. This means that we
require two sets of equations.

The first equation relates the magnitude of the electric field to that of the magnetic
field.

| ~E| = c| ~B|

The second equation is the mathematical statement of the orthogonality relationship
between the electric field and the magnetic field.

~E · ~B = 0

We can determine the value of α using the second equation.

200(7.30) + 300(−7.30)− 50α = 0

α = −14.6
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We then use this value of α to obtain the value of B0 using the first equation. Note
that the magnitude of the magnetic field is expressed in terms of micro-Teslas (µT).√

2002 + 3002 + (−50)2 = B0(3.0× 108)(10−6)
√

7.32 + (−7.3)2 + (−14.6)2

B0 = 0.06786

(b) What is the Poynting Vector at this time and position? [4]

Approach

Recall the definition of the Poynting Vector.

~S =
~E × ~B

µ0

To obtain the value of the Poynting Vector, we substitute the values of α and B0 into
the expression for the magnetic field and evaluate the cross product. Note that the
resulting answer should yield a vector.

~S =
10−6B0

µ0

(
−4745̂i+ 2555ĵ − 3650k̂

)
= 0.0540

(
−4745̂i+ 2555ĵ − 3650k̂

)
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6. A pair of equal but opposite charges +q and −q, lies on the x axis at x = −a and x = +a
respectively, as shown in Figure 4.

y

+q −q x
a a

×

P1

×P2

Figure 4

(a) Find the electric potential V1 at point P1(x, 0) on the x axis. [2]

Approach

Recall the definition of the electric potential,

V =

(
1

4πε0

)
q

|~r − ~r′|

Hence, at point P1, the electric potential is given by:

V1 =

(
q

4πε0

)[
1

x+ a
− 1

x− a

]
=

(
q

4πε0

)[
−2a

(x− a)(x+ a)

]

(b) Write down the mathematical relationship between the electrostatic field ~E and the
potential V at a point in space. [2]

Approach

Recall that ~E = −∇V .
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(c) Hence, find the electric field ~E at point P1. [2]

Approach

This questions stems from the implicit ’hint’ given in (b). To find the electric field ~E
at P, we take the negative of the gradient of the potential function at P1.

~E = −∇
{(

q

4πε0

)[
1

x+ a
− 1

x− a

]}
=

(
q

4πε0

)[
1

(x+ a)2
− 1

(x− a)2

]
î

(d) Find the electric field ~E2 at point P2(0, y) on the y axis. [4]

Approach

Note that at point P2, the resultant electric field is purely in the +x direction.

~E2 = 2

(
q

4πε0

)(
1

y2 + a2

)
cos(θ)̂i

where

cos(θ) =
a√

y2 + a2

Therefore,

~E2 =
2qa

4πε0 (y2 + a2)
3
2

î

(e) What is the electric potential V2 at P2.? Does your answer contradict that in (d)?
Explain briefly. [4]

Approach

The electric potential V2 at P2 is 0. At first glance, this seems to contradict our answer
we proposed in (d) as ~E = −∇V and thus it is very tempting to conclude that since
the ∇(0) = 0, a contradiction exists.
However, this is clearly wrong. To see how we can arrive at our answer in (f), let’s
consider the potential function over the xy plane, V (x, y).

V (x, y) =
q

4πε0

[
1√

(x+ a)2 + y2
− 1√

(x− a)2 + y2

]
As such, the expression for the electric field everywhere on the xy plane is given by:

~E(x, y) = −∇V (x, y)

= − q

4πε0

{[
−(x+ a)

[(x+ a)2 + y2]
3
2

+
(x− a)

[(x− a)2 + y2]
3
2

]
î

+

[
−y

[(x+ a)2 + y2]
3
2

+
y

[(x− a)2 + y2]
3
2

]
ĵ

}
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When we substitute x = 0, y = y′, we get:

~E(0, y′) =
2qa

4πε0 (y′2 + a2)
3
2

î

as expected.

(f) Find ~E1 where x >> a, and ~E2 where y >> a. Express your answers in terms of
the electric dipole moment of the system of two charges. What is common to your
answers? [6]

Approach

Recall our expression for ~E1.

~E1 =

(
q

4πε0

)[
1

(x+ a)2
− 1

(x− a)2

]
î

=

(
q

4πε0

)[
−4qxa

(x+ a)2(x− a)2

]
î

The electric dipole moment for this system of two charges is (recall that the direction
vector points from the negative charge to the positive charge):

~p = −2qâi

As such, when x >> a, (x+ a)2 ≈ x2 and (x− a)2 ≈ x2. Therefore,

~E1 ≈
(

1

4πε0

)[
−4qxa

x4

]
=

(
2

4πε0x3

)
~p

We repeat the same procedure for E2. Recall that:

~E2 =
2qa

4πε0 (y2 + a2)
3
2

î

As such, when y >> a, (y2 + a2)
3
2 ≈ y3. Therefore,

~E2 ≈
2qa

4πε0y3
î

= −
(

1

4πε0y3

)
~p

The common theme present in both our answers is that in the limit of large distances,
the dipole field goes down in 1

r3
as opposed to 1

r2
for a point charge.
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7. A straight section of wire of length L carries a current I, as shown in Figure 5.

y

x
O

I

L

×P (x, y)

Figure 5

(a) Show that that the magnetic field ~B associated with this segment at point P is given
by

~B =
µ0I

4πy

[
x√

x2 + y2
− x− L√

(x− L)2 + y2

]
k̂

[6]

Approach

We use the Law of Biot and Savart for this part of the question. Firstly, lets establish
some parameters:

~r − ~r′ = (x− x′)̂i+ yĵ

|~r − ~r′| =
√

(x− x′)2 + y2

d~l = dx′̂i

d~l × (~r − ~r′) = ydx′k̂

Recall the Law of Biot Savart:

~B(~r) =
µ0I

4π

∫
d~l × (~r − ~r′)∣∣∣~r − ~r′∣∣∣3

We now insert the relevant parameters into the integral, yielding:

~B =
µ0I

4π

∫ L

0

ydxk̂

[(x− x′)2 + y2]
3
2

Evaluate the integral to get the expression stated in the question.
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~B =
µ0I

4πy

[
x√

x2 + y2
− x− L√

(x− L)2 + y2

]
k̂

(b) Hence, find ~B when P is very close to the current-carrying wire. Explain how you could

apply Ampere’s law to determine ~B in this case. [4]

Approach

Now, when P is very close to the current-carrying wire, we note that y << x. In this
limit,

x√
x2 + y2

≈ 1

x− L√
(x− L)2 + y2

≈ x− L
|x− L|

Do note that since x < L, |x− L| = L− x. Therefore,

~B ≈ µ0I

4πy
[1− (−1)] k̂ =

µ0I

2πy
k̂

We can also obtain the above result through the use of Ampere’s Law. Recall:∫
~B · d~l = µ0Iencl

To apply Ampere’s law, we just draw a circular Amperian loop enclosing the wire. We
then take B out of the integral and note that

∫
d~l = 2πr over a circular loop.

B(2πr) = µ0I

~B =
µ0I

2πr
φ̂

(this is because wire can be approximated to be infinite.)
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(c) Find the magnetic field ~B at point Q in Figure 6. [6]

y

x

L 2L4

O

I

L

1

L

3

×Q(x, y)

Figure 6

Approach

We will analyze the magnetic field due to each current segment individually as labelled
in Figure 6.

We have obtained the result for the magnetic field due to current segment 1. Let’s call
this magnetic field expression ~B1.

~B1 =
µ0I

4πy

[
x√

x2 + y2
− x− L√

(x− L)2 + y2

]
k̂

Observe the symmetry - to obtain the magnetic field due to current segment 3, we just
need to replace every y in the expression for ~B1 with L− y.

~B3 =
µ0I

4π(L− y)

[
x√

x2 + (L− y)2
− x− L√

(x− L)2 + (L− y)2

]
k̂

We observe the symmetry again (this time for current segment 4). The magnetic field
expression for current segment 4 can be obtained by making the following substitution
in the magnetic field expression due to current segment 1.

x → y

y → x
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As a result, we will obtain:

~B4 =
µ0I

4πx

[
y√

y2 + x2
− y − L√

(y − L)2 + x2

]
k̂

Finally, to obtain the magnetic field due to current segment 2, we simply replace every
x in the expression for ~B4 with L− x.

~B2 =
µ0I

4π(L− x)

[
y√

y2 + (L− x)2
− y − L√

(y − L)2 + (L− x)2

]
k̂

To get the expression for the total magnetic field, we simply sum up the expressions
~B1, ~B2

~B3 and ~B4.

~B =
µ0I

4π

[
x
y

+ y
x√

x2 + y2
+

y
L−x −

x−L
y√

(x− L)2 + y2
+

x
L−y −

y−L
x√

x2 + (y − L)2
−

x−L
L−y + y−L

L−x√
(x− L)2 + (y − L)2

]
k̂

(d) Is the magnetic field ~B at R greater or less than at the centre of the square? Justify
your answer. [4]

y

x

LL

O

I

L

L

×R(L
4
, L

4
)

Figure 7

Approach

To determine the magnetic field at the center of the square and at the point R, we just
need to substitute the known coordinates into our expression we obtained in (c).

Final Examination (Suggested Approach) Page 16



PC1143 AY 2013/14

At the center of the square,x = y = L
2
. Therefore,

x

y
=
y

x
=

y

L− x
=

x

L− y
= 1

x− L
y

=
y − L
x

=
x− L
L− y

=
y − L
L− x

= −1√
x2 + y2 =

√
(x− L)2 + y2 =

√
x2 + (y − L)2 =

√
(x− L)2 + (y − L)2 =

L

2

√
2

As such,

~Bcenter =
µ0I

4π
(
L
2

√
2
) {[1 + 1] + [1− (−1)] + [1− (−1)]− [(−1) + (−1)]} k̂

=
(

2
√

2
)(µ0I

πL

)
k̂

= 2.82843

(
µ0I

πL

)
k̂

We now proceed to find the expression for the magnetic field at the point R (L
4
, L

4
).

Note that at R,

x

y
=
y

x
= 1

y

L− x
=

x

L− y
=

1

3
x− L
y

=
y − L
x

= −3

x− L
L− y

=
y − L
L− x

= −1√
x2 + y2 =

L

4

√
2√

(x− L)2 + y2 =
√
x2 + (y − L)2 =

L

4

√
10√

(x− L)2 + (y − L)2 =
3L

4

√
2

As such,

~BR =
µ0I

4π

[
2

L
4

√
2

+
10
3

L
4

√
10

+
10
3

L
4

√
10

+
2

3L
4

√
2

]
k̂

=

[
4

3

√
2 +

20

3
√

10

]
µ0I

πL
k̂

= ≈ 3.9938

(
µ0I

πL

)
k̂

As such, it is clear that ~BR (off-center) is larger than ~Bcenter.
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8. Consider a conducting ring of radius R, uniform circular cross-sectional area A, and re-
sistivity ρ, lying with its plane perpendicular to a uniform magnetic field ~B as shown in
Figure 8.

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

R

A

Figure 8

(a) Suppose the magnetic field B at time t is given by

B = B0[1− exp(−bt)]

with b and B0 positive constants.

i. Find an expression for the induced current density in the ring as a function of time
t. [6]

Approach

Recall Faraday’s Law: ∮
~E · d~l = −dΦB

dt

To apply Faraday’s Law for this case, we draw an imaginary circular loop of radius
r. Since the electric field is tangential, we can bring it out of the integral. The
magnetic flus through this circular area is ΦB = πR2B0[1 − exp(−bt)]. We thus
obtain:

E(2πR) = −πR2B0b exp(−bt)

E = −RB0b

2
exp(−bt)

~A and ~B are parallel. Hence +ve circulation about ~A is clockwise. Recall that
| ~E| = 1

ρ
| ~J | where | ~J | is the magnitude of the current density. Thus the induced

current density as a function of time t is:

J = −RB0b

2ρ
exp(−bt) ,(anti-clockwise)
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ii. Hence, find by integrating the induced current over time the total charge that
moves around the ring as B increases from zero to B0. [4]

Approach

The induced current that flows is given by I = | ~J |A, where A is the cross sectional
area. Note also that it takes an infinite amount of time for B to increase from zero
to B0.

The total charge that moves is thus given by:

Q =

∫ ∞
0

−RB0b

2ρ
A exp(−bt)dt

=
RB0

2ρ
A

(b) Figure 9 shows a generator consisting of a conducting rod of length R that rotates with
angular speed ω about a central axis Q while making contact with the conducting ring.

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

R
O

ω

Figure 9

Suppose the magnetic field B = B0 is now constant.

i. Find an expression for the electric field in the rod as a function of the distance r
from the central axis, when the conduction electrons in the rod are in equilibrium.

[2]

Approach

The question states that the conduction electrons in the rod are in equilibrium.
This means that the Lorentz force equals to 0.

~F =
(
q ~E + q~v × ~B

)
= 0
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Note that the |v| = rω and that ~v× ~B is directed towards O. We rearrange to solve

for ~E.

~E(~r) = Bωrr̂

where r̂ is the unit vector pointing radially outwards from O.

ii. Hence, or otherwise, find an expression for the emf induced in this generator.
Specify if the emf induced is directed away or towards the central axis. [3]

Approach

Recall that the induced emf, E is defined as:

E =

∫
~E · d~l

We substitute our expression obtained for ~E into the equation. We will get:

E =
1

2
Bωr2

The induced emf, E , is directed towards the central axis.

iii. Now, wires from the axis and ring carry power to a load. If the induced current in
the circuit is I0, find an expression for the rate of work done by an external agent
to maintain the angular speed of the rod at ω. [3]

Approach

The rate of work done by the external agent to maintain the angular speed of the
rod at ω must be equal to the rate of power dissipation of the load. We define P
to be the rate of work done by the external agent.

P = EI0

=
1

2
BI0ωr

2

iv. Hence, or otherwise, find an expression for the load resistance. [2]

Approach

This rate of dissipation must be equal to the Joule heating due to the load resis-
tance. We define R to be the load resistance.

As such,

1

2
BI0ωr

2 = I2
0R

R =
Bωr2

2I0
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