NATIONAL UNIVERSITY OF SINGAPORE

PC2130 QUANTUM MECHANICS I

(Semester I: AY 2010-2011)

Time allowed: 2 hours

INSTRUCTION TO CANDIDATES

1. This examination paper comprises 5 (five) printed pages in addition to this one.
2. The examination contains 5 (five) questions, all of which should be answered.
3. Answers to all the questions are to be written in the answer books.
4. This is a CLOSED BOOK examination.
5. One "cheat sheet" (A4 size, single side) is allowed for this examination.
6. This examination will account for 60% of the final mark, and the sum of marks within this examination is 60 .

Question 1

Consider a three-level system ("spin 1") whose evolution is dictated by the Hamiltonian

$$
H=E|1\rangle\langle 1|-E|3\rangle\langle 3| .
$$

The physical quantity "spin along the direction x " is represented by the Hermitian operator

$$
S_{x}=\frac{\hbar}{\sqrt{2}}(|1\rangle\langle 2|+|2\rangle\langle 1|+|2\rangle\langle 3|+|3\rangle\langle 2|)
$$

and the physical quantity "spin along the direction z " is represented by the Hermitian operator

$$
S_{z}=\hbar(|1\rangle\langle 1|-|3\rangle\langle 3|) .
$$

(a) Write down H, S_{x} and S_{z} as matrices, assuming $|1\rangle=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),|2\rangle=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ and $|3\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \cdot[3$ marks]
(b) What are the possible outcomes of a measurement of S_{x} ? For each of these measurement outputs, what is the state with which the system ends after the measurement? [3 marks]
(c) What are the possible outcomes of a measurement of S_{z} ? For each of these measurement outputs, what is the state with which the system ends after the measurement? [3 marks]
(d) The physical quantity "spin along the direction y " could be represented by a Hermitian operator S_{y}, guess what would be the possible outcomes of a measurement of S_{y} ? [1 marks]
(e) At time $t=0$, a measurement of S_{x} has yielded the outcome $+\hbar$: which state $|\psi(0)\rangle$ has been prepared? [2 marks]
(f) Having this initial state, give the state $|\psi(t)\rangle$ at time t. [2 marks]
(g) We repeat many times the following procedure: preparation of $|\psi(0)\rangle$, evolution of the state for a time t, measurement of S_{x}. For which times (if any) does one find $\langle\psi(t)| S_{x}|\psi(t)\rangle=\langle\psi(0)| S_{x}|\psi(0)\rangle$? [2 marks]
(h) We repeat many times the following procedure: preparation of $|\psi(0)\rangle$, evolution of the state for a time t, measurement of S_{z}. For which times (if any) does one find $\langle\psi(t)| S_{z}|\psi(t)\rangle=\langle\psi(0)| S_{z}|\psi(0)\rangle$? Explain the physical reason for your answer. [3 marks]

Question 2

Consider a particle of mass m in an infinite potential well:

$$
\begin{array}{ll}
V(x)=0 & \text { if } 0 \leq x \leq a \\
V(x)=+\infty & \text { if } x<0 \text { or } x>a .
\end{array}
$$

$\left|\phi_{n}\right\rangle$ are the eigenstates of the Hamiltonian H of the system, and their eigenvalues are $E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}$. The state of the particle at time $t=0$ is

$$
|\psi(0)\rangle=a_{1}\left|\phi_{1}\right\rangle+a_{2}\left|\phi_{2}\right\rangle+a_{3}\left|\phi_{3}\right\rangle+a_{4}\left|\phi_{4}\right\rangle .
$$

(a) When the energy of the particle in the state $|\psi(0)\rangle$ is measured, what is the probability of finding the value smaller than $\frac{3 \pi^{2} \hbar^{2}}{m a^{2}}$? [2 marks]
(b) What is $\langle E\rangle_{\psi}$, the mean value of the energy of the particle in the state $|\psi(0)\rangle$? [2 marks]
(c) What is the state $|\psi(t)\rangle$ at time t ? [2 marks]
(d) What are the answers to (a) and (b) for the state $|\psi(t)\rangle$ at any arbitrary time t ? Explain your results. [4 marks]
(e) When the energy is measured, the result $\frac{8 \pi^{2} \hbar^{2}}{m a^{2}}$ is found. After the measurement, what is the state of the system? What is the result if the energy is measured again? [2 marks]

Question 3

For the Hamiltonian of a harmonic oscillator: $H=\frac{1}{2 m} P^{2}+\frac{1}{2} m \omega^{2} X^{2}$, the ground state wave function is $\psi_{0}(x)=\left(\frac{\beta}{\sqrt{\pi}}\right)^{1 / 2} e^{-\beta^{2} x^{2} / 2}$, where $\frac{1}{\beta}=\sqrt{\frac{\hbar}{m \omega}}$.
(a) Calculate the average value of the position $\langle X\rangle_{\psi_{0}}$. [2 marks]
(b) Calculate the average value of the momentum $\langle P\rangle_{\psi_{0}}$. [2 marks]
(c) Calculate the average kinetic energy $\left\langle E_{k}\right\rangle_{\psi_{0}}$ and the average potential energy $\langle V\rangle_{\psi_{0}}$, respectively. Comment on your results. [5 marks]
(d) Calculate the uncertainty of the position $\Delta X_{\psi_{0}}$. [2 marks]
(e) Calculate $\Delta X_{\psi_{0}} \Delta P_{\psi_{0}}$. Check if your result is compatible with the uncertainty relation for X and P. [3 marks]

Reminder: $\int_{-\infty}^{+\infty} e^{-y^{2}} d y=\sqrt{\pi}$ and $\int_{-\infty}^{+\infty} y^{2} e^{-y^{2}} d y=\frac{\sqrt{\pi}}{2}$.

Question 4

A beam of spin- $\frac{1}{2}$ particles with speed v_{0} passes through a series of two $\mathrm{SG}_{\mathbf{z}}$ devices. The first $\mathrm{SG}_{\mathbf{z}}$ device transmits particles in the state with the eigenvalue $s_{z}=+\hbar / 2$ and filters out particles in the state with the eigenvalue $s_{z}=-\hbar / 2$. The second $\mathrm{SG}_{\mathbf{z}}$ device transmits particles with $s_{z}=-\hbar / 2$ and filters out particles with $s_{z}=+\hbar / 2$. Between the two devices is a region of length ℓ_{0} in which there is a uniform magnetic field B_{0} pointing in the x direction. Determine the smallest value of ℓ_{0} such that exactly 25 percent of the particles transmitted by the first $\mathrm{SG}_{\mathbf{z}}$ device are transmitted by the second $\mathrm{SG}_{\mathbf{z}}$ device. Express your result in terms of $\omega_{0}=e g B_{0} /(2 m c)$ and v_{0}. [10 marks]
Reminder: the Hamiltonian of a spin in magnetic field is $H=-\vec{\mu} \cdot \vec{B}$, where the magnetic dipole moment $\vec{\mu}=\frac{g(-e)}{2 m c} \vec{S}$, and $\vec{S}=S_{x} \hat{x}+S_{y} \hat{y}+S_{z} \hat{z}$.

Question 5

Consider a one dimensional system along the x-axis. Find the eigenvalues and the wave functions of the eigenstates (in the x-basis or position space) of the operator $P+\alpha X$ (where α is a real number). Note: You don't need to calculate explicitly the normalization factor of the wave functions. [5 marks]

END OF PAPER

