NATIONAL UNIVERSITY OF SINGAPORE

PC2130 QUANTUM MECHANICS I

(Semester II: AY 2008-09)

Time allowed: 2 hours

INSTRUCTION TO CANDIDATES

- 1. This examination paper comprises 4 (four) printed pages in addition to this one.
- 2. The examination contains 4 (four) questions, all of which should be answered.
- 3. Answers to the questions are to be written in the answer books.
- 4. This is a CLOSED BOOK examination.
- 5. One cheat sheet (A4 size, both sides) is allowed for this examination.

This problem deals with two-level systems. We recall the Pauli matrices

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 , $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

We write as $|\pm\hat{z}\rangle$ the eigenvectors of σ_z for the eigenvalues +1 and -1 respectively.

Let
$$|\varphi\rangle = \sqrt{\frac{2}{3}}|+\hat{z}\rangle + i\sqrt{\frac{1}{3}}|-\hat{z}\rangle$$
:

- (i) Among all the possible pure states of a two-level system, how many are different from $|\varphi\rangle$: none, one, finitely many, or infinitely many?
- (ii) How many outcomes does an ideal measurement of a two-level system have? Supposing one of the outcomes corresponds to $|\varphi\rangle$, give the state(s) corresponding to the other outcome(s).
- (iii) Write down the projector P_{φ} on the state $|\varphi\rangle$.
- (iv) Consider now the mixed state

$$\rho = \begin{cases} |+\hat{z}\rangle & \text{with probability } \frac{2}{3} \\ |-\hat{z}\rangle & \text{with probability } \frac{1}{3} \end{cases} :$$

write down the corresponding density matrix.

(v) Do $|\varphi\rangle$ and ρ represent the same state? Justify your answer. *Hint*: the two states are the same if and only if $\langle A \rangle_{\rho} = \langle A \rangle_{\varphi}$ for all physical quantities A. Therefore: if your answer is *yes*, provide a proof that the equality indeed holds for any A; if your answer is *no*, exhibit a physical quantity A such that $\langle A \rangle_{\rho} \neq \langle A \rangle_{\varphi}$.

Consider a three-level system ("spin 1") whose evolution is dictated by the Hamiltonian

$$H = 2E|1\rangle\langle 1| + E|2\rangle\langle 2| - E|3\rangle\langle 3|.$$

The physical quantity "spin along the direction x" is represented by the hermitian operator

$$S_x = \frac{1}{\sqrt{2}} (|1\rangle\langle 2| + |2\rangle\langle 1| + |2\rangle\langle 3| + |3\rangle\langle 2|).$$

(i) Write down H and S_x as matrices, assuming $|1\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $|2\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $|3\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

(ii) Find a set of normalized eigenvectors of
$$S_x$$
 and the corresponding eigenvalues.

- (iii) At time t=0, an ideal measurement of S_x has yielded the outcome -1: which state $|\psi(0)\rangle$ has been prepared?
- (iv) Having this initial state, give the state $|\psi(t)\rangle=e^{-iHt/\hbar}|\psi(0)\rangle$ at time t.
- (v) We repeat many times the following procedure: preparation of $|\psi(0)\rangle$, evolution of the state for a time t, measurement of S_x . For which times (if any) does one find $\langle \psi(t)|S_x|\psi(t)\rangle = \langle \psi(0)|S_x|\psi(0)\rangle = -1$?

Consider the eigenvalue problem for the Schrödinger equation $\left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+V(x)\right)\phi_E(x)=E\phi_E(x)$ for the piecewise-constant potential sketched in Figure 1.

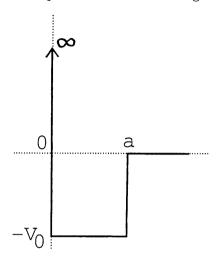


Figure 1: The piecewise-constant potential under study.

- (i) Draw qualitatively the form of the stationary states for $-V_0 < E < 0$ and E > 0. Discuss in which energy range (if any) the states are bound.
- (ii) From now on, consider E > 0: the stationary states are of the form

$$\phi_E(x) = \begin{cases} 0 & x < 0 \\ \phi_1(x) = A_1 e^{ik_1 x} + B_1 e^{-ik_1 x} & 0 < x < a \\ \phi_2(x) = A_2 e^{ik_2 x} + B_2 e^{-ik_2 x} & x > a \end{cases}$$

Find the expressions of $k_1 > 0$ and $k_2 > 0$.

- (iii) Write the continuity conditions at x = 0 and at x = a. Reminder: in the presence of an infinite potential step, one of the conditions should not be imposed.
- (iv) Compute the reflection coefficient for a wave incoming from the right, $R = \left| \frac{A_2}{B_2} \right|^2$.
- (v) For both $\phi_1(x)$ and $\phi_2(x)$, compute the density of probability current

$$J_k(x) = \frac{\hbar}{2mi} \left[\phi_k^*(x) \frac{d}{dx} \phi_k(x) - \phi_k(x) \frac{d}{dx} {\phi_k}^*(x) \right].$$

Consider the wave packet

$$\Psi(x) = \begin{cases} \frac{1}{\sqrt{L}} e^{ik_0(x-x_0)} &, x \in [-L/2, L/2] \\ 0 & \text{elsewhere} \end{cases}.$$

- (i) In a measurement of position, what is the probability of finding the particle in the region [-a, +a] for $a \le L/2$?
- (ii) Same question as in (i) but for a > L/2.
- (iii) Compute the average value of the position $\langle Q \rangle_{\Psi}$.
- (iv) Compute the Fourier transform of $\Psi(x)$, defined by $\tilde{\Psi}(k) \equiv \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \Psi(x) e^{-ikx} dx$.
- (v) Compute the average value of the momentum $\langle P \rangle_{\Psi}$. Remarks: if you want to compute in the X basis, neglect the discontinuity of the derivative in $x=\pm L/2$; if you want to compute in the P basis, recall that $p=\hbar k$.

END OF PAPER