1(a)
$$E_{kinnetic} = \frac{p^2}{2m_e} = eV \Rightarrow p = \sqrt{2m_eeV}$$
1(a) $\lambda = \frac{h}{p} = \frac{h}{\sqrt{2m_eeV}} = 2.74 \times 10^{-10} \mathrm{m}$ Intensity, $I = \frac{p}{A} = \frac{neV}{2k} \propto \frac{n}{t}$ $I_1 = 100 = \frac{1}{2}A_1^2$, $A_1 = 14.14$ $I_2 = 900 = \frac{1}{2}A_2^2$, $A_2 = 42.43$ The superposition of the 2 electron beams, induce the final intensity:
 $x(t) = x_1(t) + x_2(t) = A_1 \cos(\omega_t t) + A_2 \cos(\omega_2 t + \phi)$ 1(b)It is easy to see that $\overline{\cos(\omega_t) \cos(\omega_2 t + \phi)} = 0$ under either of these two conditions:
 $\bullet \omega_1 \neq \omega_2$ 1(c) \bullet ϕ is randomly changing with timeThat means, if the waves are coherent, it is not 0 and the intensity would instead be:
 $I = \frac{1}{2}A_1^2 + \frac{1}{2}A_2^2 + A_1A_2 \cos(\phi)$
 $\max(I) = \frac{1}{2}(A_1 + A_2)^2$, $\min(I) = \frac{1}{2}(A_1 - A_2)^2$ So intensities do not necessarily add up. The answer should now be clear, given the
assumption of coherence: $l_{center} = \frac{1}{2}(A_1 - A_2)^2 = 400$ electrons/s
 $l_{dark} = \frac{1}{2}(A_1 - A_2)^2 = 400$ electrons/s $\lambda_f - \lambda_i = \frac{h}{mc}(1 - \cos \theta)$
where λ_f is the wavelength after collision, and λ_i is the wavelength before collision.The longer wavelength is due to photons deflected due to collision with the nuclei of the
atoms sproximately the same. The shorter wavelength is due evaluation of deflected due to
collision with the electrons. During collision, these photons will lose a significant fraction of
the internet. The sometum and have less momentum. Therefore, the
deflected photons will have less energy which means less momentum and longer
wavelength. Recall $E = pc = hc/\lambda$.2(b) $\lambda_f - \lambda_i = \frac{h}{mc}(1 - \cos \theta), \quad \lambda = \frac{h}{p}, \quad E = pc \Rightarrow p = \frac{E}{c}$
 $\frac{hc}{E_f} - \frac{E_c}{E_i} = \frac{hc}{nc}(1 - \cos \theta) \Rightarrow \frac{mc^2}{E_f} - \frac{mc^2}{E_i} = 1 - \cos \theta$

Solutions provided by: NUS Physics Society (Q1a, Q2, Q3a, Q4-Q8), Nguyen Phan Minh (Q1b, Q1c, Q3b)

Edited, 2012 © NUS Physics Society

5(a)	$E = m^2$
5(a)	$E_{\pi} = m_{\pi} C$
	$E_{\mu} = \sqrt{\left(p_{\mu}c\right) + \left(m_{\mu}c^{2}\right)}$
	$E_{\overline{y}_{\mu}} = p_{\overline{y}_{\mu}}c$
	By conservation of energy:
	$E_{\pi} = E_{\mu} + E_{\overline{v}_{\mu}}$
	$\Rightarrow m_{\pi}c^2 = \sqrt{\left(p_{\mu}c ight)^2 + \left(m_{\mu}c^2 ight)^2 + p_{\overline{v}_{\mu}}c}$
	by conservation of linear momentum:
	$p_{\mu}=-p_{\overline{v}_{\mu}}$
	$\Rightarrow m_{\pi}c^{2} = \sqrt{\left(p_{\overline{v}_{\mu}}c\right)^{2} + \left(m_{\mu}c^{2}\right)^{2}} + p_{\overline{v}_{\mu}}c$
	$\Rightarrow \left(m_{\pi}c^{2} - p_{\overline{\nu}_{\mu}}c\right)^{2} = \left(p_{\overline{\nu}_{\mu}}c\right)^{2} + \left(m_{\mu}c^{2}\right)^{2}$
	$\Rightarrow \left(m_{\pi}c^{2}\right)^{2} - 2\left(m_{\pi}c^{2}\right)\left(p_{\overline{\nu}_{\mu}}c\right) = \left(m_{\mu}c^{2}\right)^{2}$
	$\Rightarrow 2(m_{\pi}c^{2})E_{\overline{v}_{\mu}} = \left (m_{\mu}c^{2})^{2} - (m_{\pi}c^{2})^{2}\right $
	$\Rightarrow E_{\overline{v}_{\mu}} = \left \frac{\left(m_{\mu} c^2 \right)^2 - \left(m_{\pi} c^2 \right)^2}{2 \left(m_{\pi} c^2 \right)} \right = \left \frac{105.7^2 - 139.6^2}{2 \times 139.6} \right = 29.8 \text{MeV}$
5(b)	$E_{\overline{arphi}_{\mu}}=p_{\mu}c$
	$E_{\mu} = \gamma m_{\mu} c^2 = \sqrt{\left(p_{\mu} c\right)^2 + \left(m_{\mu} c^2\right)^2}$
	$\Rightarrow \gamma^{2} = \frac{\left(p_{\mu}c\right)^{2} + \left(m_{\mu}c^{2}\right)^{2}}{\left(m_{\mu}c^{2}\right)^{2}} = 1 + \frac{\left(p_{\mu}c\right)^{2}}{\left(m_{\mu}c^{2}\right)^{2}}$
	$\Rightarrow \gamma = \sqrt{1 + \left(\frac{29.8}{105.7}\right)^2} = 1.038982$
	$\Rightarrow \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = 1.038982$
	$\Rightarrow 1 - \frac{v^2}{c^2} = \left(\frac{1}{1.038982}\right)^2$
	$\Rightarrow v = c_{\sqrt{1 - \left(\frac{1}{1.038982}\right)^2}} = 0.27135c = 8.14 \times 10^7 \mathrm{ms^{-1}}$
6(a)(i)	Refer to lecture notes
6(a)(ii)	using $t' = \frac{t - ux / c^2}{\sqrt{1 - u^2 / c^2}}$
	let $t_1' = \frac{t_1 - ux / c^2}{\sqrt{1 - u^2 / c^2}}$ and $t_2' = \frac{t_2 - ux / c^2}{\sqrt{1 - u^2 / c^2}}$
	$\Delta t' = t_1' - t_2' = \frac{t_1 - ux / c^2}{\sqrt{1 - u^2 / c^2}} - \frac{t_2 - ux / c^2}{\sqrt{1 - u^2 / c^2}} = \frac{\Delta t}{\sqrt{1 - u^2 / c^2}} = \gamma \cdot \Delta t$
	$\Delta t' = \gamma \cdot \Delta t$, where both events occur at the same position in S frame.
	Δt is the proper time

	using $x = \frac{x' + ut'}{x' + ut'}$
	$\sqrt{1-u^2/c^2}$
	let $x_1 = \frac{x_1' + ut_1'}{\sqrt{1 - u^2 / c^2}}$ and $x_2 = \frac{x_2' + ut_2'}{\sqrt{1 - u^2 / c^2}}$
	$\Delta l_0 = x_1 - x_2 = \frac{\left(x_1' - x_2'\right) + u\left(t_1' - t_2'\right)}{\sqrt{1 - w_1^2 + v_2^2}}$
	since $t'_1 = t'_2$.
	$\Delta l_0 = \gamma \cdot \Delta l$
	$\Delta l_0 = \frac{\Delta l}{\gamma}$, where Δl_0 is the proper length
6(b)(i)	$u = 0.6c \qquad \gamma = 1.25$
	using $\Delta l = \frac{\Delta l_0}{\gamma}$,
	length of ship viewed by observer on satellite, $\Delta l = \frac{30}{1.25} = 24$ m
6(b)(ii)	$t = \frac{\Delta l}{u} = \frac{24}{0.6c} = \frac{40}{c}$ s
6(b)(iii)	$t_1' = \frac{\Delta l_0}{\mu} = \frac{30}{0.6c} = \frac{50}{c}$ s
6(b)(iv)	using $t = \frac{t' + ux' / c^2}{\sqrt{1 - u^2 / c^2}}$
	$t_1 = 1.25 \cdot \left[\frac{30}{c} + \frac{(0.6c)}{c^2} \left(\frac{30}{c} \times 0.6c - 30\right)\right] = \frac{28.5}{c} \text{ s}$
7(a)(i)	
	Wavefunction of n=4
	Probability Density Function of n=4
7(a)(ii)	$\psi = \sqrt{\frac{2}{L}} \sin \frac{4\pi x}{L}$
7(a)(iii)	$k = \frac{2\pi}{\lambda} = \frac{4\pi}{L} \Longrightarrow \lambda = \frac{L}{2}$
	$\frac{h}{h}$
	$P^{-}\lambda$
	$E = \frac{p^2}{2m} = \frac{h^2}{2m\lambda^2} = \frac{2h^2}{mL^2}$

7(h)(i)	
/(D)(1)	
	Wavefunction
	$X \setminus / \setminus / \setminus / $
	Probability Density Function
7(b)(ii)	
	i NY / NY
	L/2
	The red wavefunction is the n=4 state of electron in infinite box and blue
	wavefunction is the n=3 state of electron in box with infinite U_0 . The black
	wavefunction is n=4 state of electron in box with infinite U_0 . Clearly, the wavelength of 3 rd excited state of electron in box with finite U_0 has
	wavelength slightly larger than $L/2$ but slightly smaller than $L/3$.
7(b)(iii)	$F = \frac{h^2 n^2}{n^2}$
	$L_n = 8mL^2$
	$E_3 = \frac{9h^2}{2h^2}$ $E_4 = \frac{2h^2}{2h^2}$
	$8mL^2$ mL^2 therefore, the energy is between E and E
7(b)(iy)	$\frac{1}{2}$ $\frac{1}$
/(0)(10)	$E_n = \frac{n}{8mL^2}$
	$81h^2$
	for $n = 9$, $E_9 = \frac{1}{8mL^2}$
	for $n = 10$, $E_0 = \frac{100h^2}{100h^2}$
	$8mL^2$ The energy of each state for the electron in the her with finite U is lower than that
	The energy of each state for the electron in the box with finite U_0 is lower than that of box with infinite II. Therefore, the p=0 state will have energy losser than F
	above, which is less than $10h^2/(mL^2)$. Therefore, the allowed bound states will
	include n=9, with a total of 9 allowed bound states.
8(a)	C_1A : strong force attraction between nucleon, which is proportional to the number
	or nucleons (A). - $C_2A^{2/3}$, the nucleons on the outer surface are less tightly bound by strong forces
	this is to make correction in the strong force attraction due to surface nucleons. This
	is proportional to the surface area $4\pi r^2$. Since $A \propto r^3$, the term is proportional to r^2 ,
	proportional to $A^{2/3}$.

	$-C_3 \frac{Z(Z-1)}{A^{1/3}}$:
8(b)(i)	Only terms involving Z may be different.
	$C_3 \frac{Z(Z-1)}{A^{1/3}}$ is different since both have different Z numbers.
	$C_4 \frac{(A-2Z)^2}{A}$ is the same even though it involves Z.
	for ${}^{15}_{8}O$, $(A-2Z)^2 = (15-16)^2 = 1$
	for ${}^{15}_{7}N$, $(A-2Z)^2 = (15-14)^2 = 1$
8(b)(ii)	Since only the term $C_3 \frac{Z(Z-1)}{A^{1/3}}$ differs,
	for ${}^{15}_{8}O$, $C_3 \frac{Z(Z-1)}{A^{1/3}} = C_3 \frac{8(8-1)}{15^{1/3}} = C_3 \frac{56}{15^{1/3}}$
	for ${}^{15}_{7}N$, $C_3 \frac{Z(Z-1)}{A^{1/3}} = C_3 \frac{7(7-1)}{15^{1/3}} = C_3 \frac{42}{15^{1/3}}$
	Since the value of this term for ${}^{15}_{7}N$ is smaller, the E _B will be higher.
	With a higher E_B , it means that ${}_7^{15}N$ nucleus is more tightly bound.
8(b)(iii)	$^{15}_{8}O \rightarrow ^{15}_{7}N + \beta^+$
	Net energy change when ${}^{15}_{8}O$ decays = $C_3 \frac{56}{15^{1/3}} - C_3 \frac{42}{15^{1/3}}$
	$= 0.7100 \times \frac{14}{15^{1/3}} = 4.03047 \text{ MeV}$
	Rest Energy of $\beta^+ = m_e c^2 = 0.511 \text{ MeV}$
	Since the net energy change is larger than the rest energy of the positron emitted, it
	is able to provide sufficient energy for the production of a positron. Hence, the
	decay is energetically possible.