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INSTRUCTIONS TO CANDIDATES
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This examination paper contains FOUR questions and comprises THREE printed
pages.

Answer ALL questions.

Answers to the questions are to be written in the answer books.

A list of formulae will be supplied.

This is a CLOSED BOOK examination.



Question 1:

(a) Show that the curl of the gradient of a scalar function f (x) is identically zero. 2]
(b) Show that the divergence of the curl of a vector function F(x) is identically zero. [2]
(¢) Write down the 4 Maxwell’s differential equations of electromagnetism. State clearly the
physical quantities in the equations. [3]
(d) Show how the fields in Maxwell’s equations may be represented in terms of a scalar
potential V(x,t) and a vector potential A(x,t). [2]

(e) Derive the differential equations for ¥(x,¢) and A(x,#), and show how they can be

written in the more symmetrical form
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where you are to determine L, and L,. [6]

Question 2:
(a) Write down the fundamental equation of magnetostatics, which mathematically expresses
the two basic principles of magnetostatics. State clearly the physical quantities in the

equation. [3]
(b) From the fundamental equation of magnetostatics, show that the magnetic field is
solenoidal. [3]
(c) From the fundamental equation of magnetostatics, derive the differential form of
Ampere’s law. [4]
Hint: The Green’s function of —V? is given by
G(x - x)—————l———

(d) Consider a continuous distribution of currents described by the volume current density
J (x'). Given that x'’s are close to the origin, show that the vector potential due to this

current distribution at a field point x, a distance r, far away from the origin is
approximately given by
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[5]
Hint: You may assume the magnetic monopole term to be zero, and may find the
following identities useful
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Question 3:

(a) Show that the potential in a volume V is uniquely specified (up to an additive constant)
by the solution to Poisson’s equation, if either the potential or its normal derivative is
specified on each surface of the volume. [7]

(b) Consider a point charge +¢q located at the point (a,b,c) with two grounded, infinite
conducting planes set at right angles to one another, such that it is a distance a from one
and b from the other, as shown in Figure 1.
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Figure 1
Calculate the charge induced on each plate. (8]

Hint: You may find the following definite integrals useful
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Question 4:
(a) Show that
Dcos6
r2
satisfies V2V =0. [5]
(b) An amount of charge O has been deposited on a conducting sphere of radius R, and the
sphere has been placed in a uniform electric field E, in the positive z direction. What is
the potential V(r,e) in the region surrounding the sphere? [6]

(c) Find the electrostatic potential V(r,e) inside a spherical volume of radius R, given that
the volume is empty and that the potential at the surface » = R is

V(R,9)=%(1+2c059+3c052 0).

V(r,0)= A+£+Crcos€)+
r

[4]
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