NATIONAL UNIVERSITY OF SINGAPORE

PC2130 Quantum Mechanics 1

(Semester I: AY 2008-09)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains **6 short** questions in Part I and **3 long** questions in Part II. It comprises **10** printed pages, including this cover page.
- 2. Answer **ALL** the questions in Part I. The answers to Part I are to be written on the question paper itself and submitted at the end of the examination.
- 3. Answer any **TWO** of the questions in Part II. The answers to Part II are to be written in the answer books.
- 4. This is a **CLOSED BOOK** examination. Students are allowed to bring in an A4-sized (both sides) sheet of notes.
- 5. The total mark for Part I is 48 and that for Part II is 52.

IMPORTANT

Matriculation No.	Marks			

PC2130 Quantum Mechanics 1 AY 2008-09 Semester 1 Examination

Part I: Short Questions

Attempt ALL Questions in this Part. Eight (8) Marks per Question.

1. Atoms with their spin pointing in the direction of the unit vector **e** are sent through Stern-Gerlach apparatus oriented in the direction of the unit vector **n**. Determine the fraction of atoms that will be deflected upwards and the fraction of atoms that will be deflected downwards.

- 2. A normal operator is one which commutes with its adjoint: $A^{\dagger}A = AA^{\dagger}$.
 - (a) Prove that if $|a\rangle$ is an eigenket of A with eigenvalue a, then $\langle a|$ is also an eigenbra of A with the same eigenvalue.
 - (b) Prove that if $|b\rangle$ is another eigenket of A with eigenvalue b, and $b \neq a$, then $\langle a | b \rangle = 0$.

- 3. The rotation operator $R_{\mathbf{n}}(\theta) = e^{i\frac{\theta}{2}\mathbf{n}\cdot\boldsymbol{\sigma}}$.
 - (a) Show that for a general unit vector \mathbf{n} : $e^{i\theta \mathbf{n} \cdot \boldsymbol{\sigma}} = \cos \theta + i \sin \theta \ (\mathbf{n} \cdot \boldsymbol{\sigma})$.
 - (b) What is the spin state obtained by rotating $|\uparrow_z\rangle$ 120° about the axis $\mathbf{n} = \frac{1}{\sqrt{3}}(\hat{\mathbf{x}} + \hat{\mathbf{y}} + \hat{\mathbf{z}})$?

4. Evaluate the expressions $\langle x|XP$ and $\langle x|PX$, stating clearly the intermediate steps with relevant explanations or remarks, and hence show that $\langle x|[X,P]=i\hbar \langle x|$.

5. It is known that for a certain state of a simple harmonic oscillator, $\langle X \rangle = 0$ and $\langle P \rangle = 0$, and hence $\delta X^2 = \langle X^2 \rangle$, and $\delta P^2 = \langle P^2 \rangle$. Show that if the state is known to attain the minimum uncertainty $\delta X \delta P = \hbar/2$, then the energy of the state must be at least $\frac{1}{2}\hbar\omega$.

Note: It may be useful to know that the arithmetic mean is not smaller than the geometric mean: $\frac{1}{2}(a+b) \geq \sqrt{ab}$.

6. A particle of mass m is trapped in a delta-potential well

$$V(x) = -\frac{\hbar^2 \kappa}{m} \delta(x)$$

where κ is a constant. Determine the energy level(s) and corresponding wavefunction(s) of the bound state(s).

Part II: Long Questions

Attempt any TWO (2) Questions in this Part. Twenty Six (26) Marks per Question.

1. (a) A spin state $|\phi\rangle$ has its spin pointing in the direction

$$\mathbf{n} = \sin \theta \cos \varphi \,\hat{\mathbf{x}} + \sin \theta \sin \varphi \,\hat{\mathbf{y}} + \cos \theta \,\hat{\mathbf{z}},$$

where θ and φ are the polar and azimuthal angles. Show that the spin state may be expressed as a linear combination in the z-basis as

$$|\psi\rangle = |\uparrow_z\rangle \cos(\theta/2) + |\downarrow_z\rangle \sin(\theta/2) e^{i\varphi}.$$

(b) A general spin state $|\psi\rangle = |\uparrow_z\rangle \alpha + |\downarrow_z\rangle \beta$. Show that:

$$\langle \psi | (\sigma_x + i\sigma_y) | \psi \rangle = 2\alpha^* \beta, \qquad \langle \psi | \sigma_z | \psi \rangle = \alpha^* \alpha - \beta^* \beta.$$

(c) The results of Stern-Gerlach measurements of a batch of atoms, all of them prepared in the same spin state, are summarised below:

	x-measurements $+x$ $-x$		y-measurements $+y$ $-y$		z-measurements	
Percentage of atoms	50%	50%	10%	90%	80%	20%

Determine the spin state of the atoms, and the direction **n** of the spin.

Note: $\tan^{-1}(1/2) = 26.57^{\circ}$.

2. Let $|\psi\rangle$ be a general state, $\psi(x,t) = \langle x,t | \psi \rangle$ the position wave function, X and P the position and momentum operators, $T = P^2/(2m)$ the kinetic energy operator, and V(X) the potential energy operator (where V is a real function).

Show that:

(a)
$$\langle \psi | XP | \psi \rangle = -i\hbar \int_{-\infty}^{\infty} dx \ x \ \psi^*(x,t) \frac{\partial \psi(x,t)}{\partial x}$$
.

(b)
$$\left\langle \psi \left| T \right| \psi \right\rangle = -\frac{\hbar^2}{2m} \int_{-\infty}^{\infty} dx \ \psi^*(x,t) \frac{\partial^2 \psi(x,t)}{\partial x^2}$$
$$= \frac{\hbar^2}{2m} \int_{-\infty}^{\infty} dx \ \frac{\partial \psi^*(x,t)}{\partial x} \frac{\partial \psi(x,t)}{\partial x}.$$

(c)
$$\left\langle \psi \left| X \frac{dV}{dX} \right| \psi \right\rangle = \int_{-\infty}^{\infty} dx \ x \ \frac{dV(x)}{dx} \psi^*(x,t) \psi(x,t).$$

(d)
$$\frac{d}{dt} \left\langle \psi \left| XP \right| \psi \right\rangle = \frac{\hbar^2}{m} \int_{-\infty}^{\infty} dx \, \frac{\partial \psi^*(x,t)}{\partial x} \, \frac{\partial \psi(x,t)}{\partial x}$$
$$- \int_{-\infty}^{\infty} dx \, x \, \frac{dV(x)}{dx} \, \psi^*(x,t) \psi(x,t)$$
$$= 2 \left\langle \psi \left| T \right| \psi \right\rangle - \left\langle \psi \left| X \frac{dV}{dx} \right| \psi \right\rangle.$$

(e) For the stationary states of the harmonic oscillator,

$$\langle \psi | T | \psi \rangle = \langle \psi | V | \psi \rangle.$$

Note: You may assume contributions from $x = \pm \infty$ all vanish, e.g.,

$$\left. x\psi^* \frac{\partial^2 \psi}{\partial^2 x} \right|_{-\infty}^{\infty} = 0.$$

3. Let
$$\hat{x} = \sqrt{\frac{m\omega}{2\hbar}}X$$
, $\hat{p} = \sqrt{\frac{1}{2\hbar m\omega}}P$, and $a = \hat{x} + i\hat{p}$, $N = a^{\dagger}a$.

(a) Show that the simple harmonic oscillator Hamiltonian can be written as

$$H = \frac{P^2}{2m} + \frac{1}{2}m\omega^2 X^2 = \hbar\omega\left(N + \frac{1}{2}\right).$$

- (b) Show that
 - (i) $[a, a^{\dagger}] = 1$.
 - (ii) [N, a] = -a.
 - (iii) $[N, a^{\dagger}] = a^{\dagger}$.
- (c) If $|\nu\rangle$ is an eigenvector of N with eigenvalue ν , i.e., $N|\nu\rangle = |\nu\rangle \nu$, prove that:
 - (i) The eigenvalue ν is a real number and $\nu \geq 0$.
 - (ii) $a^{\dagger} | \nu \rangle$ and $a | \nu \rangle$ are also eigenvectors of N.
 - (iii) $a|\nu\rangle = 0$ if and only if $\nu = 0$.
 - (iv) The vector $a^{\dagger} | \nu \rangle$ never vanishes, i.e., $a^{\dagger} | \nu \rangle \neq 0$.
 - (v) The eigenvalue ν must be zero or a positive integer.
- (d) Based on the earlier results, prove that the eigenvectors $|n\rangle$ of N are also the eigenstates of the Hamiltonian of the simple harmonic oscillator, associated with energy levels $E_n = (n + \frac{1}{2})\hbar\omega$.
- (e) Obtain the position wave function of the ground state.

(LH)

— End of Paper —