NATIONAL UNIVERSITY OF SINGAPORE

PC2130 Quantum Mechanics I

(Semester II: AY 2017-18)

Time Allowed: 2 Hours

INSTRUCTIONS TO STUDENTS

- 1. Please write your student number only. Do **not** write your name.
- 2. This assessment paper contains 5 questions and comprises 6 printed pages.
- 3. Students are required to answer all questions.
- 4. Students should write the answers for each question on a new page.
- 5. This is a CLOSED BOOK examination.
- 6. Students are allowed to bring in one A4-sized help sheet.
- 7. Non-programmable electronic calculators are allowed.

(1) Operators and commutators

[12 points]

a) Show that for any operators \hat{A} and \hat{B} :

$$[\hat{A}, \hat{B}^n] = \sum_{s=0}^{n-1} \hat{B}^s [\hat{A}, \hat{B}] \hat{B}^{n-s-1}$$
, $n = integer > 0$.

[2 points]

b) Assume now that $\left[\hat{A},\hat{B}
ight]=z$, where z is a complex number. Show that

$$\left[\hat{A},\hat{B}^n\right]=n\,z\,\hat{B}^{n-1}.$$

[2 points]

c) Consider the parity operator $\widehat{\varPi}$ with

$$\widehat{\Pi}\psi(x)=\psi(-x).$$

Show that $\widehat{\Pi}$ is Hermitian.

[2 points]

d) Derive the eigenvalues of $\widehat{\Pi}$, employing that $\widehat{\Pi}$ is idempotent: $\widehat{\Pi}^2 = 1$.

[2 points]

e) Determine the eigenfunctions of $\widehat{\Pi}$.

[2 points]

f) In one dimension, the Hamiltonian operator for a free particle is

$$\widehat{H} = \frac{1}{2m} \hat{p}_x^2$$

and hence $\left[\widehat{H},\widehat{\Pi}\right]=0$, implying that $\widehat{H},\widehat{\Pi}$ share a common set of eigenfunctions.

Determine the common eigenfunctions for \widehat{H} and $\widehat{\Pi}$.

[2 points]

(2) 1-dimensional delta-function potential

[12 points]

Consider the 1D-Schrödinger equation with the delta-function potential

$$V(x) = -\alpha \, \delta(x - a),$$

where α is a positive number and the delta function:

$$\delta(x-a) = \begin{cases} \infty, & x = a \\ 0, & x \neq a \end{cases},$$

and

$$\int_{-\infty}^{\infty} \delta(x-a) dx = 1.$$

a) Determine the bound state energy and corresponding wavefunction.

[6 points]

b) Calculate the reflection coefficient of the delta-function potential V(x) for an incoming plane wave travelling from left to right.

[6 points]

(3) Asymptotic solutions and power series

[15 points]

[1 point]

Consider the spherically symmetric potential V(r):

$$V(r) = -2D\left(\frac{a}{r} - \frac{1}{2}\frac{a^2}{r^2}\right)$$
, with constants $D, a > 0$.

- a) Calculate r_0 such that $V(r_0) = 0$ and r_{min} for which $V(r_{min})$ is minimal. [1 point]
- b) Sketch V(r) and indicate the coordinates for r_0 and r_{min} .

Consider now the time independent Schrödinger equation and introduce the dimensionless variables:

$$x=rac{r}{a}, \qquad eta^2=-rac{2ma^2E}{\hbar^2}, \qquad \gamma^2=rac{2ma^2D}{\hbar^2}, \qquad E<0$$

c) Show that the radial part u(r) of the wavefunction $\Psi(r) = \frac{u(r)}{r} Y_l^m(\theta, \phi)$ satisfies the following differential equation: [3 points]

$$\frac{d^2}{dx^2}u(x) + \left[-\beta^2 + \frac{2\gamma^2}{x} - \frac{\gamma^2 + l(l+1)}{x^2} \right] u(x) = 0.$$

- d) Find the asymptotic solutions for u(x) in the limit of $x \to \infty$ and $x \to 0$. [3 points]
- e) Hence, or otherwise show that we can express u(x) as:

[1 point]

$$u(x) = x^{\lambda} e^{-\beta x} f(x), \qquad \lambda = \frac{1}{2} + \sqrt{\gamma^2 + \left(l + \frac{1}{2}\right)^2}.$$

f) Derive the differential equation for f(x).

[3 points]

g) Write f(x) as a power series:

$$f(x) = \sum_{i=0}^{\infty} b_i x^i$$

and by demanding that the series stops at power n, show that the bound state energies are given by:

$$E_{nl} = -\frac{\hbar^2}{2ma^2}\gamma^4\left[n + \frac{1}{2} + \sqrt{\gamma^2 + \left(l + \frac{1}{2}\right)^2}\right]^{-2}, \quad n = 0,1,2,...$$

[3 points]

Note: This potential models the vibration spectrum of a di-atomic molecule.

Consider the Schrödinger equation of a free particle with charge q and mass m in the presence of a magnetic field B:

$$i\hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t) = \frac{1}{2m} (\widehat{\mathbf{p}} - q\mathbf{A})^2 \psi(\mathbf{r}, t).$$

Bold letters indicate vectors in 3D-space.

A = A(r) is the vector potential with $B = \nabla \times A$,

and the canonical momentum $\hat{p} = \frac{\hbar}{i} \nabla$.

We define the probability density

$$\rho(\mathbf{r},t) \equiv \psi^*(\mathbf{r},t) \, \psi(\mathbf{r},t)$$

and the probability current density in the presence of a magnetic field

$$\boldsymbol{j}(\boldsymbol{r},t) = \frac{\hbar}{2mi} \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right) - \frac{q}{m} \boldsymbol{A} \rho.$$

a) The Schrödinger equation in a homogeneous magnetic field yields quantized energy levels (Landau levels) similar to the 1D-harmonic oscillator.

In a semi-classical picture, provide a qualitative argument why energy quantization occurs. [3 points]

b) Show that the continuity equation remains unchanged in the presence of a magnetic field:

$$\frac{\partial}{\partial t}\rho(\mathbf{r},t) + \nabla \cdot \mathbf{j}(\mathbf{r},t) = 0.$$

[6 points]

(5) Spin in arbitrary direction

[12 points]

Consider a spin ½ -system.

We prepare the system in the quantum state

$$|X(t)\rangle = \alpha |\uparrow\rangle e^{+i\omega t} + \beta |\downarrow\rangle e^{-i\omega t}$$

where $|\uparrow\rangle, |\downarrow\rangle$ are eigenstates to the spin-operators $\hat{S}^2, \hat{S}_z,$

 α and β are constants with $\alpha^2 + \beta^2 = 1$,

and ω the Larmor frequency.

The operators $\hat{\mathcal{S}}_x, \hat{\mathcal{S}}_y, \hat{\mathcal{S}}_z$ are given by the respective Pauli-matrices

$$\hat{S}_i = \frac{\hbar}{2}\sigma_i, \qquad i = x, y, z.$$

a) Calculate the expectation value $\langle X(t)|\hat{S}_z|X(t)\rangle$.

[2 points]

- b) Calculate the expectation values $\langle X(t)|\hat{S}_x|X(t)\rangle$ and $\langle X(t)|\hat{S}_y|X(t)\rangle$. [4 points]
- c) Consider now the direction defined by the unit vector n:

$$n = \begin{pmatrix} \sin\theta \cos\phi \\ \sin\theta \sin\phi \\ \cos\theta \end{pmatrix}$$
.

Calculate the probability to measure the spin-value $+\frac{1}{2}\hbar$ in the direction of n.

[6 points]

------ End of paper ------

JM