PC1144 NATIONAL UNIVERSITY OF SINGAPORE

PC1144 PHYSICS IV

(Semester 2: April 2007)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains 8 questions and comprises 7 printed pages.
- 2. Answer all five questions in Part I and any two out of three questions in Part II.
- 3. This is a CLOSED BOOK examination.
- 4. The total mark for Part I is 40 and that for Part II is 60.

PC1144 — PHYSICS 4 PART I

This part of the examination paper contains **five** (5) short-answer questions (page 2 – page 3). **Answer ALL questions.**

- A muon formed high up in the Earth's atmosphere is observed by a scientist to travel at a speed v = 0.9990 c for a distance of 4.60 km before it decays into an electron, a neutrino and an anti-neutrino.
 - (a) How long does the muon live, as measured in the muon's reference frame?
 - (b) How far does the muon travel as measured in its own frame?
- 2) Cosmic ray protons can have energies of 10¹³ MeV.
 - (a) How long would it take a proton of this energy to cross the Milky Way galaxy if the galaxy is 10⁶ light years across? [1 light year is the distance traveled by light in one year]. Express your answer in the frame of the proton.
 - (b) From the point of view of the proton, what is the size of the Milky Way?
- 3) Find the probability that a particle trapped in a box of infinite sides and width L will be found between 0.45L and 0.55L. Assume the particle is in its ground state. Is this greater or less than the classical value? Explain your answer.

Hints:

(i) The allowed wavefunctions of a particle in a box are given by:

$$\psi(x) = \sqrt{(2/L)} \sin(n\pi x/L)$$

(ii) $\sin^2(x) = \frac{1}{2} [1 - \cos(2x)]$

- 4) (a) A particle with kinetic energy E travelling from left to right impinges on a rectangular potential barrier U where E \(\cap U\). Sketch the wavefunctions before, inside, and after the barrier, and state the boundary conditions required for a full solution.
 - (b) Sketch the wavefunctions for the case where E > U. Explain your reasoning.
- 5) Use the table on page 4 together with relevant conservation laws to determine the missing particles: Assume that the Ω^- and K $^+$ decay using the weak interaction. Explain your reasoning.

(a)
$$\Omega^- \rightarrow ?? + \pi^-$$

(b) K
$$^+$$
 \rightarrow ?? + μ^+ + $\upsilon_{\,\mu}$

Table of Particle properties:

Category	Particle Name	Symbol	Anti- particle	Rest Mass (MeV/c ²)	В	L_e	$L_{m{\mu}}$	$L_{ au}$	S	Lifetime (s)
Photon	Photon	γ	Self	0	0	0	0	0	^	C+-1-1
Leptons	Electron	é-	e ⁺	0.511	0	+1	0	0	0	Stable
•	Neutrino (e)	ν_e	$\frac{\ddot{\overline{\nu}}_e}{\nu_e}$	0(?)	0	+1	0	0	0	Stable
	Muon	μ^-	11.+	105.7	0	0	+1	0	0	Stable
	Neutrino (µ)	$ u_{\mu}$	$\overline{\overline{\nu}}$	0(?)	0	0	+1	0	0	2.20×10^{-6}
	Tau	$ au^{\mu}$	$rac{\mu^+}{ar u_\mu} \ au^+$	1784	0	0	0	-1	0	Stable $< 4 \times 10^{-13}$
Hadrons	Neutrino (τ)	$ u_{ au}$	$\overline{ u}_{ au}$	0(?)	0	. 0	0	-1	0	Stable
Mesons	Pion	π^+	π^-	139.6	0	0	0	0	0	2.60×10^{-8}
		π^0	Self	135.0	Õ	ő	0	0	0	0.83×10^{-16}
	Kaon	K+	K-	493.7	0	0	ő	0	+1	1.24×10^{-8}
		K_S^0	$\overline{\mathrm{K_{S}^{0}}}$	497.7	0	0	Õ	0	+1	0.89×10^{-10}
		K_L^0	$\frac{\overline{\mathrm{K_{S}^{0}}}}{\mathrm{K_{L}^{0}}}$	497.7	0	0	0	0	+1	5.2×10^{-8}
	Eta	η^0	Self	548.8	0	0	0	0	0	< 10 - 19
Baryons	Proton	p		938.3	+1	0	0	0	0	$<10^{-18}$
,	Neutron	r n	$\frac{\overline{p}}{\overline{n}}$	939.6	+1	0	0	0	0	Stable 920
	Lambda	Λ^0		1115.6	+1	0	0	0	- 1	2.6×10^{-10}
	Sigma	Σ+	$\overline{\overline{\Sigma}}$ -	1189.4	+1	0	0	0	- 1 - 1	0.80×10^{-10}
	Ü	Σ_0	$\overline{\overline{\Sigma}}$ 0	1192.5	+1	0	0	0	-1	6×10^{-20}
		Σ-	$\overline{\Sigma}$ +	1197.3	+1	0	0	0	-1	1.5×10^{-10}
	Xi	∄0	$egin{array}{c} \overline{\Lambda}^{\overline{0}} \ \overline{\Sigma}^{-} \ \overline{\Sigma}^{0} \ \overline{\Sigma}^{+} \ \overline{\Xi}^{\overline{0}} \ \end{array}$	1315	+1	0	0	0	- 1 - 2	2.9×10^{-10}
		Ξ-	Ξ+	1321	+1	0	0	0	-2	1.64×10^{-10}
	Omega	Ω-	Ω^+	1672	+1	0	0	0	-3	0.82×10^{-10}

PART II

This part of the examination paper contains THREE (3) long-answer questions from page 5 to 7. **Answer any <u>TWO</u> questions.**

- 6 a) Consider an experiment where light of wavelength λ is shone on to a metal surface in a vacuum chamber and photoelectrons with a maximum energy E are emitted. Explain the following using the photon theory of light, and describe briefly why classical arguments do not work:
 - (i) No electrons are emitted if the wavelength of the incident light is increased above some cut-off wavelength λ_c .
 - (ii) If the light intensity is increased, the maximum kinetic energy of the photoelectrons remains the same.
 - (iii) The maximum kinetic energy E of the photoelectrons decreases with increasing wavelength of the incident light.
 - (iv) Electrons are emitted from the surface almost instantaneously ($< 10^{-9} \text{ secs}$) independent of the light intensity.
 - b) The longest wavelength of light that will cause the emission of electrons from caesium is 653nm.
 - (i) What is the work function for caesium in eV?
 - (ii) If ultraviolet light of wavelength 200nm were to shine on caesium, what would be the energy of the ejected electrons in eV?
 - c) X-ray radiation of wavelength 0.200 nm is shone onto a thin flat caesium surface. Detectors are placed at a backward angle of 45° to the incoming radiation. These detectors not only detect energetic photoelectrons, but also detect X-rays which appear to have 2 different energies. What are the wavelengths of these X-rays? Explain your results.

- a) In the Bohr model of the hydrogen atom, an electron is orbiting around a proton such that its angular momentum $mvr = nh/2\pi$ (where n is an integer 1,2,3....) and its kinetic energy $KE = k_e e^2/2r$.
 - (i) Show that the radius of a Bohr orbit is given as $r_n = n^2 h^2 / [(2\pi)^2 \text{ m k}_e \text{ e}^2]$
 - (ii) If E (the total energy of the atom = kinetic energy + potential energy) is given by $E = -k_e e^2/2r$, and the Bohr radius $a_0 = h^2/[(2\pi)^2 m k_e e^2]$, then show that the energy of the electron in the hydrogen atom is given by $E_n = -[1/n^2] k_e e^2/2a_0$
 - (iii) Calculate the ionisation energy for the hydrogen atom in eV. [k_e is the Coulomb constant = $8.988 \times 10^9 \, \text{Nm}^2/\text{C}^2$]
 - b) Hydrogen gas is put in a glass tube at low pressure, a potential difference is applied between the ends, and an electric current is passed through the gas. The radiation emitted is analysed by a diffraction grating spectrometer and the wavelengths of the emitted spectral lines are 656.3 nm (red), 486.1 nm (green), 434.1 nm (blue), and 410.2 nm (violet).
 - (i) Using an energy level diagram, show the origins of these spectral lines.
 - (ii) A further line is discovered at 122 nm. Calculate the energy of this line, and determine its origin.
 - (iii) The potential difference across the glass tube is gradually reduced. Although the 122 nm line remains, the red, green, blue and violet lines begin to disappear. Why?
- 8) a) The *fission* process is utilized in a nuclear reactor: Describe *briefly* the role of the following in the process:
 - (i) Binding energy.
 - (ii) Chain reaction.
 - (iii) The reproduction constant.
 - (iv) Moderator.
 - (v) Control rods.

continued....

- b) A ²³⁵U nucleus at rest absorbs a low energy neutron. (i) What is the internal excitation energy of the ²³⁶U* nucleus that is produced? Give your answer in MeV. (ii) State briefly why your answer is relevant to the fission process.
 [The atomic masses of the neutral atoms in their ground states are 235.043923u for ²³⁵U, 236.045562u for ²³⁶U, and 1.008665u for the neutron].
- c) The basic energy producing process in the sun is a multi-step process involving the fusion of hydrogen nuclei into helium nuclei, as follows:

$${}^{1}H + {}^{1}H \rightarrow {}^{2}H + e^{+} + \upsilon$$
 ${}^{1}H + {}^{2}H \rightarrow {}^{3}He + \gamma$
 ${}^{3}He + {}^{3}He \rightarrow {}^{4}He + {}^{1}H + {}^{1}H$

(i) What is the *total* energy released in these combined processes? Express your answer in MeV. (ii) How does this compare to the energy released in the fission process? Explain your result.

Hints:

- (a) There is no need to calculate each process step individually.
- (b) The mass of the proton is 938.3 MeV, the mass of the alpha particle is 3727.4 MeV, and the mass of the electron is 0.511 MeV.

END OF PAPER: FW

