PC2130 Quantum Mechanics 1 Sem 1 AY12-13

Problem One

If Q is an observable that does not depend explicitly on time, show that the expectation
value of ) in an eigenstate |u,) of the Hamiltonian H of the system is time-independent.

Solution:
Since the observable () does not depend explicitly on time, the equation-of-motion of its
expectation value is given by

G{Q) = 2 (1.Q)) = 7wl (HQ - Q) )

= = (Bu{unl Qi) — B fua] Qlun)) =0,

where E,, is the energy eigenvalue corresponding to the eigenstate |u,,).

Problem Two

~

Show that the density operator p(t) = |1(t)) (¥(t)| satisfies the equation-of-motion

~ ~

ih (1) = [, (1)

Solution:
ins ((0) ) = (in 1000} ) (wto)] + 1(0) (in 3 (wio)).

Recalling that from the Schrodinger equation, we have the relations

L 0 - L0 .
o) = HIG()  and  — s ()] = ()] A
the expression can be simplified to yield
i p(t) = B (0)) (0] — 1(0) (O] H = Hp{t) — p(t) T = [, 1),
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Problem Three

(a) Calculate the commutator [, T,], where T, = e~ i®/",

Solution:
All functions F' that can be expressed as a power series in its argument satisfy the
generalised commutation relation

or
. F5) = ih
Hence,
. oT, 8 i . .
[z, T,] = ih ih—A(eﬂ“p/h) — qe—iap/h _ af.

op  Op
(b) Show that
Solution:

where 7 aTaT = 7 since Ta is unitary.

Alternatively, we can also use the Baker—-Campbell-Hausdorff lemma
1

S D o[RS\ 0 o] R

R S
e’ Xe —X+[Y,X}+2! i

which yields

recognising that the order two and higher commutators all vanish.
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Problem Four

A particle is described by the (position-space) wavefunction

1 ST
YO = G TaeTr o

Calculate the expectation values of its position and momentum, and show that the un-
certainty in the momentum cannot be zero.

Solution:
The probability density is given by
1
(22 + ¢2)?’

which is evidently symmetric about z = 0, and hence it follows that the expectation
value () is zero. For the momentum, we invoke Ehrenfest’s theorem,

() = m (@),

(@) =

and find that (unsurprisingly), (p) = 0 as well.

Let us consider the standard deviation of the position of the particle, o, = 1/ (#2) — (2)?.
If 0, is finite-valued, then by Heisenberg’s uncertainty principle, o, cannot be zero. Since
(&) = 0, it suffices to examine the value of (#?). We have

] 2 ] 2 2 00
2 x T°+c 1 U
(& /oo @+ @R = /oo @+ @2 /oo @+

Hence, o, is finite and we are done.
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Problem Five

Evaluate the expression (x;—|exp [Z%S’y} and express the result in terms of the z-

eigenbasis (z; 4| and (z; —|.

Solution:
A A 1 N
exp [i%Sy} = exp [z’%&y} =7 cos (%) + 10y sin (%) = E (I + z'&y>

Casting the desired expression in explicit matrix form, with {(z; +|, (z; —|} as the basis,
we obtain

lew[igs] = 0 )55 (1 1) =0 0)= (e

This result could have been anticipated by considering the conjugate expression
A INT A 2 ~
(toi=tex [iz5,])" = ex [~ 228, s =) = exp | -0, | 1 =) = o (/2 i -,

which corresponds to rotating the vector |x; —) clockwise by an angle of 7/2 about the
y-axis, and (obviously) results in |z; +).

Problem Six

For the quantum harmonic oscillator, show that the relation a|n) = v |n — 1) with v > 0
must imply that v = /n.

Solution:
We consider the norm of both sides of the relation to obtain
(n—1~yln—1)=]> and  (n|d'a|n) = (n|A|n) =n,

where 7 = a'a is the number operator.

Without any loss of generality, we assume that v is real and positive, and hence arrive

at v = y/n.

Page 4 of 9 (©NUS Physics Society



PC2130 Quantum Mechanics 1 Sem 1 AY12-13

Problem Seven

For a simplified model of a triatomic molecule, the Hamiltonian and position operators
have the matrix representations (in the {|xz1), |z}, |x3)} basis)

1 10
H=hnp|1 0 1 and X=a
011

The system was prepared in the initial state |[¢(t = 0)) = |z1).

(a) Find the possible energy values and corresponding probabilities at ¢t = 0.

Solution:
The eigenvalues and eigenstates of the Hamiltonian are

1| ! 1 [ 1|
Bu= <A |B) 2 7 |2 (B =0 B = 75 | 0|y =200 15) 2 5 |1
Hence the possible measurement outcomes and corresponding probabilities are
P(E = —hf) = [(Ex|[$(0)[* = 1/6
P(E = hf) = [(E:|¢(0)[* = 1/2
P(E = 21f) = |{Es|p(0))* = 1/3
(b) Find the expectation value and uncertainty of the energy at ¢t = 0
Solution:
(H) = (1/6)(=h) + (1/2)(hB) + (1/3)(2hB3) = hf
(H?) = (1/6)(=hp)* + (1/2)(hB)* + (1/3)(2h5)* = 2(h3)
§H = \/(H?) — (H)2 = hf
(c) Compute the probability of finding the electron at atom 2 at a later time ¢.
Solution:
() = exp [~ifit/h] [1:(0) = > exp =iEit/1] B (B (0)
i 1 1 ?
= x| (1))|” = zi:exp [—iEit/h) (xa] ;) (Ei|x1)| = ‘_5 explift] + 3 exp|—2i[t]

2

_2_2 (3
=g~ g s (36t) = 5 Sin <2ﬁt)
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(d)

(e)

Find the expectation value and uncertainty of the energy at time ¢.

Solution:
By conservation of energy, it is quite evident that the expectation value and uncer-
tainty in the energy are independent of time and hence the answer is the same as in

part (i).

Are there other times ¢ > 0 at which a position measurement will yield x = —1
(atom 1) with absolute certainty?

Solution:
2

Pz = =1) = (e[ (t)* = |>_ exp [<iEit/h] (x1] E;) (Eilz1)

i
In order for the expression to be unity, we require that all the components share the
same phase, that is

exp [ift] = exp [—ift] = exp [—2i/t]

This clearly occurs when ¢t = 2nw /3, n € Z.

If the system is projected into the most likely energy state at ¢ = 0, what is the
expectation value of the position?

Solution:

After the measurement, the electron is in the state |Ey) = (— |x1) + |x3)) /v/2. Since
there is equal probability of finding the electron at x = —1 (atom 1) and z = 1 (atom
3), the expectation value of the position is obviously 0.
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Problem Eight

(a) Consider a particle in the ground state in an infinite square square well potential in the
region 0 < < a. Write down the corresponding normalized wavefunction and energy.

Solution:
2gin (22) O<z< 22
b (2) = \/;sm(a) r<a and o :
0 otherwise 2ma
(b) The left wall is diabatically moved to the position z = —a so that the well becomes twice
as wide.

(i) Write down the eigenfunctions and energies of the particle in the new potential.

Solution:

1 nwT nmw 2
bo(a) fsm( bt - 7) —a<z<a and £ n2m2h

0 otherwise 8ma?

(ii) Find the probability of finding the particle in the ground state of the new potential

Solution:

1 a
/¢1 )1 (x :_/ os WI sin(ﬁx>d -5 sin(%)—l—sin(g;—f

2a 2a 20 20\ 4\/_
a\/_ T 3r) 31
Hence the probability is given by

32
Prob = — ~ 0.360
ro 972
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(iii) Find the probability of finding the particle with an energy that is not higher than
the original energy it had before the wall was moved.

Solution:
Only the states ¢;(z) and ¢§x) correspond to energies lower than or equal to the

original energy. Hence,
' / o5 (w )b (x

The first term had already been evaluated in Part (ii). Evaluating the second term
explicitly yields

/ G5 ()1 (2 \/_/ — 111 in(%)dx:—\g/oasirf(%)d

Prob = ‘/ o1 (z) (z d:E

Therefore,
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Problem Nine

(a)

Spin-1/2 particles initially prepared in the state |y, —) are passed through a sequence of
Stern-Gerlach selectors picking out the |z, +), |n, +) and |z, +) states respectively, where
the second selector is oriented along the direction n = sinfu, + cosfu,. What is the
fraction of particles leaving the last selector for (i) § = 0, (ii) = 7 and (iii) § = 7/27

Solution:
The fraction of particles leaving the last selector is given by

1
|<y7 _|‘Ta+> <ZL‘,—|—|7’L,+> <7’L,—|—|Z,—|—>|2 = 4_1 |<IL‘,—|—|TL,—|—>|2,

since |(y, —|z, +)|* = |(n, +|z,+)|* = 1/2, as n is orthogonal to the z-axis.
1) 6=0: |(z,+|n, > = |(x, +]y, +)|* = 1/2 = Fraction = 1/8
(i) 0 =7 : [{z, +n, +)|* = |(z, +|y, —)|* = 1/2 = Fraction = 1/8
(iii) 6 = 7/2 : |(z, +|n, +)|* = |(z, +|z, +)|* = 1 = Fraction = 1/4
The atoms leaving the last Stern-Gerlach selector travel at a constant velocity vy and
enter a box of length L where they are subjected to a magnetic field described by the

Hamiltonian H = (fiwy/2) 6, What length L is required for all atoms leaving the box
to be in the state |z, +)?

Solution:
(1)) = expli(wo/2)t] |y, —) (Y, —|z, +) + exp [—i(wo/2)t] [y, +) (y, +|2, +)

= % ly, +) + (exp [iwot] |y, —)) exp [—i(wo/2)t]

Expressing |z, +) in terms of |y, =), we have

1—z'| +>+1+z’
7 ¥ 2

1
T,+) = ,—) = —=(y,+) +1|y,—)) exp|—in/4
|2, +) [y, =) = =5 Iy, ) +ily, =) expl=im/4]
Evidently, we require that exp [iwpt] =i = wot = (2n + 1/2)7 and the required length
is
Vo
7"'_

L=vyt=(2n+1/2)
)

Inside the box, are any of the spin projections a constant of the motion?

Solution:

The spin projection along the y-axis is clearly a constant of the motion since [ﬁ , S’y] =0,
while the other two are not as [H, S,] # 0 and [H, S.] # 0. Physically, the Hamiltonian
causes the spin to precess about the y-axis.
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