NATIONAL UNIVERSITY OF SINGAPORE

PC2131 ELECTRICITY & MAGNETISM I

(Semester II: AY 2016-17)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. Please write your student number only. Do not write your name.
- 2. This examination paper contains FOUR (4) questions and comprises FOUR (4) printed pages.
- 3. Students are required to answer ALL questions.
- 4. Students should write the answers for each question on a new page.
- 5. This is a **CLOSED** book examination. You are allowed however to bring in **ONE** A4-sized help sheet.
- 6. Specific permitted devices: non-programmable calculators.

Question 1 [25=10+15]

The Maxwell equations,

$$egin{aligned} oldsymbol{
abla} \cdot \mathbf{E}(\mathbf{r},t) &= rac{
ho(\mathbf{r},t)}{\epsilon_0} \,, & oldsymbol{
abla} \times \mathbf{E}(\mathbf{r},t) &= -rac{\partial \mathbf{B}(\mathbf{r},t)}{\partial t} \,, & \\ oldsymbol{
abla} \cdot \mathbf{B}(\mathbf{r},t) &= 0 \,, & oldsymbol{
abla} \times \mathbf{B}(\mathbf{r},t) &= \mu_0 \mathbf{J}(\mathbf{r},t) + \mu_0 \epsilon_0 rac{\partial \mathbf{E}(\mathbf{r},t)}{\partial t} \,, & \end{aligned}$$

together with the Lorentz force law,

$$\mathbf{F} = \iiint_{\mathcal{V}} \rho(\mathbf{r}, t) \left[\mathbf{E}(\mathbf{r}, \mathbf{t}) + \mathbf{v}(\mathbf{r}, t) \times \mathbf{B}(\mathbf{r}, t) \right] dv,$$

summarize the entire theoretical content of classical electrodynamics.

(a) Starting from the rate of work done on all charges,

$$\frac{\mathrm{d}W}{\mathrm{d}t} = \iiint_{\mathcal{V}} \mathbf{J}(\mathbf{r}, t) \cdot \mathbf{E}(\mathbf{r}, t) \, \mathrm{d}v,$$

show that the energy density in the fields $u(\mathbf{r}, \mathbf{t})$ and the Poynting vector $\mathbf{S}(\mathbf{r}, t)$ are given by respectively

$$u(\mathbf{r},t) = \frac{\epsilon_0}{2} \mathbf{E}(\mathbf{r},t) \cdot \mathbf{E}(\mathbf{r},t) + \frac{1}{2\mu_0} \mathbf{B}(\mathbf{r},t) \cdot \mathbf{B}(\mathbf{r},t), \qquad \mathbf{S}(\mathbf{r},t) = \frac{1}{\mu_0} \mathbf{E}(\mathbf{r},t) \times \mathbf{B}(\mathbf{r},t).$$

- (b) A long cable is made from two coaxial cylindrical shells. The cylindrical axis of the cable is the z-axis. The inner cylindrical conductor, carrying current I_0 in the +z direction, has radius a and charge per unit length λ . The outer cylindrical shell, carrying the return current I_0 in the -z direction, has radius b and charge per unit length $-\lambda$. The currents are uniformly distributed in the conductors.
 - (i) Find the electric field E(r) and magnetic field B(r) between the cylinders.
 - (ii) Find the Poynting vector S(r) between the cylinders.
 - (iii) Find the rate at which energy flows through a cross section of the cable.

Question 2 [25=10+15]

(a) An electric dipole $\mathbf{p}_1 = p_0 \,\hat{\mathbf{e}}_y$ is located at $\mathbf{r}_1' = (0,0,z_0)$ above an infinite, grounded, conducting plane at z = 0.

- (i) Find the asymptotic electrostatic field $\mathbf{E}(\mathbf{r})$ at an arbitrary point on the z-axis for $z \gg z_0$.
- (ii) Find the electrostatic force on the electric dipole p_1 .
- (b) A conducting sphere of radius a, centered at the origin, is held at a specified electrostatic scalar potential of φ_0 . It is surrounded by a concentric spherical shell of radius b with a surface charge density $\sigma(\theta) = \sigma_0 \cos \theta$ where σ_0 is a positive constant.
 - (i) Find the electrostatic scalar potential $\varphi(\mathbf{r})$ in the regions a < r < b and r > b.
 - (ii) Show that the electrostatic field $\mathbf{E}(\mathbf{r})$ in the region r < a is zero everywhere.

Question 3 [25=10+15]

(a) The electrostatic scalar potential of some stationary charge configuration is given by

$$\varphi(\mathbf{r}) = \frac{A}{r} e^{-\lambda r},$$

where A and λ are positive constants.

- (i) Find the electrostatic field $\mathbf{E}(\mathbf{r})$ due to this configuration.
- (ii) Find the total electric charge Q of this configuration.
- (b) A sphere of radius R, centered at the origin, carries uniform volume free charge density ρ . It is filled with a linear isotropic homogeneous dielectric of dielectric constant κ .
 - (i) Find the electrostatic field $\mathbf{E}(\mathbf{r})$ and electrostatic auxiliary field $\mathbf{D}(\mathbf{r})$ everywhere.
 - (ii) Find the polarization volume and surface charge distributions.
 - (iii) Check explicitly that the total polarization volume charge and the total polarization surface charge sum to the expected value.

PC2131: Electricity & Magnetism I

Question 4 [25=10+15]

(a) A localized distribution of steady current is specified by volume current density J(r). The magnetostatic vector potential A(r) at a field point r due to this current distribution is given by

$$\mathbf{A}(\mathbf{r}) = rac{\mu_0}{4\pi} \iiint_{\mathcal{V}'} rac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, \mathrm{d}v'$$
 .

The multipole expansion of magnetostatic vector potential for $r \gg r'$ is given by

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \iiint_{\mathcal{V}} (r')^n P_n(\cos \alpha) \mathbf{J}(\mathbf{r}') dv',$$

where α is the angle between r and r', and $P_n(x)$ is the Legendre polynomial. The first few Legendre polynomials are

$$P_0(x) = 1$$
, $P_1(x) = x$, $P_2(x) = \frac{1}{2} (3x^2 - 1)$.

A circular loop of wire, of radius a, lies in the xy plane with its center at the origin. It carries a current I running counter-clockwise as viewed from the +z axis.

- (i) Find the asymptotic magnetostatic vector potential A(r) due to the circular loop.
- (ii) Hence, or otherwise, find the asymptotic magnetostatic field B(r) due to the circular loop.
- (b) An infinite conducting slab, parallel to the xy plane and extending from z=-a and z=+a, carries a uniform free volume current density $\mathbf{J}_{\mathrm{f}}(\mathbf{r})=J_0\,\hat{\mathbf{e}}_x$ where J_0 is a positive constant. The conducting slab is immersed in a large volume of linear isotropic homogeneous magnetic material of magnetic susceptibility χ_{m} .
 - (i) Find the magnetostatic field B(r) and magnetostatic auxiliary field H(r) everywhere.
 - (ii) Find the magnetization volume and surface current distributions.
 - (iii) Check explicitly that the magnetostatic auxiliary field $\mathbf{H}(\mathbf{r})$ satisfies boundary conditions at the surfaces z=-a and z=+a respectively.

KHCM