
PC1144: Physics IV (AY2011/2012 sem 2)

Suggested solutions

As the question sheet was not available after the exam, the questions listed below may not be an
exact reproduction of the questions in the exam.

The answers provided below for qualitative questions should not be treated as definitive, as other
answers may be acceptable. In addition, it may not be necessary to state all the points listed for
each question — depending on the number of marks assigned to that question, it may be possible
to obtain full credit by only stating several of the listed points.

1a. Shown below on the left are two position wavefunctions, with the Fourier transform
of the first wavefunction shown beside it on the right. Sketch the Fourier transform
of the second wavefunction in the space provided. (2 marks)
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(Answer is shown in blue. The main point to note is that when the square-pulse position wave-
function halves in width and increases in height, the momentum wavefunction (i.e. the Fourier
transform) doubles in width and decreases in height.)
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1b. Name the principle behind your answer to part (a). (2 marks)

The Heisenberg uncertainty principle.

1c. Shown below is a sketch of |ψ|2 for a particle in an infinite square well. With respect
to the points A, B, C, D, E, describe how the behaviour of the particle compares to
the classical case as it moves from point A to E. (4 marks)

A B C D E

• Unlike the classical case, the particle does not have a well-defined location. Instead, the
probability of locating the particle in a given region is described by the probability density
function |ψ|2.
• The particle is most likely to be found in the vicinity of points A, B, C, D, E.
• There is zero probability of finding the particle at the points where the wavefunction is zero,

i.e. the points midway between points A, B, C, D, E.
• This is in contrast to the classical case, in which the particle is equally likely to be found at

all points within the well (assuming an ensemble of systems with random starting times).
• Unlike the classical case, the particle cannot be thought of as “passing through” the points

midway between points A, B, C, D, E.
• In both the classical and quantum cases, the expectation value (mean) of the particle’s

position is the midpoint of the box.
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2a. Comment on the decay possibilities and properties of the following reactions. (4
marks)

i. n→ p+ e− + v̄e

• Charge, lepton number and baryon number are conserved, therefore this decay should be
possible.
• Flavour is not conserved, as a down quark has been changed to an up quark. Hence this

reaction must proceed via the weak interaction.
• This is the basic reaction behind β− decay.
• As the mass of the reactants is greater than the mass of the products, it is possible for this

reaction to occur without external energy input.

ii. p→ n+ e+ + ve

• Charge, lepton number and baryon number are conserved, therefore this decay should be
possible.
• Flavour is not conserved, as an up quark has been changed to a down quark. Hence this

reaction must proceed via the weak interaction.
• This is the basic reaction behind β+ decay.
• As the mass of the reactants is less than the mass of the products, this reaction can only

proceed with a source of energy input (such as some initial kinetic energy of the proton, or
a change in binding energy of a nucleus).

2b. What were some of the problems with the Bohr theory? (3 marks)

• The Bohr model predicts an incorrect angular momentum for the ground state of the hydro-
gen atom (it predicts non-zero angular momentum for all states, whereas the Schrödinger
theory indicates that the ground state possesses zero angular momentum).
• It is generally unable to predict the spectra of multiple-electron atoms.
• It is unable to predict rates of electronic transitions and hence the relative intensities of

spectral lines.
• It does not properly account for spectral line splitting due to spin-orbit coupling (between

the orbital angular momentum and electron spin and/or nuclear spin).
• It violates the Heisenberg uncertainty principle as it proposes definite orbits and angular

momenta for the electrons.
• It was an apparently ad-hoc mixture of classical theories and wave-particle duality, which

was felt to be unsatisfactory.

2c. Is the Schrödinger equation compatible with Einstein’s theory of special relativity?
Why or why not? (1 mark)

No. Einstein’s theory of special relativity indicates that space and time should be treated on
equal footing, whereas the Schrödinger equation is second-order in space but first-order in time;
indicating that it does not treat the coordinates equally.
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3a. Write down the Lorentz transformations in terms of the coordinates x, y, z and

ct. (Express your answer in terms of β = v
c

and γ = (1− β2)
−1/2

.) (4 marks)

x′ = γ(x− β(ct))

y′ = y

z′ = z

ct′ = γ(ct− βx)

3b. Show that under the substitution φ = tanh−1 β, the Lorentz transformations can
be represented by the following matrix equation: (4 marks)

x′

y′

z′

ct′

 =


coshφ 0 0 − sinhφ

0 1 0 0
0 0 1 0

− sinhφ 0 0 coshφ



x
y
z
ct



(Hint: eφ =

√
1 + β

1− β
, e−φ =

√
1− β
1 + β

)

coshφ =
eφ + e−φ

2
=

1

2

(√
1 + β

1− β
+

√
1− β
1 + β

)

=
1

2

(
(1 + β) + (1− β)

1− β2

)
=

1

1− β2

= γ

sinhφ =
eφ − e−φ

2
=

1

2

(√
1 + β

1− β
−

√
1− β
1 + β

)

=
1

2

(
(1 + β)− (1− β)

1− β2

)
=

β

1− β2

= γβ

Therefore,


coshφ 0 0 − sinhφ

0 1 0 0
0 0 1 0

− sinhφ 0 0 coshφ



x
y
z
ct

 =


γ 0 0 −γβ
0 1 0 0
0 0 1 0
−γβ 0 0 γ



x
y
z
ct

 =


γ(x− β(ct))

y
z

γ(ct− βx)


which corresponds to the Lorentz transformations as shown in part (a).

Alternative: Making use of the hyperbolic relations cosh2 φ − sinh2 φ = 1 and tanhφ = sinhφ
coshφ

,

cosh2 φ− sinh2 φ = 1 =⇒ 1− tanh2 φ =
1

cosh2 φ

cosh2 φ =
1

1− tanh2 φ

cosh2 φ =
1

1− β2

coshφ = γ

and
1

tanh2 φ
− 1 =

1

sinh2 φ

sinh2 φ =
tanh2 φ

1− tanh2 φ

sinh2 φ =
β2

1− β2

sinhφ = γβ
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4a. The rate of radioactive decay of nuclei is proportional to the number of remaining
nuclei, i.e. dN

dt
= −λN where λ is a positive constant. Solve this equation for the

number of nuclei N(t) as a function of time. (2 marks)

dN

dt
= −λN =⇒

∫ N

N0

1

N
dN = −λ

∫ t

0

dt where N0 is the number of nuclei at t = 0.

ln
N

N0

= −λt

N(t) = N0e
−λt

4b. The activity A(t) of a sample is the number of decays per second, i.e. A(t) =
∣∣dN
dt

∣∣.
From your answer to part (a), express the activity as a function of time. (2 marks)

A(t) =

∣∣∣∣dNdt
∣∣∣∣ =

∣∣∣∣ ddt (N0e
−λt)∣∣∣∣ = λN0e

−λt since λ and N0 are positive constants

4c. Let the number of nuclei that decay in the small time interval (t, t+ dt) be f(t) dt.
Show that f(t) dt = λN0e

−λt dt. (1 mark)

At a particular time t, the number of nuclei remaining is N(t) = N0e
−λt.

Therefore, the number of nuclei that have decayed between t and t+ dt is:

f(t) dt = |N(t+ dt)−N(t)| =
∣∣∣∣dNdt

∣∣∣∣ dt = λN0e
−λt dt.

4d. Find the mean lifetime τ of each radioactive nucleus in terms of λ. (2 marks)

Based on part (c), the proportion P (t) dt of nuclei with lifetime t is P (t) dt = f(t) dt
N0

= λe−λt dt.

The mean lifetime is hence τ =

∫ ∞
0

tP (t) dt =

∫ ∞
0

t
(
λe−λt

)
dt

=
[
−te−λt

]∞
0
−
∫ ∞
0

−e−λt dt

= lim
t→∞

(
−te−λt

)
− 0 +

[
−1

λ
e−λt

]∞
0

=
1

λ

(Note: lim
t→∞

(
−te−λt

)
= lim

t→∞

(
− t

eλt

)
= lim

t→∞

(
− 1

λeλt

)
= 0 by l’Hôpital’s rule.)

4e. Show that the half-life T1/2 and mean lifetime τ are related by T1/2 = τ ln 2. (1
mark)

By definition, the half-life is the time taken for half the nuclei to decay. Therefore, we must have

N(t) = N0

(
1

2

) t
T1/2

= N0

(
eln

1
2

) t
T1/2 = N0e

− ln 2
T1/2

t

By comparison to the equation N(t) = N0e
−λt, it can be seen that λ = ln 2

T1/2
. Combined with the

result from part (d), we hence have T1/2 = ln 2
λ

= τ ln 2.
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5a. Write some brief notes on each of the following topics:

i. Dark matter and dark energy (2 marks)

• Dark matter refers to matter that does not interact significantly with electromagnetic radi-
ation except through its gravitational effects.
• One reason for proposing its existence was to account for the rotational speed of stars near

the edges of galaxies, which were higher than that expected from the visible matter alone.
• It is classified into hot and cold dark matter, referring to particles moving close to/significantly

slower than the speed of light respectively.
• Dark energy was proposed to account for the fact that the acceleration of the universe is not

consistent with the observed/calculated amount of matter/dark matter.
• Dark energy acts to increase the acceleration of the universe.
• The universe is estimated to be composed of about 23% dark matter and 73% dark energy.

ii. Nuclear fission and nuclear fusion (2 marks)

• Fission refers to large nuclei splitting apart into two or more smaller nuclei and neutrons,
releasing energy in the process.
• Fission occurs naturally in various elements, usually those of high atomic mass.
• Fusion refers to several small nuclei combining to form a larger nucleus, releasing energy in

the process.
• Fusion requires significantly higher temperatures and pressures to achieve than nuclear fis-

sion, in order to overcome the inter-nuclei repulsion. It occurs naturally in stellar cores.
• Fusion typically releases much more energy per unit mass of reactants than fission.

iii. The liquid-drop and shell models (4 marks)

• The liquid-drop model treats the nucleus as a drop of incompressible fluid.
• The semi-empirical mass formula is derived taking the liquid-drop model into account, by

introducing terms accounting for number of protons, surface area of the drop, and so on.
• The shell model of the nucleus treats the nucleons as particles in a potential well, similar to

the electron-in-Coulomb-potential for the Schrödinger picture of the hydrogen atom.
• By applying the Schrödinger equation and solving for the wavefunctions of the nucleons in

the potential well, the energy levels of the nucleus can be calculated and found to possess a
configuration similar to the “shell structure” for electrons.
• The results indicate that there should be “magic numbers” of nucleons which result in highly

stable nuclei.

5b. List all matter and force particles in the Standard Model. (2 marks)

The four field particles: Gravitons, photons, gluons, W+/W−/Z bosons
The six leptons: Electrons, electron neutrinos, muons, muon neutrinos, tauons, tau neutrinos
The six flavours of quarks: Up, down, strange, charmed, top, bottom
and their corresponding antiparticles.

5c. What are the difficulties in unifying gravitation, as described by general relativity,
with the Standard Model? (2 marks)

General relativity describes gravitation as a curvature of space-time, whereas the Standard Model
describes forces as being mediated by particles. It is difficult to reconcile the geometric description
of gravity in general relativity with the idea of particles as force carriers.
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6a. State the one-dimensional time-dependent Schrödinger equation and the main
ansatz involved in solving it. (2 marks)

i~
dΨ

dt
= − ~2

2m

d2Ψ

dx2
+ VΨ (where Ψ is a function of x and t.)

The main ansatz involved in solving it is Ψ(x, t) = ψ(x)φ(t), which allows the above equation
(which involves both position and time coordinates) to be separated into two equations, each in
terms of only either x or t alone (provided V is time-independent). The time component can then

be solved to yield φ(t) = e−i
E
~ t, while the position component depends on the potential V .

6b. Show that the one-dimensional time-independent Schrödinger equation can be
expressed in the following form (3 marks):

d2ψ

dx2
=

2m(V − E)

~2
ψ

− ~2

2m

d2ψ

dx2
+ V ψ = Eψ =⇒ − ~2

2m

d2ψ

dx2
= (E − V )ψ

=⇒ d2ψ

dx2
=

2m(V − E)

~2
ψ

6c. Shown below is the graph of a one-dimensional potential well V (x), along with
the energy E of a particle in the well. Answer the following questions based on this
potential.

x

V HxL

E

i. What are the conditions for the wavefunction ψ and its first derivative? (1 mark)

Since the potential is finite at all points in the diagram, both ψ and dψ
dx

must be finite, single-valued
and continuous.

ii. If ψ is positive, which option(s) below represent possible wavefunction(s) for the
particle in the well? (1 mark)

HAL HBL HCL HDL

Question appears to be ambiguous, since the above options all do not represent valid wavefunctions
within the region shown in the graph of V (x). However, if we assume that the region shown in the
above options refers to the region on the right of the graph (specifically, the region on the right in
which V (x) > E), then option (B) is valid.
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iii. If ψ is negative, which option(s) below represent possible wavefunction(s) for the
particle in the well? (1 mark)

HAL HBL HCL HDL

Question appears to be ambiguous, since the above options all do not represent valid wavefunctions
within the region shown in the graph of V (x). However, if we assume that the region shown in the
above options refers to the region on the right of the graph (specifically, the region on the right in
which V (x) > E), then option (D) is valid.

iv. Sketch a possible wavefunction for the particle in the well. (2 marks)

x

ΨHxL

Two possible answers are shown above. The points where (V (x)−E) changes sign correspond to

inflection points of ψ in the above graph (because as seen from part (b), d2ψ
dx2

changes sign when
either (V (x)− E) or ψ changes sign).

v. Sketch a possible probability density function for the particle in the well. (2 marks)

x

ÈΨHxL 2

Two possible answers are shown above.
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7. The scattering of electromagnetic radiation from a charged particle can be analysed
by a differential equation of the following form, where ω, ω0, τ and F are constants:

dx

dt
−
(
iω0 −

τω2
0

2

)
x = Feiωt

7a. Show that x = Aeiλt, where A is an arbitrary constant and λ = ω0+
iτω2

0

2
, is a solution

to the above differential equation when F = 0. (2 marks)

Substituting the expression x = Aeiλt into the above differential equation,

LHS =
dx

dt
−
(
iω0 −

τω2
0

2

)
x = iλ

(
Aeiλt

)
−
(
iω0 −

τω2
0

2

)(
Aeiλt

)
=

(
i

(
ω0 +

iτω2
0

2

)
− iω0 +

τω2
0

2

)(
Aeiλt

)
= 0

= RHS when F = 0.

7b. In the case where F can be non-zero, the ansatz x = φeiωt is a possible solution to
the differential equation. Find φ. (3 marks)

Substituting the ansatz into the given differential equation, we require:

iω
(
φeiωt

)
−
(
iω0 −

τω2
0

2

)(
φeiωt

)
= Feiωt(

iω − iω0 +
τω2

0

2

)
φ = F , cancelling out the common factor eiωt

φ =
F

i(ω − ω0) +
τω2

0

2

7c. The intensity I(ω) of the re-emitted radiation is proportional to |φ|2 (i.e. φφ∗).

Show that
I(ω)

I(ω0)
=

τ2ω4
0

4

(ω − ω0)2 +
τ2ω4

0

4

. (3 marks)

Since I(ω) ∝ |φ|2, we have

I(ω) = k |φ|2 = k

∣∣∣∣∣ F

i(ω − ω0) +
τω2

0

2

∣∣∣∣∣
2

= k
|F |2∣∣∣i(ω − ω0) +

τω2
0

2

∣∣∣2
=

k |F |2

(ω − ω0)2 +
τ2ω4

0

4

assuming ω, ω0, and τ are real
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Therefore, I(ω0) =
k |F |2

(ω0 − ω0)2 +
τ2ω4

0

4

=
k |F |2
τ2ω4

0

4

And hence
I(ω)

I(ω0)
=
k |F |2 /

(
(ω − ω0)

2 +
τ2ω4

0

4

)
k |F |2 /

(
τ2ω4

0

4

) =

τ2ω4
0

4

(ω − ω0)2 +
τ2ω4

0

4

7d. Shown below is a graph of I(ω) against ω. The full width at half maximum
(FWHM) of a peak in some function f is a measure of the peak width. It is calculated
by finding the maximum value fpeak at the top of the peak, then finding the width of
the graph at the value 1

2
fpeak, as shown in the diagram below. Based on the result of

part (c), find the FWHM of the intensity peak in terms of τ and ω0. (2 marks)

Ω

IHΩL

IHΩ0L

1

2
IHΩ0L

Ω0

FWHM

(Verifying that I(ω0) is the maximum intensity):
dI(ω)

dω
= 0 =⇒ −

2(ω − ω0)I(ω0)
τ2ω4

0

4(
(ω − ω0)2 +

τ2ω4
0

4

)2 = 0

=⇒ ω = ω0

Hence to find the FWHM, we solve for the values of ω at which I(ω) = 1
2
I(ω0), i.e.:

I(ω0)
τ2ω4

0

4

(ω − ω0)2 +
τ2ω4

0

4

=
1

2
I(ω0)

τ 2ω4
0

4
=

1

2

(
(ω − ω0)

2 +
τ 2ω4

0

4

)
τ 2ω4

0

2
− τ 2ω4

0

4
= (ω − ω0)

2

ω − ω0 = ±
√
τ 2ω4

0

4

ω = ω0 ±
τω2

0

2

The FWHM of the intensity peak is therefore 2

(
τω2

0

2

)
= τω2

0.
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7e. The characteristic timescale of the scattering process is on the order of 2
τω2

0
. Let

∆t = 2
τω2

0
and ∆E = ~∆ω where ∆ω is the FWHM found in part (d). What is ∆E∆t,

and what significance does this value have? (2 marks)

Based on the result of part (d), ∆E = ~∆ω = ~τω2
0.

Therefore, ∆E∆t = ~τω2
0

(
2

τω2
0

)
= 2~.

This satisfies the energy-time uncertainty principle ∆E∆t ≥ ~
2
.

Some additional notes on this question:

7a. This equation is an approximation to the differential equation ẍ + ω2
0x − τ

...
x = Feiωt for the

movement of a charge under an oscillating electric field of frequency ω, with the τ
...
x term arising

due to the force of radiation reaction. (ω0 and τ are positive constants.) It can be shown that for
ω0τ � 1, the homogeneous solution (i.e. F = 0) takes the form x = Aeiλt with λ ≈ ω0 + ε where ε

is small. The equation can then be solved for ε to obtain ε ≈ iτω2
0

2
. Such an analysis can be used to

describe the natural linewidth of spectral lines. (Eyges, L. (1980). The Classical Electromagnetic
Field.)

7b. It is possible to solve for φ as a function of time instead of a constant. However, this would
result in a different answer in part (c).

7e. An alternative way to obtain a similar result would be to note that the frequency spectrum of
the process can be obtained by the Fourier transform of x(t) = Aeiλt, i.e.

χ(ω) =

∫ ∞
0

x(t)e−iωt dt =

∫ ∞
0

Ae
i

(
ω0+

iτω20
2
−ω

)
t
dt

=
A

i(ω0 − ω)− τω2
0

2

[
e

(
i(ω0−ω)−

τω20
2

)
t

]∞
0

=
A

i(ω − ω0) +
τω2

0

2

(We have lim
t→∞

e

(
i(ω0−ω)−

τω20
2

)
t

= 0 because
τω2

0

2
is a positive real value.)

The intensity is then proportional to |χ(ω)|2, leading to a similar result. This also allows a more
rigorous analysis of the ∆E∆t relationship; as the functions χ(ω) and x(t) in the frequency and
time domains respectively are related by a Fourier transform, and there is hence an uncertainty
principle between the two functions.

2
τω2

0
was taken as the characteristic timescale because the solution x(t) = Aeiλt = Aeiω0te−

τω20
2
t has

an exponential-decay factor with time constant 2
τω2

0
.
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Answer only one out of questions 8 and 9.

8a. Consider a one-dimensional potential barrier defined by the step function:

V (x) =

{
V0 for x < 0
0 for x > 0

where V0 is a positive real constant

A particle with energy E < V0, travelling from the right, encounters the step at
x = 0. Show that the incident and reflected probability currents at that point can
be expressed in the forms jincident = a |A|2 and jreflected = b |B|2 respectively. (6 marks)
Note: The probability current at a point is given by

j =
i~
2m

(
Ψ
dΨ∗

dx
−Ψ∗

dΨ

dx

)
In the region x < 0:

− ~2

2m

d2ψ

dx2
+ V ψ = Eψ =⇒ d2ψ

dx2
=

2m(V0 − E)

~2
ψ

=⇒ ψ = Aeαx +Be−αx where α =

√
2m(V0 − E)

~

The term e−αx goes to infinity as x → −∞, and hence we must have B = 0 as the wavefunction
would otherwise be non-normalizable.

In the region x > 0:

− ~2

2m

d2ψ

dx2
+ V ψ = Eψ =⇒ d2ψ

dx2
= −2mE

~2
ψ

=⇒ ψ = Ceikx +De−ikx where k =

√
2mE

~

Since the potential is finite, we require continuity of ψ and dψ
dx

at x = 0:

A = C +D and αA = ik(C −D)

=⇒ C =
A

2

(
1− iα

k

)
, D =

A

2

(
1 +

iα

k

)
(A remains arbitrary)

We note that since E < V0, α is real. Also, we must have E > 0 (because if E < 0, then

V (x)−E > 0 for all x; in which case we can see from question 6(b) that d2ψ
dx2

and ψ have the same
sign everywhere and ψ will therefore be non-normalizable), hence k is also real.

The term Ceikx represents a wave travelling to the right, while the term De−ikx represents a wave
travelling to the left. We therefore have

jincident =
i~
2m

(
Ψ
dΨ∗

dx
−Ψ∗

dΨ

dx

)
with Ψ = De−ikxe−iωt, ω =

E

~
∈ R

=
i~
2m

((
De−ikxe−iωt

) (
ikD∗eikxeiωt

)
−
(
D∗eikxeiωt

) (
−ikDe−ikxe−iωt

))
since k, ω are real

= −k~
m
|D|2 (this value is negative because the probability current is flowing to the left)
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jreflected =
i~
2m

(
Ψ
dΨ∗

dx
−Ψ∗

dΨ

dx

)
with Ψ = Ceikxe−iωt, ω =

E

~
∈ R

=
i~
2m

((
Ceikxe−iωt

) (
−ikC∗e−ikxeiωt

)
−
(
C∗e−ikxeiωt

) (
ikCeikxe−iωt

))
since k, ω are real

=
k~
m
|C|2

8b. Calculate the reflection and transmission coefficients, R =
∣∣∣ jreflectedjincident

∣∣∣ and T =∣∣∣ jtransmittedjincident

∣∣∣ respectively. (4 marks)

R =

∣∣∣∣jreflectedjincident

∣∣∣∣ =

∣∣∣∣∣ k~
m
|C|2

−k~
m
|D|2

∣∣∣∣∣
=
|C|2

|D|2

=

∣∣1− iα
k

∣∣2 |A|2∣∣1 + iα
k

∣∣2 |A|2
= 1

Therefore, T = 1−R = 0.

(To confirm:

jtransmitted =
i~
2m

(
Ψ
dΨ∗

dx
−Ψ∗

dΨ

dx

)
with Ψ = Aeαxe−iωt, ω =

E

~
∈ R

=
i~
2m

((
Aeαxe−iωt

) (
αA∗eαxeiωt

)
−
(
A∗eαxeiωt

) (
αAeαxe−iωt

))
since α, ω are real

= 0

Therefore, T =
∣∣∣ jtransmittedjincident

∣∣∣ = 0.)

8c. Is there transmission through the barrier? (2 marks)

As the transmission coefficient is zero, there is no overall transmission through the barrier. How-
ever, there is an exponentially decaying term for the wavefunction in the x < 0 region, indicating
some probability of finding the particle within that region (though the probability decreases rapidly
the further one goes into the barrier).
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9a. Write short notes about the comoving coordinate ~x and the scale factor R(t). (1
mark)

• Comoving coordinates are coordinates that follow the expansion of the universe.
• By definition, the comoving coordinate ~x is constant for a free particle following the expansion

of the universe.
• The scale factor R(t) relates the physical coordinates ~r to the comoving coordinates.
• The scale factor is a measure of the “size” and expansion rate of the universe.

9b. Write down the expression involving the real distance ~r, the co-moving coordinate
~x and the scale factor R(t). (1 mark)

~r = R(t)~x

9c. The Friedmann equation can be formulated using Newtonian laws.

i. Show that the Friedmann equation takes the form

(
Ṙ

R

)2

=
8πGρ

3
− kc2

R2
. (4 marks)

Hint: You may wish to consider the kinetic energy of a particle at the edge of the
universe moving with speed v.

Assume an infinite homogeneous isotropic universe of density ρ. Define an arbitrary point as the
origin. Consider a particle of mass m a distance r from the origin. We note that since r = Rx and
x is fixed, we have ṙ = Ṙx.

The mass of the spherical region contained between the particle and the origin is 4
3
πρr3. Therefore,

it has gravitational potential energy −Gm
r

(
4
3
πρr3

)
= −4πGρmr2

3
. As its kinetic energy is 1

2
mṙ2, it

has (constant) total energy:

E = −4πGρmr2

3
+

1

2
mṙ2 =

4πGρmR2x2

3
+

1

2
mṘ2x2

=⇒ 2E

mR2x2
= −8πGρ

3
+

(
Ṙ

R

)2

, dividing throughout by
mR2x2

2

=⇒

(
Ṙ

R

)2

=
8πGρ

3
− kc2

R2
, introducing the constant k = − 2E

mc2x2

ii. Write down a formula for k and state what it represents. (1 mark)

As shown above, k = − 2E

mc2x2
. It represents the curvature of the universe, with k > 0, k = 0 and

k < 0 (i.e. positive, zero or negative curvature) corresponding to closed, flat and open universes
respectively.
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9d. The fluid equation in cosmology is ρ̇ = −3
Ṙ

R

(
ρ+

P

c2

)
. Use the result of part (c) to

obtain the acceleration equation,
R̈

R
= −4πG

3

(
ρ+

3P

c2

)
. (3 marks)

Rearranging the result of part (c), ρ =
3

8πG

(Ṙ
R

)2

+
kc2

R2


=⇒ ρ̇ =

3

8πG

(
2

(
Ṙ

R

)(
R̈R− Ṙ2

R2

)
− 2kc2Ṙ

R3

)

Substituting the fluid equation ρ̇ = −3
Ṙ

R

(
ρ+

P

c2

)
and cancelling the factor 3

Ṙ

R
from both sides,

−
(
ρ+

P

c2

)
=

1

4πG

(
R̈R− Ṙ2

R2
− kc2

R2

)

− 4πG

(
ρ+

P

c2

)
=
R̈

R
−

(
Ṙ

R

)2

− kc2

R2

Substituting the result of part (c) again,

− 4πG

(
ρ+

P

c2

)
=
R̈

R
−
(

8πGρ

3
− kc2

R2

)
− kc2

R2

R̈

R
= −4πG

(
ρ+

P

c2

)
+

8πGρ

3

R̈

R
= −4πG

3

(
ρ+

3P

c2

)

9e. How do you think pressure will affect the acceleration of the universe? (1 mark)

As seen from the acceleration equation, increased pressure corresponds to a larger value of R̈, i.e.
a faster acceleration of the universe.

9f. Using the above results, comment on how the acceleration of the universe is affected
by its curvature. (1 mark)

It can be seen from the result of part (d) that the acceleration equation does not depend directly
on the curvature k. It does, however, indirectly affect the acceleration through its relation to R
and ρ via the Friedmann equation. In general, for an open universe (k < 0), the acceleration
continues forever; for a flat universe (k = 0), the acceleration asymptotically approaches zero; for
a closed universe (k > 0), the expansion slows and reverses into a Big Crunch.

Solutions provided by: Tan Ying Zhe Ernest
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